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Abstract. Generalized variance (GV), proposed by Wilks [8], is a one-
dimensional measure of multidimensional scatter. It plays an important role
in both theoretical and applied research on analyzing big data. This article
examines the problem of testing equality of generalized variances of k multi-
variate normal populations in high-dimensional and large sample settings. The
conventional likelihood-ratio test statistic reveals a serious bias as dimensions
increase. We present a new test statistic that eliminates this bias, and propose
an asymptotic approximation-based test. The likelihood-ratio test statistic can
be interpreted as an estimator of criteria related to Jensen’s inequality. Our test
statistic is obtained by appropriately estimating this criteria in high-dimensional
and large sample settings. In addition, our proposed test is valid not only in
high dimensional settings but also in large sample settings. We also obtain
the asymptotic non-null distribution of the proposed test in high-dimensional
and large sample settings. Finally, we study the finite sample and dimension
behavior of this test through Monte Carlo simulations.
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§1. Introduction

For i ∈ {1, 2, . . . , k} (k ≥ 2), let xi1, . . . ,xiNi be p-dimensional random vectors
from the i-th multivariate normal population. We denote the i-th population
mean vector by µi, the i-th population covariance matrix by Σi, and the i-
th multivariate normal population by Np(µi,Σi), respectively. Let xij for
j ∈ {1, 2, . . . , Ni}, i ∈ {1, 2, . . . , k} be distributed as Np(µi,Σi), and the
random vectors

x11,x12, . . . ,x1N1 ,x21,x22, . . . ,x2N2 , . . . ,xk1,xk2, . . . ,xkNk
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are mutually independent. Many studies examine inference related to covari-
ance matrices in the large sample settings, see, for example, Fujikoshi [2],
Nagao [3], Nagao and Sugiura [6, 7].

As data collection technology evolves, high-dimensional data are becoming
increasingly available. Suitable improvements in classical multivariate anal-
ysis are necessary to tackle high-dimensional data. In this article, we focus
on the problem of testing equality of generalized variances of k multivariate
normal populations in high-dimensional and large sample settings. General-
ized variance (GV), proposed by Wilks [8], is a one-dimensional measure of
multidimensional scatter. GVs are very useful for big data variability. Thus, it
plays an important role in both theoretical and applied research. Our primary
interest is to test the following hypothesis:

H : |Σ1| = |Σ2| = · · · = |Σk| vs. A : ¬H.

We discuss the mathematical relationship between the two hypotheses H :
|Σ1| = · · · = |Σk| and H̃ : Σ1 = · · · = Σk. Note that if the hypothesis H̃
holds then the hypothesis H holds. However, its converse does not hold. For
example, we set Σ1 = diag(1/2, 1, 1, . . . , 1) and Σ2 = diag(1, 1/2, 1, . . . , 1),
then |Σ1| = |Σ2| holds, but Σ1 = Σ2 does not hold. We will mention the
application of two hypothesis tests. It is well-known that testing H̃ vs. A : ¬H̃
is used for pretesting to decide whether to adopt linear discriminant analysis or
quadratic discriminant analysis. On the other hand, the testing H vs. A : ¬H
can be used for checking whether the term ln |Σi| in the quadratic discriminant
function can be reduced.

Let ni = Ni − 1 for i ∈ {1, 2, . . . , k}. When p ≤ min{n1, n2, . . . , nk}, the
likelihood ratio test can be used for the above hypothesis. Let

n = N − k =
k∑

i=1

ni, N =
k∑

i=1

Ni,

xi =
1

Ni

Ni∑
j=1

xij , Si =
1

ni

Ni∑
j=1

(xij − xi)(xij − xi)
⊤.

Then, the likelihood-ratio test statistic for H is

TL = Np ln

(
k∑

i=1

Ni

N

∣∣∣∣ niNi
Si

∣∣∣∣1/p
)

−
k∑

i=1

Ni ln

∣∣∣∣ niNi
Si

∣∣∣∣ .
This statistic was derived by Najarzadeh [4].

