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classification of two groups via the Studentized
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Abstract. This paper is concerned with 2-group linear discriminant analysis
for multivariate normal populations with unknown mean vectors and unknown
common covariance matrix for the case in which the sample sizes N1, N2 and the
dimension p are large. We give Studentized version of the W statistic under the
high-dimensional asymptotic framework A1 that N1, N2, and p tend to infinity
together under the condition that p/(N1 + N2 − 2) converges to a constant in
(0, 1), and N1/N2 converges to a constant in (0,∞). Asymptotic expansion of
the distribution for the conditional probability of misclassification (CPMC) of
the Studentized W is derived under A1. By using this asymptotic expansion, we
give the cut-off point such that the one of two CPMCs is less than the presetting
value. Such the constrained discriminant rule is studied by Anderson (1973) and
McLachlan (1977). Simulation result reveals that the proposed method is more
accurate than McLachlan (1977)’s method for the case in which p is relatively
large.
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§1. Introduction

Let xij (j = 1, . . . , Ni, i = 1, 2) be the jth sample observation (j = 1, . . . , Ni)
from the ith population Πi (i = 1, 2) with mean µi and common covariance
matrix Σ. We consider the problem to allocate an observation vector x which
is according to either Π1 or Π2. A commonly used rule is that

W = (x̄1 − x̄2)
′S−1

{
x− 1

2
(x̄1 + x̄2)

}
< c (> c) ⇒ allocate x as Π2(Π1),
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70 T. YAMADA

which is called the linear discriminant rule, where c is a cut-off point, x̄1, x̄2

and S are the sample mean vectors and the pooled sample covariance matrix
defined by

x̄i =
1

Ni

Ni∑
j=1

xij , i = 1, 2, S =
1

n

2∑
i=1

Ni∑
j=1

(xij − x̄i)(xij − x̄i)
′,

n = N − 2 = N1 +N2 − 2.

There are two types of probabilities of misclassifications. One is the probability
of allocating x into Π2 even though it is actually belonging to Π1. The other
is the probability that x is classified as Π1 although it is actually belonging to
Π2. These two types of expected probabilities of misclassifications (EPMC)
for W-rule are expressed as

e2|1(c) = P (W < c|x ∈ Π1) and e1|2(c) = P (W > c|x ∈ Π2).

In general, it is hard to evaluate these EPMCs explicitly, but some asymptotic
results including asymptotic expansions have been obtained. Anderson [1]
derived an asymptotic expansion for Studentized W , and applied it to identify
c such that

e2|1(c) = 1− ε+O(n−1),

where ε ∈ (0, 1) is a presetting level which is given by experimenter. This
discriminant rule is used to control one of EPMCs for the case in which one
type of errors is generally regarded as more serious than the others such as
medical applications associated with the diagnosis of diseases. Anderson [1]’s
asymptotic expansion is obtained under the asymptotic framework A0:

A0 : N1 → ∞, N2 → ∞, N1/N2 → γ ∈ (0,∞), p is fixed.

McLachlan [10] proposed the cut-off point c such that the confidence of the
conditional probability of misclassification (CPMC) is kept asymptotically,
i.e.,

P
(
c2|1(c) < ΞL

)
= 1− ε+O(n−1),

where

c2|1(c) = P (W < c|x ∈ Π1; x̄1, x̄2,S),

ε ∈ (0, 1) and ΞL are a presetting level and an upper bound respectively,
which are set by experimenter. Shutoh et al. [14] proposed the same result
for the case in which the observation has missing value. These and some other
asymptotic results were reviewed by Siotani [13], by McLachlan [11] and by
Anderson [2].
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Generally, the precision of asymptotic approximations under A0 gets worse
as the dimension p becomes large. As an alternative approach to overcome
this drawback, it has been considered to derive asymptotic distributions of
discriminant functions in a high-dimensional situation where n and p tend
to infinity together. Yamada et al. [15] derived an asymptotic expansion of
Studentized W under the high-dimensional asymptotic framework Ā1 and the
assumption C such that

Ā1 : N1 → ∞, N2 → ∞, N1/N2 → γ ∈ (0,∞),

p → ∞, p/n → γ0 ∈ [0, 1);

C : ∆ → ∆0 ∈ (0,∞),

where ∆ is Mahalanobis distance defined as ∆ =
√

(µ1 − µ2)
′Σ−1(µ1 − µ2).

Using the asymptotic expansion, they proposed a cut-off point c such that

e2|1(c) = 1− ε+OA1,C(n
−1),

where the symbol OA1,C(n
−1) stands for the term such that nOA1,C(n

−1) con-
verges to a constant as n → ∞ under A1 and C. The usefulness such the
high-dimensional asymptotic framework is mentioned in Fujikoshi et al. [6].

