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Abstract. We consider the asymptotic behavior of a small solution to the
linearized KdV equation. By rewriting this equation as a Hamiltonian system,
the deduced Hamiltonian has unbounded, non-symmetric, and time-dependent
potential. In this paper, we show the stableness of this solution to a linearized
KdV equation in the L2 sense and the decay estimates by analyzing this system.

AMS 2010 Mathematics Subject Classification. 35Q53, 47A45.

Key words and phrases. linearized KdV equation, non-selfadjoint operator, scat-
tering theory, smoothing estimates.

§1. Introduction

The KdV equation with small nonlinear perturbation is written as:

∂tϕ+ ∂3xϕ+ 6(ϕ∂xϕ) = εF (ϕ),(1.1)

where t, x ∈ R, ϕ = ϕ(t, x);R×R → C is an unknown function, F ; C → C is
a given function and ε > 0 is a small constant. Here for the constants α > 0
and x0 ∈ R and the parameters x ∈ R and t ∈ R, let us define the so-called
soliton as

q = q(t, x) := 2α2sech2(α(x− 4α2t− x0)).

Then q satisfies ∂tq+∂
3
xq+6q∂xq = 0, where we note that even if we replace α

with −α, the quantity of q is equivalent and hence, it is sufficient to consider
only the case where α > 0. For some constant δ > 0, by substituting the small
solution ϕ = δq + εψ, (1.1) will be

δ∂tq + ε∂tψ + (δ∂3xq + ε∂3xψ) + 6(δq + εψ)(δ∂xq + ε∂xψ) = εF (δq + εψ)

1
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and is equivalent to

δ
(
∂tq + ∂3xq + 6q∂xq

)
+ ε

(
∂tψ + ∂3xψ + 6δ∂x(ψq)

)
= εF (δq + εψ)− 6ε2ψψx + 6δ (1− δ) q∂xq.

Using the condition of q and dividing both terms by ε, ψ = ψ(t, x) satisfies
the equation;

∂tψ + ∂3xψ + 6δ∂x(ψq) = F (δq + εψ)− 6εψψx + 6δε−1 (1− δ) q∂xq.(1.2)

The aim of this paper is to reduce this equation to a simple form and consider
some L2-properties as solutions to the reduced equation. In the following, we
consider the case where q is not only the soliton but also the generalized po-
tential V . In particular, we consider the following time-independent linearized
KdV equations with generalized potentials;{

∂tu0(t, x) + 6δ∂x(2α
2V0(t)u0(t, x)) + (∂3xu0)(t, x) = 0,

u0(0, x) = u0,0 ∈ L2(R),
(1.3)

where V0(t) is the multiplication operator of V (α(x − 4α2t − x0)) and V :
R → R is a generalized potential, which is defined later. Let p = −i∂x. Then,
by substituting J (t)w = u0 with J (t) := e−i(4tα2+x0)pei((x·p+p·x) logα)/2, (see
§2), we obtain the reduced system{

i∂tw = α3Hw,

w(0, x) = w0 = J −1(0)u0,0,
(1.4)

with

H = −p3 − 4p+ 6δ(pV + V p) + i6δV ′,

where V and V ′ are the multiplication operators of V (x) and V ′(x), respec-
tively. As is seen in Proposition 2.1 and the comments after this proposition,
(1.1) can be decomposed into a linear term (1.4) plus a nonlinear term; hence,
the investigation of some of the properties of the solution to the linear equa-
tion will be a first step toward considering perturbation in the soliton (1.4). In
particular, we prove the L2-stableness of the solutions w(t, x) and u0(t, x) in t,
(see, Theorem 1.7 and 1.8). By decomposing H into H = Ĥ+i6δV ′, we notice
that Ĥ is selfadjoint on L2(R) and hence, we determine that the propagator

e∓itĤ is unitary, that is, for all u ∈ L2(R), ∥e∓itĤu∥L2(R) = ∥u∥L2(R). We

term this condition L2− the conservation property of e∓itĤ . Selfadjointness

implies that Ĥ is real-valued and hence, we can expect e∓itĤ to be unitary.
However, H has a complex component i6δV ′ and, in general, e−itH will not be
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a unitary operator. Moreover if H has the complex eigenvalues z ∈ C, then
by taking u as the eigenfunction of H,

∥∥e−itHu
∥∥
L2(R)

=
∥∥e−itzu

∥∥
L2(R)

holds,

and is equivalent to etImz ∥u∥L2(R). According to the sign of Imz; this term

diverges to ∞ or converges to 0 (we say e−itH is unstable). Hence, we are
interested to establish whether e∓itH is stable or not and find that under the
small condition of δ, e∓itH is stable. As far as we know, such a result has not
been observed yet; this result can be applied to nonlinear problems and so on.

Remark 1.1. In the usual sense, a linearized operator is written as L =
−p3−4p+6(pV +V p)+i6V ′, which is obtained by the insertion of ϕ = q+εψ in
(1.1), see e.g., Sachs [16], Mann [6], Kato-Kawamoto-Nanbu [10] and references
therein. In this case, the situation changes significantly, and it is difficult even
to prove the nonexistence of the L̂ = L− i6V ′ eigenvalues. Besides this issue,
we have to deal with non-selfadjoint perturbation 6iV ′. Unfortunately, a non-
small coefficient 6 and the condition of V ′ so that V ′ is not always positive or
negative make it difficult to apply the previous approaches in the scattering
theory for non-selfadjoint perturbation. There are some studies associated
with these issues (for the nonexistence of eigenvalues: Froese, Herbst, M. H.
Ostenhof, and T. H. Ostenhof [4] and Sigal [17]; for the scattering theory for
non-small complex perturbation: Mochizuki [8], Nakazawa [9], Royer [14], and
Wang [19])). However, to apply these approaches to L is not easy since V ′ is
not always positive and it is difficult to obtain the particulars of the L̂.