In the large sample framework, the likelihood-ratio test statistic TL is a
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naive estimator of the following criteria:

ΛL = Np

[
ln

{
k∑

i=1

Ni

N
exp

(
ln |Σi|
p

)}
−

k∑
i=1

Ni

N

ln |Σi|
p

]
.

We note that ΛL is a special case of the following criteria, related to Jensen’s
inequality. For any c = (c1, c2, . . . , ck)

⊤, such that ci > 0 for i ∈ {1, 2, . . . , k}
and c⊤1k = 1, we define

Λ(c) = Np

[
ln

{
k∑

i=1

ci exp

(
ln |Σi|
p

)}
−

k∑
i=1

ci
ln |Σi|
p

]
.

Note that if c = (N1/N,N2/N, . . . , Nk/N)⊤ =: cL, then Λ(c) = ΛL. Further,
from Jensen’s inequality, Λ(c) ≥ 0 and Λ(c) = 0 holds if and only if H
holds. Therefore, we understand that Λ(c) is reasonable to classify null and
alternative hypotheses.

Our goal is to propose a valid test based on criteria Λ(c) under high-
dimensional settings. TL/n is a consistent estimator of ΛL/n under large
sample settings, but its validity is broken if the dimension is large. Using |Si|
to estimate |Σi| causes a fall in validity. In this study, using the appropri-
ate estimator of |Σi| under high-dimensional settings, we can estimate Λ(c).
Specifically, we estimate |Σi| contained in Λ(c) by

|̂Σi| = |Si|
p∏

ℓ=1

ni
ni − ℓ+ 1

.

Using this estimator, we construct an estimator of Λ(c) as follows:

LH(c) = Np

{
ln

(
k∑

i=1

ci |̂Σi|
1/p

)
−

k∑
i=1

ci ln |̂Σi|
1/p

}
and use it as a test statistic. Section 2.1 introduces a good relationship between
LH(c) and Λ(c) under high-dimensional settings. Applying the result of Cai et
al. [1], we also show that the test statistic LH(c) converges in distribution to
quadratic forms involving normal random vectors (see Theorem 1 for details).
From this result, the null asymptotic distribution is described as a weighted
sum of chi-squares with respect to c; therefore, it is difficult to handle in
practical use. Fortunately, we can solve this problem by choosing a suitable
c (see Section 2.2 for details). Specifically, by choosing c so that the null
asymptotic distribution of constant multiple of statistic Λ(c) is a chi-squared
distribution, we propose

TH = q̂
k∑

j=1

ψ̂2
jLH(cH),
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where q̂ = p/n, cH = (
∑k

j=1 ψ̂
2
j )

−1(ψ̂2
1, ψ̂

2
2, . . . , ψ̂

2
k). Here, ψ̂i = {− ln(1 −

p/ni)}−1/2.

The remainder of the paper is organized as follows. Section 2 presents
the new test statistic, its asymptotic null and non-null distributions, and the
asymptotic approximation-based test. Section 3 presents an empirical analysis
of the null and non-null distribution of the proposed test statistic. Finally,
Section 4 concludes the paper.

§2. Main results

2.1. Estimation of criteria Λ(c) in high-dimensional and large sam-
ple settings

First, we investigate the asymptotic relationship between TL and ΛL under
the following asymptotic regime.

(A0) The dimension p is fixed and each ni = ni(n) grows as a function of n,
such that ni also tends to infinity. Furthermore, limn→∞ ni(n)/n = ri
for some 0 < ri < 1.

From consistency of Si, under (A0),

TL
n

=
ΛL

n
+ op(1),(2.1)

as n→ ∞.

The statistic TL has a good property like (2.1) under the large sample
framework; however, when the dimension increases, this property is not always
preserved. We consider the asymptotic properties of TL under the following
high-dimensional setting.

(A1) Each ni = ni(n) grows as a function of n, such that ni also tends to
infinity and limn→∞ ni(n)/n = ri for some 0 < ri < 1. Let n0(n) =
min{n1(n), n2(n), . . . , nk(n)}. p = p(n) grows as a function of n as long
as p(n) < n0(n), such that p also tends to infinity and limn→∞ p(n)/n0(n)
= q0 for some 0 ≤ q0 < 1.