We mention that McLachlan [10]’s result cannot work well even for the case
in which p = 10 and n = 200, which is summarized in simulation result. It is
noted that Yamada et al. [15]’s cut-off point does not guaranteed to maintain
the confidence of CPMC since it is performed to keep EPMC. Motivating
them, we derive a cut-off point which keeps the confidence of CPMC for the
case in which p is relatively large.

In this paper, we derive a cut-off point ch which satisfies that

P
(
c2|1(ch) < ΞH

)
= 1− ε+OA1,C(n

−1)

for the presetting values ε and ΞH. Here, the asymptotic framework A1 is
given as

A1 : N1 → ∞, N2 → ∞, N1/N2 → γ ∈ (0,∞),

p → ∞, p/n → γ0 ∈ (0, 1).

In order to obtain ch, we show an asymptotic expansion of the distribution for
the statistic c2|1(ch) under A1 and C.

This paper is organized as the following: Section 2 presents Studentization
for W under A1 as a preliminary. In Section 3, we derive the asymptotic
distribution of c2|1(c) via the Studentized statistic W under A1. Asymptotic
expansion of the distribution for the Studentized statistic for c2|1(c) is derived
by making use of a powerful method known as the method by the differential
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operator which was used by James [8], Okamoto [12], Yamada et al. [16]
etc. In Section 4, we propose constrained linear discriminant rule for CPMC
for large dimensional case. Simulation results are written in Section 5. We
revealed that the proposed method performs well for the case in which ΞH is
not so small. In Section 6, concluding remarks are written. Some proofs and
technical results are given in Appendix.

§2. Studentization for W under A1

For x ∈ Πi, it follows from Lachenbruch [9] that

(2.1) W = (x̄1 − x̄2)
′S−1

{
x− 1

2
(x̄1 + x̄2)

}
= V 1/2Zi − Ui (i = 1, 2),

where

V = (x̄1 − x̄2)
′S−1ΣS−1(x̄1 − x̄2),

Zi = V −1/2(x̄1 − x̄2)
′S−1(x− µi),

Ui = (x̄1 − x̄2)
′S−1(x̄1 − µi)−

1

2
D2,

and D2 is the squared sample Mahalanobis distance defined by D2 = (x̄1 −
x̄2)

′S−1(x̄1 − x̄2). Then, we find that V is a positive random variable and
(Ui, V ) are jointly independent of Zi. Further, Zi is distributed as N(0, 1).
This normality follows by considering the conditional distribution of Zi when
x̄1, x̄2, and S are given. In this case, W is called a location and scale mixture
of the standard normal distribution. It can be expressed that

E[Ui] =
(−1)i

2

n

m− 1
∆2 − 1

2

p

m− 1

(
n

N2
− n

N1

)
,

E[V ] =
n2(n+ 1)

(m− 1)2(m+ 2)

(
∆2 +

Np

N1N2

)
,

where m = n− p. The analytic expressions for Var(Ui) and for Var(V ), which
are provided by Fujikoshi [3], show that Var(Ui) → 0 and Var(V ) → 0 under
A1 and C. They imply that the limiting distribution of W under A1 and C
is normal with mean −u0i = − limA1E[Ui] and variance v0 = limA1E[V ].
The natural estimate for (E[Ui], E[V ]) is obtained by replacing ∆2 with the

following unbiased estimator ∆̂2:

∆̂2 =
m− 1

n
D2 − Np

N1N2
,
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and we write it as (Ê[Ui], Ê[V ]). The unbiasedness for (Ê[Ui], Ê[V ]) also

holds. We can show that (Ê[Ui], Ê[V ]) has consistency under A1 and C. From
Slutsky’s theorem,

W + Ê[Ui]√
Ê[V ]

D→ N(0, 1) (for x ∈ Πi),

where the symbol
D→ stands for the convergence in distribution. From the tech-

nical reason, instead of using (Ê[Ui], Ê[V ]), we use (U0i, V0) for Studentization
of W in this paper, which is defined as follows.

U0i = Ê[Ui] +
(−1)i2(n− 1)

(m+ 1)(m− 1)

n

Ni

=
(−1)i

2

n

m− 1
∆̂2 − 1

2

p

m− 1

(
n

N2
− n

N1

)
+

(−1)i2(n− 1)

(m+ 1)(m− 1)

n

Ni
,

V0 =
m− 1

m+ 1
Ê[V ]

=
n2(n+ 1)

(m− 1)(m+ 1)(m+ 2)

(
∆̂2 +

Np

N1N2

)
.

It is noted that (U0i, V0) is not the unbiased estimator of (E[Ui], E[V ]), but
has consistency under A1 and C. We can also show that

W ∗
i =

W + U0i√
V0

D→ N(0, 1) (for x ∈ Πi).