Remark 1.2. Consider the KdV equation with generalized coefficients

∂tP (t, x) + aP (t, x)∂xP (t, x) + γ∂3xP (t, x) = 0.

Then the soliton of this equation can be written as

Q(t, x) = c cosh−2(b(x− dt− x0)),

where x0 ∈ R, abcdγ ̸= 0 are the given constants and these ratios satisfy

ac = 12b2γ = 3d.

When we consider the perturbation of solitons, we use the substitution P =
δQ+ εR. Then, the deduced linearized operator coincides with H. Hence, it
is sufficient only to consider (1.5) to consider the perturbation of solitons.

The aim of this paper is to prove the stableness of e−itH and its inverse
eitH by using the scattering theory. Kato [11] considered the scattering theory
for non-selfadjoint operators written in the form T = T0+ iW with sufficiently
small W , and established the Kato methods to prove such issues. To replicate
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Kato’s approach, we assume that δ > 0 is a small constant. Throughout, we
put

β = 6δ

and suppose |β| ≪ 1,; we also assume that V decays faster than ⟨x⟩−2. Specif-
ically, we assume the following:

Assumption 1.3. Assume that V ;R → R satisfies V ∈ C3(R) and the
following decaying condition: for all integers l ∈ N ∪ {0} with l ≤ 3 and for
some constants where s > 1, there exist constants Cl,s > 0 such that

sup
y∈R

∣∣∣⟨y⟩2s+l (∂lV )(y)
∣∣∣ ≤ Cl,s(1.5)

holds, where ⟨τ⟩ = (1 + τ2)1/2. Moreover, δ > 0 is sufficiently small.

Throughout, if we write s, it is always equivalent to that in Assumption
1.3.

Remark 1.4. The usual soliton V (y) = sech2y satisfies both conditions V ∈
C3(R) and (1.5).

Under this assumption, we have the smoothing estimates for e−itα3Hw0 and
u0(t, x).

Theorem 1.5. Under the assumption 1.3, for all 0 ≤ θ < 1, the estimates

∫ ∞

−∞

∥∥∥⟨x⟩−s ⟨p⟩θ e−itα3Hw0

∥∥∥2
L2(Rx)

dt ≤ Cα−3∥w0∥2L2(R) = Cα−3∥u0,0∥2L2(R),

(1.6)

and ∫ ∞

−∞

∥∥∥⟨α(x− 4α2t− x0)
⟩−s ⟨p⟩θ u0(t, x)

∥∥∥2
L2(Rx)

dt ≤ Cα−3∥u0,0∥2L2(R)(1.7)

hold, where w0(x) = (e−iA logαeix0pu0,0)(x) defined in (1.4) and u0(t, x) is the
solution to (1.3).

As an application to the smoothing estimate, we can prove the existence of
wave operators and these inverses:

Theorem 1.6. Define H0 = −p3 − 4p. Suppose Assumption 1.3. Then, the
wave operators

W± = s− lim
t→±∞

eitα
3He−itα3H0
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exist; these inverses

W±
In = s− lim

t→±∞
eitα

3H0e−itα3H

also exist. Moreover, the adjoints of wave operators and these inverses(
W±)∗ = s− lim

t→±∞
eitα

3H0e−itα3H∗

and (
W±

In

)∗
= s− lim

t→±∞
eitα

3H∗
e−itα3H0

exist.

By imitating the approach of Kato [11], the existence of wave operators
and these inverses provides the L2-stableness theorem for propagators e−itα3H

and e−itα3H∗
:

Theorem 1.7. Suppose Assumption 1.3 holds. Then, for all t ∈ R, there
exist (t, α, δ)-independent constants 0 < c0 ≤ C0 and 0 < c∗0 ≤ C∗

0 such that
for all t ∈ R

c0 ∥w0∥2L2(R) ≤ ∥e−itα3Hw0∥2L2(R) ≤ C0∥w0∥2L2(R),

and

c∗0 ∥w0∥2L2(R) ≤ ∥e−itα3H∗
w0∥2L2(R) ≤ C∗

0∥w0∥2L2(R)

hold.

Using this theorem, we finally obtain the stableness of the solutions to (1.3);

Theorem 1.8. Let u(t, x) be a solution to (1.3) and 0 < c0 ≤ C0 be equivalent
to those in Theorem 1.7. Then, for all t ∈ R

c0 ∥u0,0∥L2(R) ≤ ∥u0(t, ·)∥L2(R) ≤ C0 ∥u0,0∥L2(R)

holds.

As for the asymptotic behavior of the solution to (1.3), asymptotic ex-
pansion was recently obtained by Guo Quang-Can, Guo Guo-Ping, Hao, Tao
and Wang [5]. However, as far as we know, it has not yet been shown that
L2 ensures stableness and smoothing estimates. Our result may apply to the
so-called soliton perturbation nonlinear problem.
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§2. Reduction steps

Remarking (1.2), let us start by considering the linearized equations written
in the form;

∂tu(t, x) + 6δ∂x(2α
2q0(α(x− 4α2t− x0))u(t, x)) + ∂3xu(t, x)

= −iG(t, x),
u(0, x) = u0 ∈ L2(R),

where for y ∈ R, q0(y) = sech2(y), G(t, x) is defined as

G(t, x) = 24iα5(1− δ)δε−1q0(α(x− 4α2t− x0))q
′
0(α(x− 4α2t− x0)),

where q′0(y) = (d(sech2(τ))/dτ)|τ=y; reduce this equation to the simplified
form. By defining p = −i∂x with i =