(A2) Each ln |Σi|/p grows as a function of p, such that limp→∞ ln |Σi|/p = ai
for some 0 ≤ ai <∞.

Examples of covariance matrices that satisfy (A2) are those with the following
spike model:

λj(Σi) = O(p), j = 1, . . . ,m (<∞), λj(Σi) = cij ∈ (0,∞), j = m+ 1, . . . , p.
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In fact, ln |Σi|/p = O(ln p/p) = o(1) as p→ ∞.

Under (A1), limn→∞ p(n)/n = q for some 0 ≤ q < 1. Note that

E

(
ln |Si|
p

)
=
ln |Σi|
p

− ln
(ni
2

)
+

1

p

p∑
ℓ=1

ψ

(
ni − ℓ+ 1

2

)
(2.2)

=
ln |Σi|
p

+
1

p

p∑
ℓ=1

ln

(
1− ℓ

ni

)
+O

(
1

pni

)
,

var

(
ln |Si|
p

)
=

1

p2

p∑
ℓ=1

ψ′
(
ni − ℓ+ 1

2

)
(2.3)

=
1

p2

√
−2 ln

(
1− p

ni

)
+O

(
1

p2ni

)
,

where ψ(x) = ∂
∂z ln Γ(z)|z=x is the digamma function with the gamma function

Γ(z). From (2.2) and (2.3), under (A1),

ln |Si|
p

=
ln |Σi|
p

+

∑p
ℓ=1 ln(1− ℓ/ni)

p
+O

(
1

pn

)
+Op

(
1

p

)
,(2.4)

as n→ ∞. From (2.4) and the continuous mapping theorem,

TL
np

=
Λ∗

np
+ op(1) =

ΛL

np
+O(1) + op(1),

as n→ ∞. Here,

Λ∗ =Np

[
ln

{
k∑

i=1

Ni

N
|Σi|1/p

p∏
ℓ=1

(
1− ℓ

ni

)1/p
}

−
k∑

i=1

Ni

N

(
ln |Σi|1/p +

∑p
ℓ=1 ln(1− ℓ/ni)

p

)]
.

Thus, the likelihood-ratio test statistic TL has an asymptotic bias to ΛL in
high-dimensional settings, except to q0 = 0.

To estimate Λ(c) without the asymptotic bias in the high-dimensional set-

ting, we prepare a consistent estimator of ln |Σi|/p. We construct ln |̂Σi|/p as
an estimator of ln |Σi|/p. Note that under (A1) and (A2),

ln |̂Σi|
p

=
ln |Σi|
p

+ op(1),(2.5)
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as n→ ∞. By changing ln |Σi|/p in Λ(c) to ln |̂Σi|/p, we propose the following
statistic:

LH(c) = Np

{
ln

(
k∑

i=1

ci |̂Σi|
1/p

)
−

k∑
i=1

ci ln |̂Σi|
1/p

}
.

We note that under (A1) and (A2),

LH(c)

np
=

Λ(c)

np
+ op(1),(2.6)

as n → ∞. We obtain this result directly from the continuous mapping the-
orem and (2.5). This results shows that it is reasonable to use LH(c) in
high-dimensional settings.

2.2. Test statistic and their asymptotic null and non-null distribu-
tions

In this section, we determine an appropriate c and propose an approximate
size α test based on asymptotic theory. In addition, we obtain the asymptotic
distribution of the non-null distribution of the proposed test statistic.

First, we investigate the asymptotic null distribution of LH(c) under (A1).
We prepare the following lemma, given by Cai et al. [1] to derive the asymp-
totic distribution of LH(c).

Lemma 1 (Cai et al. [1]). Let Wi ∼ W(ni,Σi) and Si = Wi/ni. Under
(A1),

ln |Si| −
∑p

ℓ=1 ln(1− ℓ/ni)− ln |Σi|√
−2 ln(1− p/ni)

⇝ N (0, 1),

as n→ ∞. Here, “⇝” denotes convergence in distribution.

By applying Lemma 1, we obtain the asymptotic null distribution of LH(c)
in the following theorem.