§3. Asymptotic distribution for the Studentized CPMC

Let cj be the cut-off point for W ∗
j and let Ci|j denote the conditional proba-

bility of misclassification of W ∗
j misallocating an observation from Πj , where

i ̸= j. Then Ci|j is given by

Ci|j = ci|j

(√
V0cj − U0j

)
= P

(
(−1)iW < (−1)i

(√
V0cj − U0j

)
|x ∈ Πj , x̄1, x̄2,S

)
= Φ

(
(−1)i

√
V0cj − U0j + Uj√

V

)

=


Φ

(√
V0

V
(−c2)−

√
1

V
{−(U02 − U2)}

)
(i = 1, j = 2)

Φ

(√
V0

V
c1 −

√
1

V
{(U01 − U1)}

)
(i = 2, j = 1).
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From Lemmas 2 and 3 in Appendix A, the distribution for C2|1 is identical
to C1|2 if c1 = −c2. From that reason, we only deal with C2|1. Asymptotic
expansion of the distribution for C1|2 can be obtained by the one for C2|1 by
replacing (N1, N2, c1) with (N2, N1,−c2). Hereafter, we set U0 = U01, U = U1

and c = c1, unless making confusion.

3.1. Stochastic expression for CPMC

Now, we consider to express C2|1 as the function of simple variables. Let

u1 =

(
1

N1
+

1

N2

)−1/2

Σ−1/2(x̄1 − x̄2),

u2 =
1√
N

Σ−1/2(N1x̄1 +N2x̄2 −N1µ1 −N2µ2),

B = Σ−1/2SΣ−1/2.

Then u1, u2 andB are independent. In addition, u1 ∼ Np((1/N1+1/N2)
−1/2δ,

Ip) and u2 ∼ Np(0, Ip), where δ = Σ−1/2(µ1 − µ2). It also holds that nB is
distributed as a Wishart distribution with n degrees of freedom and covariance
matrix Ip, which is denoted as Wp(n, Ip). Substituting them, we have

U = −1

2

(
n

N2
− n

N1

)
u′
1B

−1u1

n
+

n√
N1N2

u′
1B

−1u2

n
−
√

nN2

NN1

δ′B−1u1√
n

,

V =
Nn

N1N2

u′
1B

−2u1

n
.

It is also described that

∆̂2 =
N(m− 1)

N1N2

u′
1B

−1u1

n
− Np

N1N2
.

Using this expression, we have

U0 = −1

2

Nn

N1N2

u′
1B

−1u1

n
+

p− 2

m+ 1

n

N1
,

V0 =
n(n+ 1)

(m+ 1)(m+ 2)

Nn

N1N2

u′
1B

−1u1

n
.

The following lemma, which is given by Yamada et al. [15], enables to see
the functions of the independent standard normal and chi-squared variables
for U , V , U0 and V0.
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Lemma 1. Let v1 ∼ Np(a, Ip), v2 ∼ Np(0, Ip), W ∼ Wp(n, Ip), and v1, v2
and W are independent. Then


a′W−1v1
v′2W

−1v1
v′1W

−1v1
v′1W

−2v1

 D
=



√
a′a

X1

(
Z1 +

√
a′a−

√
X2

X3
Z2

)
√

1

X 2
1

(
1 +

X2

X3

)
{(Z1 +

√
a′a)2 + Z2

2 + X4}Z3

1

X1
{(Z1 +

√
a′a)2 + Z2

2 + X4}
1

X 2
1

(
1 +

X2

X3

)
{(Z1 +

√
a′a)2 + Z2

2 + X4}


,

where Xi ∼ χ2
fi
, i = 1, 2, 3, 4; Zi ∼ N(0, 1), i = 1, 2, 3; all the seven variables

X1, X2, X3. X4, Z1, Z2, Z3 are independent;

f1 = n− p+ 1, f2 = p− 1, f3 = n− p+ 2, f4 = p− 2.

Similar results to Lemma 1 was treated in Fujikoshi and Seo [5], Fujikoshi
[4], and Hyodo and Kubokawa [7].