√
−1, this equation can be written as a

Hamiltonian system;

i∂tu = K(t)u+G(t, x)

with

K(t) = −p3 + 6δα2(pQ0(t) +Q0(t)p) + 6δα3iQ′
0(t),

where Q0(t) and Q
′
0(t) are the multiplication operators of q0(α(x−4α2t−x0))

and q′0(α(x−4α2t−x0)), respectively. Since the operatorK(t) depends on time
and is non-symmetric, it would be difficult to apply resolvent estimates or spec-
tral theory to it. To avoid the difficulties arising from time-dependence, we use
a Galilean transformation and reduce K(t) to the time-independent operator.
Because p is selfadjoint on L2(R), the unitary operator e−i(4α2t+x0)p is well
defined; it is called the Galilean transformation. The Galilean transformation
e−i(4α2t+x0)p satisfies ei(4α

2t+x0)pq0(α(x − 4α2t − x0))e
−i(4α2t+x0)p = q0(αx),

ei(4α
2t+x0)pp3e−i(4α2t+x0)p = p3. Moreover for u ∈ S (R), using û(ξ), the

Fourier transform of u,

(eiθpu)(x) =
1√
2π

∫
R
eixξeiθξû(ξ)dξ = u(x+ θ)

holds for all θ ∈ R. Hence, by substituting u(t, x) = e−i(4α2t+x0)pv(t, x) for
some v(t, x) with v(0, x) = eix0pu0, v(t, x) satisfies the differential equations

i∂tv = K̃v + G̃(x), v(0, x) = eix0pu0(x) = u0(x+ x0)

with

K̃ = −p3 − 4α2p+ 6δα2(Q0p+ pQ0) + 6δiα3Q′
0,
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and

G̃(x) = ei(4α
2t+x0)pG(t, x) = 24iα5δε−1 (1− δ) q0(αx)q

′
0(αx)

where Q0 and Q′
0 are multiplication operators of q0(αx) and q′0(αx), respec-

tively. We easily see that the operator K̃ is not a symmetric operator of
L2(R) but is independent of time. Next, we introduce the unitary operator
U := eiA logα with A = (x · p+ p · x)/2 acting on L2(R); this operator satisfies

U−1

(
x
p

)
U =

(
x/α
αp

)
, (U−1f)(x) =

1

α1/2
f(x/α)

on S (R) and f ∈ S (R), respectively. Hence, U−1K̃U can be written as

K := U−1K̃U, K = α3(−p3 − 4p+ 6δ(Qp+ pQ) + i6δQ′),

where Q and Q′ are the multiplication operators of q0(x) and q′0(x), respec-
tively. Hence, for w̃ = U−1v, we obtain an equation

i∂tw̃ = Kw̃ + (U−1G̃)(x).

Then, we have the system{
i∂tw̃ = α3H̃w̃ +G(x),

w̃(0, x) = (U−1eix0pu0)(x) = (α)−1/2u0(x/α+ x0),

H̃ := −p3 − 4p+ 6δ(pQ+Qp) + i6δQ′,

G := 24iα9/2δε−1 (1− δ) q0(x)q
′
0(x).

Now we reduce (1.2). If we consider the power type nonlinear term F (y) =
|y|ρy with ρ ≥ 1. Then, in (1.2), substituting J (t)z = ψ with J (t) :=

e−i(4tα2+x0)pU , we have the equation

i∂tz(t, x)− α3(H̃z)(t, x)

= −6iεα3/2z(t, x)∂xz(t, x) + 6iα9/2δε−1(1− δ)q̃(x)q̃′(x)

+ iαρ/2|εz(t, x) + δα3/2q̃(x)|ρ
(
εz(t, x) + δα3/2q̃(x)

)
where q̃(x) = 2sech2x, and we use (J (t)z)(t, x) =

√
αz(t, α(x− 4tα2 − x0)),

J −1(t)2ψψx = J −1∂xJ (t) · J (t)−1 ((J (t)zJ (t)z))

= α2∂xJ (t)−1
(
z(t, α(x− 4tα2 − x0))z(t, α(x− 4tα2 − x0))

)
= 2α3/2z(t, x)∂xz(t, x)
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and

J (t)−1|εψ + δq|ρ(εψ + δq)

= J (t)−1
(
α1/2εz(t, α(x− 4tα2 − x0) + 2δα2sech2(α(x− 4tα2 − x0))

)
×
∣∣∣α1/2εz(t, α(x− 4tα2 − x0) + 2δα2sech2(α(x− 4tα2 − x0))

∣∣∣ρ
= αρ/2(εz(t, x) + δα3/2q̃(x))|εz(t, x) + δα3/2q̃(x)|ρ.

Hence, we have the following proposition.

Proposition 2.1. For some ρ > 0, let F (θ) = |θ|ρθ. Then, the KdV equation
(1.2) can be reduced to

∂tz(t, x) + α3∂3xz(t, x)− 4α3∂xz(t, x) + 6δα3∂x(q̃(x)z(t, x))

= −6εα3/2z(t, x)∂xz(t, x) + 6α9/2δε−1(1− δ)q̃(x)q̃′(x)(2.1)

+ αρ/2F
(
εz(t, x) + δα3/2q̃(x)

)
by substituting J (t)z = ψ.