Theorem 1. Let z be a random vector according to multivariate normal dis-
tribution N (0, Ik). Define each component of the k× k matrix HH as follows:

(HH)ij =

− ci
q (1− ci) ln(1− q

ri
), i = j,

− cicj
q

√
− ln(1− q

ri
)
√
− ln(1− q

rj
), i ̸= j.

Then, under (A1) and H, LH(c)⇝ z⊤HHz, as n→ ∞.
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Proof. Let zi = (ln |̂Σi|− ln |Σi|)/
√

−2 ln(1− p/ni). From the mutually inde-
pendence of z1, z2, . . . , zk and Lemma 1, under (A1),

z = (z1, z2, . . . , zk)
⊤ ⇝ Nk(0, Ik),(2.7)

as n→ ∞. By using z, under H and (A1), LH(c) is expanded as follows:

LH(c) =
1

q

k∑
i=1

ci{− ln(1− q/ri)}z2i −
1

q

(
k∑

i=1

ci
√

− ln(1− q/ri)zi

)2

+ op(1)

=z⊤HHz+ op(1),

as n→ ∞. This result and (2.7) prove Theorem 1.

Next, we discuss the selection of c and propose a new test statistic TH .
From Theorem 1, we understand that the null asymptotic distribution of LH(c)
depends on vector c. We can choose c so that the null asymptotic distribution
of the constant multiple of statistic LH(c) is a chi-square distribution with
k − 1 degrees of freedom. Let ψi = {− ln(1 − q/ri)}−1/2 for i ∈ {1, 2, . . . , k},
and let

c∗H =
1∑k

i=1 ψ
2
i

(
ψ2
1, ψ

2
2, . . . , ψ

2
k

)⊤
.

Then, the matrix HH in Theorem 1 is denoted as follows:

HH =
1

q
∑k

i=1 ψ
2
i

(Ik − bb⊤),

where

b =
1√∑k
i=1 ψ

2
i

(ψ1, ψ2, . . . , ψk)
⊤.

Using Theorem 1, under (A1) and H,

LH(c∗H)⇝
(
q

k∑
i=1

ψ2
i

)−1

z⊤(Ik − bb⊤)z,

as n→ ∞. Here, the quadratic form z⊤(Ik−bb⊤)z follows a special distribu-
tion. Note that Ik − bb⊤ is idempotent matrix and rank(Ik − bb⊤) = k − 1.
Thus, from Cochran’s theorem, z⊤(Ik − bb⊤)z ∼ χ2

k−1. Replacing ψi by ψ̂i

in q
∑k

i=1 ψ
2
i LH(c∗H), we propose TH as a test statistic. Note that ψ̂i → ψi as

n→ ∞ for i ∈ {1, 2, . . . , k} under (A1), we get the following corollary.

Corollary 1. Under (A1) and H, TH ⇝ χ2
k−1, as n→ ∞.
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We investigate the behavior of the proposed test statistic TH in the large
sample setting (A0). Under (A0), q̂

∑k
i=1 ψ̂

2
i = 1+ o(1), (cH)i = Ni/N + o(1),

and |̂Σi| = |Si| + op(1). Here, (cH)i denotes the i-th element of cH . Hence,
under (A0),

TH
n

=
TL
n

+ op(1),

that is, TH/n is asymptotically equivalent to the likelihood-ratio test statistic
divided by n under the large sample framework.

Theorem 2. Under (A0) and H, TH ⇝ χ2
k−1, as n→ ∞.

Proof. Let yi = (ln |̂Σi| − ln |Σi|)/
√
2p/ni. From the mutually independence

of y1, y2, . . . , yk and Corollary 1 in Cai et al. [1], under (A0),

y = (y1, y2, . . . , yk)
⊤ ⇝ Nk(0, Ik),(2.8)

as n→ ∞. By using z, under H and (A1), LH is expanded as follows:

TH =

k∑
i=1

z2i −

(
k∑

i=1

√
rizi

)2

+ op(1) = y⊤(Ik − rr⊤)y + op(1),(2.9)

as n→ ∞. Here,
r = (

√
r1,

√
r2, . . . ,

√
rk) .