Put

b1 = b1(w1, w2, w3, z1, z2) =
n

f1

∆

1 + w1

(
z1 +

√
N1N2

Nn
∆−

√
f2
f3

√
tz2

)
,

b2 = b2(w1, w2, w3, w4, z1, z2, z3) =
n

f1

1

1 + w1

√(
1 +

f2
f3

t

)
sz3,

q1 = q1(w1, w4, z1, z2) =
n

f1

1

1 + w1
s,

q2 = q2(w1, w2, w3, w4, z1, z2) =

(
n

f1

)2( 1

1 + w1

)2(
1 +

f2
f3

t

)
s,

where

s = s(w4, z1, z2) =

(
z1 +

√
N1N2

Nn
∆

)2

+ z22 +
f4
n
(1 + w4),

t = t(w2, w3) =
1 + w2

1 + w3
.
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Then we have
B1

B2

Q1

Q2

 def
=

1

n


δ′B−1u1

u′
1B

−1u2

u′
1B

−1u1

u′
1B

−2u1



D
=


b1

(√
2
f1
W1,

√
2
f2
W2,

√
2
f3
W3,

Z1√
n
, Z2√

n

)
b2

(√
2
f1
W1,

√
2
f2
W2,

√
2
f3
W3,

√
2
f4
W4,

Z1√
n
, Z2√

n
, Z3√

n

)
q1

(√
2
f1
W1,

√
2
f4
W4,

Z1√
n
, Z2√

n

)
q2

(√
2
f1
W1,

√
2
f2
W2,

√
2
f3
W3,

√
2
f4
W4,

Z1√
n
, Z2√

n

)

 ,(3.1)

where Wi =
√
fi/2(Xi/fi − 1), i = 1, . . . , 4. This implies thatU − U0

V0

V

 D
=

−α4 α3 α1 0
0 0 β1 0
0 0 0 β2



B1

B2

Q1

Q2

−


α1α2

0
0
0

 ,

where

α1 =
1

2

{
Nn

N1N2
−
(

n

N2
− n

N1

)}
=

n

N1
, α2 =

p− 2

m+ 1
,

α3 =
n√

N1N2
, α4 =

√
nN2

NN1
,

β1 =
n(n+ 1)

(m+ 1)(m+ 2)

Nn

N1N2
, β2 =

Nn

N1N2
.

Letting

Ψ(w1, w2, w3, w4, z1, z2, z3) = Φ

(√
β1q1c+ α1(q1 − α2) + α3b2 − α4b1√

β2q2

)
,

we can express that

C2|1 = Φ

(√
V0c− U0 + U√

V

)
D
= Ψ

(√
2

f1
W1,

√
2

f2
W2,

√
2

f3
W3,

√
2

f4
W4,

Z1√
n
,
Z2√
n
,
Z3√
n

)
.(3.2)

Hereafter, we set v as the variable vector and y as the random variable vector,
which are defined by

v =
(
v1 v2 v3 v4 v5 v6 v7

)′
=
(
w1 w2 w3 w4 z1 z2 z3

)′
,

y =
(
Y1 Y2 Y3 Y4 Y5 Y6 Y7

)′
=
(
W1 W2 W3 W4 Z1 Z2 Z3

)
,
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and

(3.3) Ψ(v) = Ψ(w1, w2, w3, w4, z1, z2, z3),

unless making confusion.

3.2. Studentization for CPMC under A1

It can be expressed that

b1(0, 0, 0, 0, 0) =
n

f1

√
N1N2

Nn
∆2 = b1,0,

b2(0, 0, 0, 0, 0, 0, 0) = 0,

q1(0, 0, 0, 0) =
n

f1

(
N1N2

Nn
∆2 +

f4
n

)
= q1,0,

q2(0, 0, 0, 0, 0, 0) =

(
n

f1

)2(
1 +

f2
f3

)(
N1N2

Nn
∆2 +

f4
n

)
= q2,0.

So, we have

Ψ(0) = Φ

(√
β1q1,0c+ α1(q1,0 − α2)− α4b1,0√

β2q2,0

)
= Φ(c).

It is noted that Ψ(v) is a smooth function on (−1,∞)× (−1,∞)× (−1,∞)×
(−1,∞)× R3. We will expand

Ψ
(√

2/f1W1,
√
2/f2W2,

√
2/f3W3,

√
2/f4W4, Z1/

√
n,Z2/

√
n,Z3/

√
n
)

at (
√
2/f1W1,

√
2/f2W2,

√
2/f3W3,

√
2/f4W4, Z1/

√
n,Z2/

√
n,Z3/

√
n) = 0.

Let ψ1 = ψ1(c,∆
2) be the vector valued function defined by

(3.4) ψ1 =D
∂

∂v
Ψ(v)|0,

where D = diag(
√
2n/f1,

√
2n/f2,

√
2n/f3,

√
2n/f4, 1, 1, 1), Ψ(v) is defined

by (3.3), and the notation “|0” stands for the value at the point that v = 0.
We can express that ψ1 = ϕ(c)p1, where

p1 = p1(c, δ
2)

=
c

2

(√
2n
f1

−
√

2n
f2

f2
f2+f3

√
2n
f3

f2
f2+f3

0 0 0 0
)′

+

√
β−1
2

q2,0

(
−
√

2n
f1

f4
f1
α1 0 0

√
2n
f4

f4
f1
α1

α1√
β2

n
f1
∆

√
f2
f3

n
f1
α4∆ α3

√
q2,0

)′
.

(3.5)
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In addition, let Ψ2 = Ψ2(c,∆
2) be 7× 7 matrix valued function defined by

Ψ2 =D
∂2

∂v∂v′
Ψ(v)D|0.