Here, let us consider the case where δ = 1. Then, as said before, the possible
existence of complex-valued eigenvalues of H̃ cannot be discounted and if the
imaginary part of such eigenvalues is positive, letting H̃ϕ = (λR + iλI)ϕ with
λR ∈ R and λI > 0, for t ≥ 0, the exponential growth

∥e−itH̃ϕ∥2 = eλI t∥ϕ∥2

may make it difficult to analyze (2.1). Conversely , if δ ≪ 1, the linear equation
will be

∂tW (t, x) + α3∂3xW (t, x)− 4α3∂xW (t, x) + 6δα3∂x(q̃(x)W (t, x))

−6α9/2δε−1(1− δ)q̃(x)q̃′(x) = 0,

W (0, x) =W0,

this yields

W (t, x) = e−itα3H̃W0 + 6α9/2δε−1(1− δ)

∫ t

0
e−iα3(t−s)H q̃(x)q̃′(x)ds.

Hence, we can find the growth order ∥W (t, x)∥2 = O(t); this may enable
us to analyze (2.1) more easily. This is the merit of considering the small
perturbation of solitons .
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§3. Stableness of e−itα3H and e−itα3H∗

In this section, we shall prove Theorem 1.7. We let 6δ = β and

H0 := −p3 − 4p, H := H0 + β(pV + V p) + iβV ′.

The norm of Lq(R), 1 ≤ q ≤ ∞, is denoted as ∥·∥q and the inner product of

L2(R) is denoted as (·, ·), i.e., for u, v ∈ L2(R),

(u, v) :=

∫
R
u(x)v(x)dx.

The operator norm of L2(R) is denoted as ∥·∥, i.e., for some bounded operator
A, ∥A∥ := sup∥u∥2=1 ∥Au∥2.

3.1. Uniform resolvent estimate for H0

The main objective of this section is to prove the uniform resolvent estimate
for the weighted resolvent ⟨x⟩−s ⟨p⟩θ (H − λ ∓ iµ)−1 ⟨p⟩θ ⟨x⟩−s, where λ ∈ R,
s > 1, 0 ≤ θ < 1 and µ > 0. BecauseH is non-selfadjoint, it may be difficult to
deduce a uniform resolvent estimate by using the conventional approaches, e.g.,
Mourre’s theory, to calculate integral kernels and so on. Hence, we initially
prove the weighted uniform resolvent estimate for H0 and extend this result
to H.

Lemma 3.1 (Weighted uniform resolvent estimate for H0). For all 0 ≤ θ < 1
and for all ϕ ∈ L2(R), there exists a constant C > 0 so that

sup
λ∈R,µ>0

∥∥∥⟨x⟩−s ⟨p⟩θ (H0 − λ∓ iµ)−1 ⟨p⟩θ ⟨x⟩−s ϕ
∥∥∥
2
≤ C∥ϕ∥2(3.1)

holds.

Remark 3.2. The smoothing estimate for H0 has been the focus of many
studies, for example, Theorem 5.4. of Ruzhansky–Sugimoto [15] (this paper
deals with H0 and the more general (dispersive) hamiltonian). However, we
must deal with the non-selfadjoint operator H and, as far as we know, the
scheme for deducing smoothing estimates for generalized operators including
non-selfadjoint operators has not yet been obtained . Hence, we must extend
the smoothing estimates for H0 to H; however, this may be difficult even if the
perturbation is sufficiently small. The typical strategy to overcome this issue
is first to prove the uniform resolvent estimate for H0 and extend this to H.
However, the uniform resolvent estimate for H0 provides super-smoothness for
H0 and is more powerful than the smoothing estimate. As far as we know,
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super-smoothness for a generalized operator has not been obtained yet (the
high-energy case has been studied by Kawamoto [13]); hence, we must prove
this type of estimate for H0.

Remark 3.3. As for generalized elliptic operators including the Schrödinger
operator, the uniform resolvent estimate is proven by stationary scattering
theories, such as by the Agmon–Kato–Kuroda theorems (see, e.g., Chihara [1]
and references therein). Conversely, our energy p3 +4p satisfies ∂p(p

3 +4p) =
3p2 + 4, and (3p2 + 4)−1 is the bounded operator. For this case, the time-
dependent approach due to [11] §6 (but with some different aspects) works
well; hence, we demonstrate the uniform resolvent by using a time-dependent
approach.

Proof. We prove (3.1) for all ϕ ∈ C∞
0 (R) and, thereafter, using the density

argument, we deduce (3.1) for all ϕ ∈ L2(R). Let ϕ ∈ C∞
0 (R) and µ > 0. For

a > 0, define χ(· ≤ a) as the cut-off function so that χ(s ≤ a) = 1 for all s ≤ a
and = 0 for all s > a. Moreover, we denote that χ(· > a) = 1− χ(· ≤ a). By
the Laplace and Fourier transforms, we have

∥∥∥⟨x⟩−s ⟨p⟩2θ (H0 − λ− iµ)−1 ⟨x⟩−s ϕ
∥∥∥
2

=

∥∥∥∥⟨x⟩−s ⟨p⟩2θ
∫ ∞

0
e−it(H0−λ−iµ) ⟨x⟩−s ϕdt

∥∥∥∥
2

= CF

∥∥∥∥∫ ∞

0

∫
R
⟨x⟩−s eixξ ⟨ξ⟩2θ eit(ξ3+4ξ+λ+iµ)F

[
⟨·⟩−s ϕ

]
(ξ)dξdt

∥∥∥∥
2

≤ CF (I + J)

with

I :=

∥∥∥∥∫ ∞

1

∫
R
⟨x⟩−s eixξ ⟨ξ⟩2θ eit(ξ3+4ξ+λ+iµ)F

[
⟨·⟩−s ϕ

]
(ξ)dξdt

∥∥∥∥
2

and

J :=

∥∥∥∥∫ 1

0

∫
R
⟨x⟩−s eixξ ⟨ξ⟩2θ eit(ξ3+4ξ+λ+iµ)F

[
⟨·⟩−s ϕ

]
(ξ)dξdt

∥∥∥∥
2

,

where CF = (2π)−1/2 and F indicates the Fourier transform. For simplicity,
we put E(t, ξ) := eit(ξ