Note that Ik − rr⊤ is idempotent matrix and rank(Ik − rr⊤) = k − 1. Thus,
from Cochran’s theorem and (2.8), y⊤(Ik − rr⊤)y ⇝ χ2

k−1, as n → ∞. This
result and expansion (2.9) prove Theorem 2.

From Theorem 2, the asymptotic null distribution of TH is invariant even
under the large sample settings (A0), that is, the proposed method is also
valid in the large sample settings.

Third, we propose an approximate test of size α by using TH . From Corol-
lary 1, we propose an approximate test of size α as follows:

TH > χ2
k−1(α) ⇐⇒ reject H,

where χ2
k−1(α) is the upper 100α percentile of chi-square distribution with

k − 1 degrees of freedom.
Finally, we obtain asymptotic non-null distribution of test statistic TH by

applying Lemma 1.

Theorem 3. Let z be a random vector according to multivariate normal dis-
tribution N (0, Ik), and let

HA =
1

q
∑k

j=1 ψ
2
j exp(aj)

DA(Ik − bAb
⊤
A)DA,
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where

DA = diag
(√

exp(a1),
√
exp(a2), . . . ,

√
exp(ak)

)
,

bA =
1√∑k

i=1 ψ
2
i exp(ai)

(
ψ1

√
exp(a1), ψ2

√
exp(a2), . . . , ψk

√
exp(ak)

)⊤
,

(γ)i =
√
2N

(
ψi exp(ai)∑k

j=1 ψ
2
j exp(aj)

− ψi∑k
j=1 ψ

2
j

)
.

Then, under (A1) and (A2),

TH ⇝ q

k∑
j=1

ψ2
j {Λ(c∗H) + γ⊤z+ z⊤HAz},

as n→ ∞.

Proof. Let zi = (ln |̂Σi| − ln |Σi|)/
√
−2 ln(1− p/ni). From mutually indepen-

dence of z1, z2, . . . , zk and Lemma 1, under (A1),

z = (z1, z2, . . . , zk)
⊤ ⇝ Nk(0, I),(2.10)

as n→ ∞. By using z, under (A1) and (A2), LH(c∗H) is expanded as follows:

LH(c∗H) =Λ(c∗H) +
√
2N

k∑
i=1

(
ψi|Σi|1/p∑k

j=1 ψ
2
j |Σj |1/p

− ψi∑k
j=1 ψ

2
j

)
zi

+
1

q
∑k

j=1 ψ
2
j |Σj |1/p

k∑
i=1

|Σi|1/pz2i

− 1

q

(
1∑k

j=1 ψ
2
j |Σj |1/p

k∑
i=1

ψi|Σi|1/pzi

)2

+ op(1)

=Λ(c∗H) + γ⊤z+ z⊤HHz+ op(1).

This result and (2.10) prove Theorem 3.

§3. Simulation studies

First, we investigate the accuracy of the approximation of the null and non-null
distributions using Monte Carlo simulations. We can generate Monte Carlo
samples

t
(1)
H , t

(2)
H , . . . , t

(B)
H

of test statistic TH by repeating the following procedure B times.
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1 We generate independent sample

z
(b)
11 , z

(b)
12 , . . . , z

(b)
1N1

, z
(b)
21 , z

(b)
22 , . . . , z

(b)
2N2

, . . . , z
(b)
k1 , z

(b)
k2 , . . . , z

(b)
kNk

drawn from N (0, Ik), and calculate x
(b)
ij = Σ

1/2
i z

(b)
ij for

j ∈ {1, 2, . . . , Ni}, i ∈ {1, 2, . . . , k}.

Let

X(b) = (x
(b)
11 ,x

(b)
12 , . . . ,x

(b)
1N1

,x
(b)
21 ,x

(b)
22 , . . . ,x

(b)
2N2

, . . . ,x
(b)
k1 ,x

(b)
k2 , . . . ,x

(b)
kNk

).

2 For the sample X(b), we calculate the realized value of TH , which is

denoted as t
(b)
H .