We can show that
Ψ2 = ϕ(c)P ,

where P = P (c,∆2) is the 7 × 7 matrix valued function defined as P =
P 0 + cP 1 + c2P 2 + c3P 3 with P i = P i(∆

2) (i = 0, 1, 2, 3) being the 7 × 7
symmetric matrix valued function. The analytic form for P i (i = 0, 1, 2, 3) is
given in Appendix C. From these results, we have

Ψ
(√

2/f1W1,
√
2/f2W2,

√
2/f3W3,

√
2/f4W4, Z1/

√
n,Z2/

√
n,Z3/

√
n
)

= Φ(c) +
1√
n
ψ′

1y +
1

n
y′Ψ2y +

1

n3/2
R1,

(3.6)

where R1 is a remainder term consisting of a homogeneous polynomial of order
3 in the elements of y of which the coefficients are OA1,C(1), plus n

−1/2 times a
homogeneous polynomial of order 4, plus a remainder term that is OA1,C(n

−1)
for fixed y.

By virtue of (3.6) with combined the use of the formula (3.2), we have

(3.7)
C2|1 − Φ(c)√
ψ′

1ψ1/n

D
=

1√
ψ′

1ψ1

(
ψ′

1y +
1√
n
y′Ψ2y +

1

n
R1

)
.

It follows from the definition of y that

y
D→ N7(0, I7)

under A1 and C, which leads to the following theorem.

Theorem 1. Under the high-dimensional asymptotic framework A1 and the
assumption C,

C2|1 − Φ(c)

ϕ(c)
√

ρ(c,∆2)/n

D→ N(0, 1),

where

ρ(c,∆2) = ψ′
1ψ1/{ϕ(c)}2

=
c2

2

(
n

f1
+

f2
f3

n

f2 + f3

)
− 2c

n

f1

f4
f1

α1√
β2

1
√
q2,0

+
1

β2q2,0

{
2

(
n

f1
+

n

f4

)(
f4
f1

)2

α2
1 +

(
1 +

f2
f3

)
α2
1

β2

(
n

f1

)2

∆2 + α2
3q2,0

}
.

(3.8)
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Since ρ(c,∆2) is unknown parameter, it is needed to estimate for Studen-

tization. The natural estimate ρ(c, ∆̂2) cannot be used. The reason is that
{q2,0(∆2)}−1/2 which is included in ρ(c,∆2) cannot by defined for the case in

which 0 < D2 < {2/(m−1)}(Nn)/(N1N2) since q2,0(∆̂2) takes negative value.

Instead of using the unbiased estimator ∆̂2, we use

(3.9) ∆̂2
A =

m+ 1

n
D2 − N(p− 2)

N1N2
,

which is used in Yamada et al. [16]. It can be expressed that

ρ(c,∆2) =
1

2

(
n

f1
+

f2
f3

n

f2 + f3

)(
c− 2

n
f1

+ f2
f3

n
f2+f3

1√
β2q2,0

n

f1

f4
f1

α1

)2

+
1

β2q2,0

(
n

f1

)2

α2
1τ(∆

2) +
α2
3

β2
,(3.10)

where

τ(∆2) = − 2
n
f1

+ f2
f3

n
f2+f3

(
f4
f1

)2

+ 2

(
n

f1
+

n

f4

)(
f4
n

)2

+

(
1 +

f2
f3

)
∆2

β2
.

It is sufficient to show that τ(∆̂2
A) > 0 to ensure the positivity of ρ(c, ∆̂2

A).
We can express that

τ(∆̂2
A) = − 2

n
f1

+ f2
f3

n
f2+f3

(
f4
f1

)2

+ 2

(
n

f1
+

n

f4

)(
f4
n

)2

+

(
1 +

f2
f3

)
1

β2

(
f1
n
D2 − f4

n
β2

)
=

f1
n

(
1 +

f2
f3

)
D2

β2
+

[
2

(
n

f1
+

n

f4

)
− 2

n
f1

+ f2
f3

n
f2+f3

(
n

f1

)2

−
(
1 +

f2
f3

)
n

f4

]
f2
4

n2

=

(
f1
n

)2

q2,0(∆̂2
A) +

[
2 +

(f3 − f2){f3(f2 + f3) + f1f2}
f2f3f4

]
· f2f

2
4

f1f3(f2 + f3)

1
n
f1

+ f2
f3

n
f2+f3

,(3.11)

where the last equality follows from the fact that

(3.12) q2,0(∆̂2
A) =

n

f1

(
1 +

f2
f3

)
D2

β2
.
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The positivity for τ(∆̂2
A) follows from that

2f2f3f4 + (f3 − f2){f3(f2 + f3) + f1f2}
= (n− p)3 + (5 + p)(n− p)2 + (11 + p)(n− p) + (p− 2)2 + 7 > 0.