3+4ξ+λ+iµ) and K(ξ) := ⟨ξ⟩2θ (3ξ2 + 4)−1. Since ϕ ∈
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C∞
0 (R), we can use integration by parts with respect to ξ. Then, it holds that

I =

∥∥∥∥∫ ∞

1

∫
R
⟨x⟩−s eixξK(ξ) (∂ξE(t, ξ))F

[
⟨·⟩−s ϕ

]
(ξ)dξ

dt

t

∥∥∥∥
2

≤
∥∥∥∥∫ ∞

1

∫
R
⟨x⟩−s xK(ξ)eixξE(t, ξ)F

[
⟨·⟩−s ϕ

]
(ξ)dξ

dt

t

∥∥∥∥
2

+

∥∥∥∥∫ ∞

1

∫
R
⟨x⟩−sK(ξ)eixξE(t, ξ)F

[
−iy ⟨y⟩−s ϕ(y)

]
(ξ)dξ

dt

t

∥∥∥∥
2

+

∥∥∥∥∫ ∞

1

∫
R
⟨x⟩−s eixξ(∂ξK(ξ)) (E(t, ξ))F

[
⟨·⟩−s ϕ

]
(ξ)dξ

dt

t

∥∥∥∥
2

≤ I1 + I2 + I3 + I4 + I5,

where, for j ∈ {1, 2, 3, 4},

Ij :=

∥∥∥∥∫ ∞

1

∫
R
χj(x, ξ)K(ξ)eixξE(t, ξ)dξ

dt

t

∥∥∥∥
2

with

χ1(x, ξ) := ⟨x⟩−s xχ(|x| > tδ)F
[
⟨·⟩−s ϕ

]
(ξ),

χ2(x, ξ) := ⟨x⟩−s xχ(|x| ≤ tδ)F
[
⟨·⟩−s ϕ

]
(ξ),

χ3(x, ξ) := ⟨x⟩−s F
[
−iy ⟨y⟩−s χ(|y| > tδ)ϕ(y)

]
(ξ)

χ4(x, ξ) := ⟨x⟩−s F
[
−iy ⟨y⟩−s χ(|y| ≤ tδ)ϕ(y)

]
(ξ)

for some δ > 0, and

I5 :=

∥∥∥∥⟨x⟩−s
∫ ∞

1

∫
R
eixξ(∂ξK(ξ)) (E(t, ξ))F

[
⟨·⟩−s ϕ

]
(ξ)dξ

dt

t

∥∥∥∥
2

Now we show I1 ≤ C∥ϕ∥2 and I3 ≤ C∥ϕ∥2. The estimation for I1 is similar to
that for I3, and hence, we only estimate for I3, and get

I3 ≤
∫ ∞

1

∥∥∥⟨x⟩−s e−it(H0−λ−iµ)K(p)x ⟨x⟩−s χ(|x| > tδ)ϕ
∥∥∥
2

dt

t

≤ C

∫ ∞

1
t−1−δ(s−1)dt ∥ϕ∥2 ≤ C ∥ϕ∥2 ,

where we use s > 1, δ > 0 and K(p) is bounded since θ < 1. Next, we show
I2 ≤ C∥ϕ∥2 and I4 ≤ C∥ϕ∥2. For the same reason, we only estimate about I4.
We note that

E(t, ξ) =
−i

t(3ξ2 + 4)
∂ξE(t, ξ),

1

t(3ξ2 + 4)
≤ Ct−1.(3.2)
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Then I4 can be estimated as

I4 ≤
∫ ∞

1

∥∥∥∥∥
∫
R
(∂ξχ4(x, ξ))e

ixξ ⟨ξ⟩2θ

(3ξ2 + 4)2
E(t, ξ)dξ

∥∥∥∥∥
2

dt

t2

+

∫ ∞

1

∥∥∥∥∥
∫
R
χ4(x, ξ)xe

ixξ ⟨ξ⟩2θ

(3ξ2 + 4)2
E(t, ξ)dξ

∥∥∥∥∥
2

dt

t2

+

∫ ∞

1

∥∥∥∥∥
∫
R
χ4(x, ξ)e

ixξ

(
∂ξ

⟨ξ⟩2θ

(3ξ2 + 4)2

)
E(t, ξ)dξ

∥∥∥∥∥
2

dt

t2

≤ C

∫ ∞

1

(
t−2+δ(2−s) + t−2

)
dt ∥ϕ∥2 ≤ C ∥ϕ∥2 ,

by taking δ > 0 to be sufficiently small, where we use∥∥∥∥∥
∫
R
(∂ξχ4(x, ξ))e

ixξ ⟨ξ⟩2θ

(3ξ2 + 4)2
E(t, ξ)dξ

∥∥∥∥∥
2

≤ C

∥∥∥∥∥⟨x⟩−s ⟨p⟩2θ

(3p2 + 4)2
e−it(H0−λ−iµ)x2 ⟨x⟩−s χ(|x| ≤ tδ)ϕ

∥∥∥∥∥
2

≤ C
∥∥∥⟨x⟩−s+2 χ(|x| ≤ tδ)ϕ

∥∥∥
2
≤ Ctδ(2−s)∥ϕ∥2.