Using the probability expression given in Theorem 3, we can generate Monte
Carlo samples of q

∑k
j=1 ψ

2
j {Λ(c∗H) + γ⊤z+ z⊤HAz}

t̃
(1)
H , t̃

(2)
H , . . . , t̃

(B)
H

by repeating the following procedure B times.

1 We generate independent sample z(b) drawn from N (0, Ik). Estimate ri,
q, and ai contained in γ and HA by r̂i = ni/n, q̂ = p/n, âi = ln |Σi|/p,
respectively. We denote estimated version γ and HA, as γ̂ and ĤA,
respectively.

2 For the sample zb, we calculate

t̃
(b)
H = q̂

k∑
j=1

ψ̂2
j {Λ(cH) + γ̂⊤z + z⊤ĤAz}.

In all simulations, we set B = 105. We implement the above-mentioned pro-
cedure with some parameter settings. In all of these simulations, without any
loss of generality, we suppose that µi = 0 for i ∈ {1, 2, . . . , k}. We set the
following model for the covariance structure:

C-I :(Σi)ℓm = 0.5|ℓ−m|,

C-II :(Σi)ℓm =
(
1 + 2i

nη

)
× 0.5|ℓ−m|, where η ∈ {0.3, 0.5, 0.7}.

If we set C-I, then H meets, and if we set C-II, then A meets. In C-II, the
setting with larger η is closer to the null hypothesis H. We also set each
sample size Ni = p + 20i for i ∈ {1, 2, . . . , k}. In C-I, for any combination
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of p ∈ {2, 50, 100} and k ∈ {3, 5}, we compare the smoothed histogram of

t
(1)
H , t

(2)
H , . . . , t

(B)
H with the density function of the chi-squared distribution with

k−1 degrees of freedom. These results are shown in Figures 1-3. In each figure,

we represent the smoothed histogram of t
(1)
H , t

(2)
H , . . . , t

(B)
H with dashed lines and

the chi-squared density function with solid lines, respectively. From Figures 2
and 3, we confirmed that the null distribution of TH can be well approximated
by a chi-square distribution with k−1 degrees of freedom when the dimension
is large. Furthermore, Figure 1 shows that the approximation accuracy is not
significantly degraded even when the dimension is small. These behaviors are
consistent with Corollary 1 and Theorem 2. In C-II, for any combination of
p ∈ {2, 50, 100}, k ∈ {3, 5}, and η ∈ {0.3, 0.5, 0.7}, we compare the smoothed

histogram of t
(1)
H , t

(2)
H , . . . , t

(B)
H with one of t̃

(1)
H , t̃

(2)
H , . . . , t̃

(B)
H . In each figure, we

represent the smoothed histogram of t
(1)
H , t

(2)
H , . . . , t

(B)
H with dashed lines, the

smoothed histogram of t̃
(1)
H , t̃

(2)
H , . . . , t̃

(B)
H with solid lines, and the chi-squared

density function with dotted lines, respectively. These results are shown in

Figures 4-9. In all figures, t̃
(b)
H ’s histogram is very close to t

(b)
H ’s histogram.

These behaviors are consistent with Theorem 3. Additionally, t̃
(b)
H ’s histogram

and t
(b)
H ’s histogram deviate from the chi-square distribution with k−1 degrees

of freedom as η decreases, that is, the power of the proposed test increases

as η becomes smaller. t̃
(b)
H ’s histogram and t

(b)
H ’s histogram also deviate from

the chi-square distribution with k − 1 degrees of freedom, as the number of
population k and dimension p increase. From these results, we can confirm
the natural behavior of the power of the proposed test.