Note that
∆̂2

A

∆2

p→ 1

under A1 and C. From this rate consistency, we obtain

ρ(c, ∆̂2
A)

ρ(c,∆2)

p→ 1.

By Theorem 1 and Slutsky’s theorem,

(3.13)
C2|1 − Φ(c)

ϕ(c)

√
ρ(c, ∆̂2

A)/n

D→ N(0, 1).

3.3. Asymptotic expansion for the distribution of the proposed
Studentized statistic for CPMC under A1

In this section, we derive an asymptotic expansion for the distribution for the
Studentized C2|1 to improve the convergence rate in (3.13).

Firstly, we give a general result for the cumulative distribution function of
the random variable T which has the form:

(3.14) T =
1√
h′h

h′y +
1√
n

1√
h′h

y′Hy +
1

n
R

for h ∈ R7 and the symmetric matrix H, where R is the term consisting of a
homogeneous polynomial of order 3 in the elements of y of which the coeffi-
cients are O(1) under A1 and C, plus n−1/2 times a homogeneous polynomial
of order 4, plus a remainder term that is O(n−1) under A1 and C for fixed y.

Theorem 2. The cumulative distribution function of T which is described as
(3.14) can be expressed as

P (T ≤ x) = Φ(x)− 1√
n
(s1H0(x) + s2H2(x))ϕ(x) +O(n−1),

where Φ(·) denotes the cumulative distribution function of the standard normal
distribution, ϕ(·) is the derivative of Φ(·), and Hk(x) denotes the Hermite
polynomial of degree k, especially, H0(x) = 1, H2(x) = x2 − 1. Here,

s1 =
trH√
h′h

, s2 =
1

(h′h)3/2

{√
2

3

4∑
k=1

√
n

fk
h3k + h

′Hh

}
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for
(
h1 · · · h7

)′
= h.

The proof of Theorem 2 is given in Appendix B.

Now, we consider to express the proposed Studentized statistic as the form
(3.14). By virtue of (3.12) combined with the use of the formula (3.1) and the
fact that Q1 = {N/(N1N2)}D2, we have

(3.15) q2,0(∆̂2)
D
=

n

f1

(
1 +

f2
f3

)
q1(
√
2/f1W1,

√
2/f4W4, Z1/

√
n,Z2/

√
n).

Put

Ω(w1, w4, z1, z2)

=

α5

(
c− α6√

(n/f1)(1 + f2/f3)q1

)2

+ α7 +
α8

(n/f1)(1 + f2/f3)q1


−1/2

,

where q1 = q1(w1, w4, z1, z2),

α5 =
1

2

(
n

f1
+

f2
f3

n

f2 + f3

)
,

α6 =
1

α5

n

f1

f4
f1

α1√
β2

,

α7 =
α2
1 + α2

3

β2
,

α8 =

[
2 +

(f3 − f2){f3(f2 + f3) + f1f2}
f2f3f4

]
n2f2f

2
4

f3
1 f3(f2 + f3)

α2
1

2α5β2
.

Without making confusion, we express

Ω(v1) = Ω(w1, w4, z1, z2)

for v1 =
(
w1 w4 z1 z2

)
. From the expressions (3.10), (3.11) and (3.15),

we have

Ω(
√

2/f1W1,
√

2/f4W4, Z1/
√
n,Z2/

√
n)

D
=

1√
ρ(c, ∆̂2

A)

.

By taking into consideration that q2,0 = (n/f1)(1 + f2/f3)q1(0, 0, 0, 0), it is
easy to see that

Ω(0) =
1√

ρ(c,∆2)
.
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Since Ω(v1) is the smooth function on (−1,∞)× (−1,∞)× R2, Taylor series
expansion at (

√
2/f1 W1,

√
2/f4W4, Z1/

√
n,Z2/

√
n) = (0, 0, 0, 0) gives

Ω(
√
2/f1W1,

√
2/f4W4, Z1/

√
n,Z2/

√
n) =

1√
ρ(c,∆2)

+
1√
n
ω̃′

1y1 +
1

n
R2,

where y1 = (W1,W4, Z1, Z2), ω̃1 = ω̃1(c,∆
2) is the vector valued function

defined by

(3.16) ω̃1 =D1
∂

∂v1
Ω(v1)|0

with being that D1 = diag(
√

2n/f1,
√
2n/f4, 1, 1), and R2 is the residue term

of which the property is similar to R1. We can express that

ω̃1 =
1

2

1

{ρ(c,∆2)}3/2
p̃2,

where

p̃2 = p̃2(c,∆
2)

=

(
α5α6√
q1,0

c− α8 + α5α
2
6

q1,0

)
·
(√

2n

f1
−f4
f1

√
2n

f4

1

q1,0
−2

n

f1

√
N1N2

Nn

∆

q1,0
0

)′

.