By the smoothness and boundedness of ∂ξK(ξ), and (3.2), that the smooth
and bounded function A exists so that

I5 ≤
∥∥∥∥⟨x⟩−s

∫ ∞

1

∫
R
eixξ

(
−ix

∂ξK(ξ)

3ξ2 + 4
+A(ξ)

)
(E(t, ξ))F

[
⟨·⟩−s ϕ

]
(ξ)dξ

dt

t2

∥∥∥∥
2

+

∥∥∥∥⟨x⟩−s
∫ ∞

1

∫
R
eixξ

(∂ξK(ξ))

3ξ2 + 4
(E(t, ξ))F

[
−i · ⟨·⟩−s ϕ

]
(ξ)dξ

dt

t2

∥∥∥∥
2

≤
∫ ∞

1

∥∥∥∥⟨x⟩−s

(
−ix

(∂ξK)(p)

3p2 + 4
+A(p)

)
e−it(H0−λ−iµ) ⟨x⟩−s ϕ

∥∥∥∥ dtt2
+

∫ ∞

1

∥∥∥∥⟨x⟩−s (∂ξK)(p)

3p2 + 4
e−it(H0−λ−iµ)x ⟨x⟩−s ϕ

∥∥∥∥ dtt2 ,
and we see that I5 is bounded by C∥ϕ∥2.

Next, we estimate J . Let a > 0 and χ̃(· ≤ a) be a smooth cut-off function
so that 0 ≤ χ̃(· ≤ a) ≤ 1, χ̃(s ≤ a) = 1 for all s ≤ a/2 and χ̃(s ≤ a) = 0 for all
s ≥ a; we also define χ̃(· > a) = 1− χ̃(· ≤ a). For some 0 < ε < 1/2, divide J
into J1 + J2 with

J1 :=
∥∥∥∫ 1

0

∫
R
⟨x⟩−s eixξ ⟨ξ⟩2θ χ̃(|ξ| > t−ε)e−it(H0−λ−iµ)F

[
⟨·⟩−s ϕ

]
(ξ)dξdt

∥∥∥
2
.
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and

J2 :=
∥∥∥∫ 1

0

∫
R
⟨x⟩−s eixξ ⟨ξ⟩2θ χ̃(|ξ| ≤ t−ε)e−it(H0−λ−iµ)F

[
⟨·⟩−s ϕ

]
(ξ)dξdt

∥∥∥
2
.

Here, by using eitξ
3
= (3t|ξ|2)−1∂ξe

itξ3 , |ξ|−1 < 2tε and applying integration
by parts, we can easily get J1 ≤ C∥ϕ∥2. By the simple calculation, J2 can be
estimated as

J2 =

∥∥∥∥⟨x⟩−s
∫ 1

0
⟨p⟩2θ χ̃(|p| ≤ t−ε)e−it(H0−λ−iµ) ⟨x⟩−s ϕdt

∥∥∥∥
2

≤ C∥ϕ∥2,

where we use θ < 1 and ε < 1/2. All constants in the estimates for I and J can
be taken independently into ϕ, and hence, we can use the density argument
and get Lemma 3.1.

3.2. Proof of Theorem 1.6

Now, we shall prove Theorem 1.6. In the proofs, we employ the extended
commutator calculation in various places, where the extended commutator
is defined as follows: Let A be a selfadjoint operator and suppose that D =
D(H)∩D(A) ⊂ H is dense. We define the form qH,A(·, ·) inD as qH,A(u, v) :=
i(Au,Hv)− i(Hu,Av) for u, v ∈ D. Then, if a bounded selfadjoint operator T
exists such that the closure of qH,A(·, ·), q̃H,A(·, ·) satisfies q̃H,A(u, v) = (Tu, v),
u, v ∈ H , then we denote this by T = i[H,A]0. We further employ the
commutator expansion lemma.

Lemma 3.4. For some integer 2 ≤ j, let A0 and B0 be the selfadjoint opera-
tors with

∥i[A0, B0]
0∥ <∞, ∥adjA0

(B0)∥ <∞,

where ad1A(H) = i[H,A]0 and adjA(H) = i[adj−1
A (H), A]0. For 0 ≤ ρ ≤ 1,

suppose that f ∈ Cj(R) satisfies |∂ks f(s)| ≤ Ck ⟨s⟩ρ−k, 0 ≤ k ≤ j. Then,

i[f(A0), B0]
0 =

j−1∑
k=1

1

k!
f (k)(A0)ad

k
A0

(B0) +Rj(f,A0, B0)

where Rj(f,A0, B0) satisfies

∥(A0 + i)j−1Rj(f,A0, B0)∥ ≤ C(f (j))∥adjA0
(B0)∥.

In particular, let f satisfy the condition stated in Lemma 3.4, then

i[f(p), x]0 = f ′(p)(3.3)

holds on D(f ′(p)).
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The proof of this lemma can be seen in Sigal–Soffer [18] and as Lemma
C.3.1 in Dereziński and Gérard [3].

To extend the uniform resolvent estimate for H0 to H, we must prove the
boundedness of the operator in the following (3.4); we do this by employing
the approach of [18];

Lemma 3.5. Let 1/2 ≤ θ < 1 and s > 1. Then, an operator acting on S (R),

⟨x⟩s ⟨p⟩−θ (pV + V p+ iV ′) ⟨p⟩−θ ⟨x⟩s(3.4)

can be extended to the bounded operator.

Proof. It suffices to prove that

⟨x⟩s ⟨p⟩−θ V p ⟨p⟩−θ ⟨x⟩s

can be extended to the bounded operator. On S (R), this operator can be
divided into

⟨x⟩s [⟨p⟩−θ , V ]p ⟨p⟩−θ ⟨x⟩s + ⟨x⟩s V ⟨p⟩−θ p ⟨p⟩−θ ⟨x⟩s

= ⟨x⟩s ⟨p⟩−θ [V, ⟨p⟩θ]p ⟨p⟩−2θ ⟨x⟩s + ⟨x⟩s V p ⟨p⟩−2θ ⟨x⟩s

= ⟨x⟩s ⟨p⟩−θ ⟨x⟩−s · ⟨x⟩s [V, ⟨p⟩θ] ⟨x⟩s

× ⟨x⟩−s p ⟨p⟩−2θ ⟨x⟩s + ⟨x⟩s V p ⟨p⟩−2θ ⟨x⟩s .