Next, we investigate the size and power of propose test. We use C-I as
a setting for calculating empirical sizes, and C-II as a setting for calculating
empirical power. We also set the sample size, dimension, and number of
populations as in the first experiment, and set the nominal significance level
as α ∈ {0.01, 0.05, 0.10}. The empirical sizes, calculated with 105 replications,
are listed in Tables 1. The empirical sizes are close to nominal value α, but
still tended to exceed the nominal value α. The empirical powers, calculated
with 105 replications, are listed in Tables 2 and 3 for k = 5 and k = 7,
respectively. In these tables, we denote empirical power and power obtained
using the distribution expression in Theorem 3, by EP and AP, respectively.
We confirm that the power tends to decrease as η increased. Also, the power
tends to increase as the dimension p and number of groups k increases. These
trends are natural. We also confirmed that the approximate power (AP) and
the empirical power (EP) are close. Thus, we confirmed that the asymptotic
result in Theorem 3 works even for a finite sample.
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Figure 1: p = 2
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Figure 2: p = 50
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Figure 3: p = 100
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Figure 4: p = 2, k = 5



TEST FOR EQUALITY OF GENERALIZED VARIANCE 151

100 200 300 400 500 600

0.05

0.10

0.15

η = 0.3
50 100 150

0.05

0.10

0.15

η = 0.5
10 20 30 40 50 60

0.05

0.10

0.15

η = 0.7

Figure 5: p = 50, k = 5
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Figure 6: p = 100, k = 5
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Figure 7: p = 2, k = 7
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Figure 8: p = 50, k = 7
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Figure 9: p = 100, k = 7
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Table 1: The empirical size.

k = 5 k = 7
α\p p = 2 p = 50 p = 100 p = 2 p = 50 p = 100

0.01 0.011 0.011 0.010 0.011 0.011 0.011
0.05 0.054 0.052 0.052 0.053 0.053 0.052
0.10 0.107 0.104 0.104 0.106 0.106 0.104

Table 2: The empirical power and approximate power when k = 5.

η = 0.3 η = 0.5 η = 0.7

p α EP AP EP AP EP AP

2 0.01 0.648 0.647 0.095 0.092 0.018 0.016
0.05 0.844 0.842 0.250 0.245 0.075 0.070
0.10 0.909 0.907 0.367 0.361 0.139 0.130

50 0.01 1.000 1.000 1.000 1.000 0.425 0.422
0.05 1.000 1.000 1.000 1.000 0.661 0.661
0.10 1.000 1.000 1.000 1.000 0.768 0.767

100 0.01 1.000 1.000 1.000 1.000 0.693 0.695
0.05 1.000 1.000 1.000 1.000 0.865 0.865
0.10 1.000 1.000 1.000 1.000 0.921 0.921

Table 3: The empirical power and approximate power when k = 7.

η = 0.3 η = 0.5 η = 0.7

p α EP AP EP AP EP AP

2 0.01 0.965 0.964 0.193 0.190 0.020 0.018
0.05 0.993 0.992 0.404 0.401 0.081 0.077
0.10 0.997 0.996 0.535 0.532 0.146 0.140

50 0.01 1.000 1.000 1.000 1.000 0.657 0.655
0.05 1.000 1.000 1.000 1.000 0.842 0.840
0.10 1.000 1.000 1.000 1.000 0.906 0.905

100 0.01 1.000 1.000 1.000 1.000 0.917 0.918
0.05 1.000 1.000 1.000 1.000 0.975 0.976
0.10 1.000 1.000 1.000 1.000 0.989 0.989
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§4. Conclusion

In this study, we proposed an asymptotic approximation-based test for the
equality of generalized variances of k multivariate normal populations in high-
dimensional and large sample settings. In recent years, Najarzadeh [4] pro-
posed a likelihood-ratio test statistic for this testing problem, and proposed
a reasonable approximation test in a large sample setting. Our test is an im-
provement of the likelihood-ratio statistic that has validity in high dimensional
settings. Using the asymptotic results in Cai et al. [1], we obtained null and
non-null asymptotic distributions of the proposed test statistic. The features
of the proposed test statistic are valid not only for high-dimensional and large
sample settings but also for large sample settings. Furthermore, under several
parameter settings, we studied the finite sample and dimension behavior of
this test statistic through Monte Carlo simulations. The simulation results
confirmed that our asymptotic results work well as approximations in a finite
sample and dimension. We demonstrate that the proposed test is novel in that
it works in a wider range than the conventional method. On the two-sample

problem, we also can consider naive statistic ln(|̂Σ1|/|̂Σ2|). Future studies
can discuss the power comparison between tests, using this statistic and the
proposed test.
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