(3.17)

Let ω1 be the extension for ω̃1 defined as

ω1 =
(
ω̃11 0 0 ω̃12 ω̃13 ω̃14 0

)′
for ω̃1 =

(
ω̃11 ω̃12 ω̃13 ω̃14

)′
. Then we have

(3.18)

√
ρ(c,∆2)

ρ(c, ∆̂2
A)

D
= 1 +

√
ρ(c,∆2)

n
ω′

1y +
1

n
R3,

where R3 is the residue term of which the property is similar to R1. Combining
(3.7) and (3.18), we have

C2|1 − Φ(c)

ϕ(c)

√
ρ(c, ∆̂2

A)/n

D
=

1√
p′1p1

p′1y +
1√
n

1√
p′1p1

y′
{
P +

1

2ρ(c,∆2)

(
p1p

′
2 + p2p

′
1

)}
y +

1

n
R4,

where p2 is the extension for p̃2 of which the definition is the same as ω1, and
R4 is the residue term of which the property is similar to R1.

Summarizing the above results, we have the following theorem.



CONSTRAINED LINEAR DISCRIMINANT RULE FOR LARGE DIMENSION 83

Theorem 3.

P

c2|1
(√

V0c− U0

)
− Φ(c)

ϕ(c)

√
ρ(c, ∆̂2

A)/n

≤ x


= Φ(x)− 1√

n
(s1H0(x) + s2H2(x))ϕ(x) +OA,C(n

−1),

where

s1 = s1(c,∆
2) =

1√
ρ(c,∆2)

tr

{
P +

1

2

1

ρ(c,∆2)
(p1p

′
2 + p2p

′
1)

}
,

s2 = s2(c,∆
2) =

1

{ρ(c,∆2)}3/2

{√
2

3

4∑
k=1

√
n

fk
p31,k + p

′
1Pp1 + p

′
1p2

}
.

Analytic forms for s1 and s2 are complicated, and so are omitted to write
in this paper. We notice that s1 and s2 contain only the term in which the
power of ∆ is the even number.

§4. Constrained linear discriminant rule for CPMC

In this section, we give a constrained linear discriminant rule for classification
of two groups of which one of the two conditional misclassification probabilities
does not exceed the presetting value ΞH with the confidence level α.

Suppose that

(4.1) cH1 = ξH1 −
1√
n

√
ρ(ξH1 , ∆̂

2
A)z1−ε,

where ξH1 = Φ−1(ΞH1) for ΞH1 ∈ (0, 1). By virtue of (3.13) combined with
Slutsky’s theorem, we have

lim
A1

P
(
c2|1

(√
V0cH1 − U0

)
< ΞH1

)
= 1− ε

under the assumption C.

As an extension of (4.1), we obtain the following result.

Theorem 4. Let

cH2 = ξH2 −
1√
n
h1 −

1

n
h2,
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where

h1 =

√
ρ(ξH2 , ∆̂

2
A)z1−ε,

h2 =

ξH2

2
ρ(ξH2 , ∆̂

2
A) +

nf4
f2
1

α1√
β2

√
1

q2,0(∆̂2
A)

 z21−ε

+

√
ρ(ξH2 , ∆̂

2
A)
(
b1(ξH2 , ∆̂

2
A)H0(z1−ε) + b2(ξH2 , ∆̂

2
A)H2(z1−ε)

)
with being that ξH2 = Φ−1(ΞH2) for ΞH2 ∈ (0, 1). Then

P
(
c2|1

(√
V0cH2 − U0

)
< ΞH2

)
= 1− ε+OA1,C(n

−1).

The proof of Theorem 4 is similar to the one of Theorem 2 in McLachran
[10], and so we omit to describe it.

§5. Simulation result

Simulation experiments were performed to confirm the asymptotic result of
Theorem 4. We also compared the accuracies with the asymptotic result of
Theorem 2 in McLachlan [10] for the case in which N1 = N2 = 50, 100, 250,
p = 10, 30, 50, 70, ∆ = 1, 2, 3, ε = 0.05, Ξ = Φ(−∆/2), where the settings of
∆ and Ξ are followed to McLachlan [10]. When we treat the distributions of
W -rule, without loss of generality from invariant property of the distribution
for the orthogonal transformation of observation vector, we may assume that
two given normal populations with the same covariance matrix are

Π1 : Np((∆/2)e1, Ip), Π2 : Np(−(∆/2)e1, Ip),

where e1 = (1, 0, . . . , 0)′. To compute misclassification probability, generate
104 training samples. For each training samples, we generate 104 test samples
in which observation vectors are i.i.d. as Np((∆/2)e1, Ip). The value of the
conditional misclassification probability was calculated by

simk =
number of misclassifications

104
(k = 1, . . . , 104)

in each training samples. We took the average of I(sim1 < Ξ), . . . , I(sim104 <
Ξ), where I(.) denotes the indicator function, and wrote it as the value for the
actual level in row “Y” in Tables 1-3. The same value for McLachlan [10]’s
approximation was written in row “Mc”.