We first estimate ⟨x⟩s ⟨p⟩−θ ⟨x⟩−s. By

⟨x⟩s ⟨p⟩−θ ⟨x⟩−s

= ⟨x⟩s (x+ i)−1[x, ⟨p⟩−θ] ⟨x⟩−s + ⟨x⟩s (x+ i)−1 ⟨p⟩−θ (x+ i) ⟨x⟩−s

= −θ ⟨x⟩s (x+ i)−1p ⟨p⟩−θ−2 ⟨x⟩−s(3.5)

+ ⟨x⟩s (x+ i)−1 ⟨p⟩−θ (x+ i) ⟨x⟩−s .

Since [x, p ⟨p⟩−θ−2]0 is bounded, by employing Lemma 3.4 as A0 = x, B0 =
p ⟨p⟩−θ−2 and f(t) = ⟨t⟩s (t+ i)−1, we find that

⟨x⟩s (x+ i)−1p ⟨p⟩−θ−2 ⟨x⟩−s

= p ⟨p⟩−θ−2 (x+ i)−1 + [⟨x⟩s (x+ i)−1, p ⟨p⟩−θ−2] ⟨x⟩−s

can be extended to the bounded operator. The second term on the right-hand
side of (3.5) can be estimated in the same way and will be bounded. The
boundedness of ⟨x⟩−s p ⟨p⟩−2θ ⟨x⟩s similarly can be proven. The term

⟨x⟩s V p ⟨p⟩−2θ ⟨x⟩s

= ⟨x⟩s V [p ⟨p⟩−2θ , x+ i](x+ i)−1 ⟨x⟩s + ⟨x⟩s V (x+ i)p ⟨p⟩−2θ (x+ i)−1 ⟨x⟩s

= −i ⟨x⟩s V
(
⟨p⟩−2θ − 2θp2 ⟨p⟩−2θ−1

)
(x+ i)−1 ⟨x⟩s

+ ⟨x⟩s V (x+ i)p ⟨p⟩−2θ (x+ i)−1 ⟨x⟩s
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similarly can also be estimated, where we use (3.3). Hence, the proof is com-
pleted if we have the boundedness for ⟨x⟩s [V, ⟨p⟩θ] ⟨x⟩s. By simple calculation,
we have

⟨x⟩s [V, ⟨p⟩θ] ⟨x⟩s = ⟨x⟩s V [⟨p⟩θ , ⟨x⟩s] + ⟨x⟩s [⟨x⟩s V, ⟨p⟩θ]

Since [x, ⟨p⟩θ]0 is bounded, we can employ Lemma 3.4 and get

⟨x⟩s [⟨x⟩s V, ⟨p⟩θ]

= ⟨x⟩s
(
F (1)(x)[x, ⟨p⟩θ] + F (2)(x)ad2x(⟨p⟩

θ)/2
)

+ ⟨x⟩s (x+ i)−2 · (x+ i)2R3(F, x, ⟨p⟩θ),

where F (t) = ⟨t⟩s V (t). This operator can be extended to the bounded oper-
ator. Conversely, the term ⟨x⟩s V [⟨p⟩θ , ⟨x⟩s] satisfies

⟨x⟩s V [⟨p⟩θ , ⟨x⟩s]

= ⟨x⟩s V
(
[⟨p⟩θ , (x+ i)](x+ i)−1 ⟨x⟩s + (x+ i)[⟨p⟩θ , (x+ i)−1 ⟨x⟩s]

)
= −i ⟨x⟩s V p ⟨p⟩θ−2 (x+ i)−1 ⟨x⟩s + ⟨x⟩s V (x+ i)[⟨p⟩θ , (x+ i)−1 ⟨x⟩s]
= −i ⟨x⟩s V [p ⟨p⟩θ−2 , (x+ i)−1 ⟨x⟩s]− i ⟨x⟩2s (x+ i)−1V p ⟨p⟩θ−2

+ ⟨x⟩s V (x+ i)[⟨p⟩θ , (x+ i)−1 ⟨x⟩s]

and by using Lemma 3.4 again, we notice that each of the aforementioned
operators also can be extended to bounded operators. These complete the
proof.

To define the resolvent of H, we first demonstrate the following Lemma;

Lemma 3.6. For all λ ∈ R and µ > 0,

(H0 − λ∓ iµ)−1S (R) ⊂ S (R)(3.6)

holds.

Proof. By applying the Fourier transform, for all ϕ ∈ S (R),

(H0 − λ∓ iµ)−1ϕ = (2π)−1/2

∫
R

eixξ

−ξ3 − 4ξ − λ∓ iµ
F [ϕ](ξ)dξ,

where F indicates the Fourier transform; this immediately proves (3.6).
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Now we prove the resolvent estimate for H. Define Zs(·) := ⟨x⟩s ⟨p⟩−θ (· −
λ∓ iµ) ⟨p⟩−θ ⟨x⟩s. By the definition of H, Zs(H) satisfies

Zs(H) :=
(
1 + β ⟨x⟩s ⟨p⟩−θ V(H0 − λ∓ iµ)−1 ⟨p⟩θ ⟨x⟩−s

)
Zs(H0)(3.7)

:= IZs(H0),

where V = (pV +V p)+iV ′. Hence, from Lemma 3.6, we can see that Zs(H) is
well defined on S (R). Conversely, the operator I satisfies for all ϕ ∈ S (R),

Iϕ = ϕ+ β ⟨x⟩s ⟨p⟩−θ V ⟨p⟩−θ ⟨x⟩s · ⟨x⟩−s ⟨p⟩θ (H0 − λ∓ iµ)−1 ⟨p⟩θ ⟨x⟩−s ϕ.

Together with Lemma 3.1 and 3.5, we find that I can be extended to the
bounded operator. Moreover by the smallness of β, I has a certain bounded
inverse I−1. By Lemma 3.1, we notice that Zs(H0) has a certain bounded in-
verse Zs(H0)

−1. Hence, we obtain IZs(H0) that has its inverse Zs(H0)
−1I−1;

this implies that the operator Zs(H) has a certain bounded inverse that is
written in the form

Zs(H)−1 = ⟨x⟩−s ⟨p⟩θ (H − λ∓ iµ)−1 ⟨p⟩θ ⟨x⟩−s .

Hence, we obtain the resolvent estimate

sup
λ∈R,µ>0

∥∥∥⟨x⟩−s ⟨p⟩θ (H − λ∓ iµ)−1 ⟨p⟩θ ⟨x⟩−s ϕ
∥∥∥
2
≤ C∥ϕ∥2.(3.8)

Every approach to prove (3.8) works well for the operators −H, H∗ and −H∗.
Hence, let H be any one of the following ±H, ±H∗ and ±H0. Then

sup
λ∈R,µ>0

∥∥∥⟨x⟩−s ⟨p⟩θ (H− λ∓ iµ)−1 ⟨p⟩θ ⟨x⟩−s ϕ
∥∥∥
2
≤ C∥ϕ∥2

holds.
As the direct consequence of Kato’s method (see, Theorem 1.5 of [11]). This

inequality implies that ⟨x⟩−s ⟨p⟩θ is H-smooth. Here, for all k > 0, we can
see that limt→∞ ∥e−kte−itH0∥ = 0 holds (it is said to be H0 ∈ G (H) in terms
of Kato’s notation). Hence, from Theorem 3.9 of [11], we obtain H ∈ G (H)
that implies ⟨x⟩−s ⟨p⟩θ is H-smooth, and then Lemma 3.6 of [11] provides the
decay (smoothing) estimate∫ ∞

−∞

∥∥∥⟨x⟩−s ⟨p⟩θ e−iτHϕ
∥∥∥2
2
dτ ≤ C∥ϕ∥22.

A change of variable τ → α3t yields∫ ∞

−∞

∥∥∥⟨x⟩−s ⟨p⟩θ e−itα3Hϕ
∥∥∥2
2
dt ≤ Cα−3∥ϕ∥22.(3.9)
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The decay estimates immediately prove Theorem 1.6, i.e., the limits

s− lim
t→±∞

eitα
3He−itα3H0 , s− lim

t→±∞
eitα

3H0e−itα3H ,

s− lim
t→±∞

eitα
3H∗

e−itα3H0 , s− lim
t→±∞

eitα
3H0e−itα3H∗

exist.

3.3. Proof of theorems

We now prove Theorem 1.5, 1.7 and 1.8. First, we prove Theorem 1.5. The
inequality (1.6) is already proven in (3.9). Moreover, by noting∥∥∥⟨x⟩−s ⟨p⟩ e−itα3Hw0

∥∥∥
2
=
∥∥∥⟨x⟩−s ⟨p⟩θ J (t)−1J (t)e−itα3Hw0

∥∥∥
2

=
∥∥∥⟨α(x− 4α2t− x0)

⟩−s ⟨p/α⟩θ u0(t, x)
∥∥∥
2
,

the inequality (1.7) also can be proven.
Now, we prove Theorem 1.7 and 1.8. Let V = (pV + V p) + iV ′ and ϕ, ψ ∈

L2(R). Using (3.9), we estimate for all t,∣∣∣(eitα3H0e−itα3Hϕ, ψ
)∣∣∣− |(ϕ, ψ)|

≤
∣∣∣∣(6α3δ

∫ t

0
eiτα

3H0Ve−iτα3Hϕdτ, ψ

)∣∣∣∣
≤ Cα3δ

(∫ t

0

∥∥∥⟨x⟩−s ⟨p⟩1/2 e−iτα3H0ψ
∥∥∥2
2
dτ

)1/2

×
(∫ t

0

∥∥∥⟨x⟩−s ⟨p⟩1/2 e−iτα3Hϕ
∥∥∥2
2
dτ

)1/2

≤ Cδ∥ϕ∥2∥ψ∥2,

and with this, we find that (t, α, δ)-independent constant C > 0 is such that∥∥∥e−itα3Hϕ
∥∥∥
2
=
∥∥∥eitα3H0e−itα3Hϕ

∥∥∥
2
≤ C∥ϕ∥2.

Similarly, we also find ∥∥∥eitα3Hϕ
∥∥∥
2
≤ C∥ϕ∥2

and this yields

∥e−itHϕ∥2 ≥ C
∥∥eitHe−itHϕ

∥∥
2
= C ∥ϕ∥2 .
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Similarly, we have that (t, α, δ)-independent constants C > c > 0 are such
that for all ϕ ∈ L2(R),

c ∥ϕ∥2 ≤
∥∥e−itHϕ

∥∥
2
≤ C∥ϕ∥2

holds. Hence, the proof of Theorem 1.7 is completed. Using

u0(t, x) = e−i(4tα2+x0)pUe−itα3Hw0 = J (t)e−itα3Hw0

and J (t) is the unitary operator on L2(R), we also have Theorem 1.8.
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