From Tables 1-3, we can see that our proposed asymptotic approximation
has good accuracy when N1 = N2 = 100, 250 and ∆ = 1, 2. The actual level
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Table 1: Actual levels of confidences that the conditional error probabilities
are less than Ξ when N1 = N2 = 50 and the nominal level is 1− ε = 0.95.

p = 10 p = 30 p = 50 p = 70

∆ = 1
Y 0.96 0.96 0.97 0.98
Mc 0.89 0.58 0.12 0.00

∆ = 2
Y 0.95 0.94 0.93 0.92
Mc 0.87 0.50 0.05 0.01

∆ = 3
Y 0.92 0.89 0.83 0.67
Mc 0.82 0.33 0.02 0.00

Table 2: Actual levels of confidences that the conditional error probabilities
are less than Ξ when N1 = N2 = 100 and the nominal level is 1− ε = 0.95.

p = 10 p = 30 p = 50 p = 70

∆ = 1
Y 0.96 0.96 0.96 0.96
Mc 0.92 0.81 0.59 0.29

∆ = 2
Y 0.95 0.95 0.95 0.94
Mc 0.91 0.79 0.52 0.20

∆ = 3
Y 0.94 0.93 0.92 0.90
Mc 0.89 0.71 0.39 0.10

Table 3: Actual levels of confidences that the conditional error probabilities
are less than Ξ when N1 = N2 = 250 and the nominal level is 1− ε = 0.95.

p = 10 p = 30 p = 50 p = 70

∆ = 1
Y 0.95 0.95 0.96 0.95
Mc 0.93 0.91 0.85 0.78

∆ = 2
Y 0.95 0.95 0.95 0.95
Mc 0.93 0.90 0.84 0.75

∆ = 3
Y 0.94 0.94 0.93 0.93
Mc 0.92 0.87 0.79 0.67
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of confidence becomes small as the dimension gets large. We can check that
McLachlan [10]’s result does not work well for our settings. Simulation results
reveal that the actual confidence level gets small from the nominal level as the
dimension becomes close to sample size for the case in which Ξ is small.

§6. Concluding remarks

In this paper, we derived Studentized statistic for the conditional probability of
misclassification for the Studentized W , and derived its asymptotic expansion
of the distribution up to the term of OA1,C(n

−1/2). It may be noted that the
order of its error is OA1,C(n

−1). Based on the derived asymptotic expansion,
we gave the cut-off point for the linear discriminant rule that the one of two
conditional error probabilities is less than the presetting value. Simulation
results revealed that our proposed rule is superior than McLachlan [10]’s result.

Unfortunately, our proposed rule did not work well for the case in which Ξ
is small. The modification should be considered and is being a future problem.

§A. Equality in distributions for proposed statistics

In this section, firstly, we mention the equality in distributions for U01 − U1

and −(U02 − U2), which is given as the following lemma,

Lemma 2. The distribution for U01−U1 is the same as the one for −(U02−U2)
with exchanging N1 for N2.

Proof. Set S1(N1, N2) = U01 − U1, and set S2(N1, N2) = −(U02 − U2). In
addition, put

x̄i
D
= µi +

1√
Ni
zi (i = 1, 2), S

D
=

1

n
W, δ = Σ−1/2(µ1 − µ2),

where z1,z2, W are independent; z1 and z2 are distributed as Np(0, Ip); W
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is distributed as Wp(n, Ip). Then, we have

S1(N1, N2)

D
= −1

2

n

m− 1

{
n

(
1√
N1
z1 −

1√
N2
z2 − δ

)′
W−1

(
1√
N1
z1 −

1√
N2
z2 − δ

)
− Np

N1N2

}
− 1

2

p

m− 1

(
n

N2
− n

N1

)
− 2(n− 1)

(m− 1)(m+ 1)

n

N1

− n

2

(
1√
N1
z1 −

1√
N2
z2 − δ

)′
W−1

(
1√
N1
z1 +

1√
N2
z2 − δ

)
,

S2(N1, N2)

D
= −1

2

n

m− 1

{
n

(
1√
N1
z1 −

1√
N2
z2 − δ

)′
W−1

(
1√
N1
z1 −

1√
N2
z2 − δ

)
− Np

N1N2

}
+

1

2

p

m− 1

(
n

N2
− n

N1

)
− 2(n− 1)

(m− 1)(m+ 1)

n

N2

+
n

2

(
1√
N1
z1 −

1√
N2
z2 − δ

)′
W−1

(
1√
N1
z1 +

1√
N2
z2 + δ

)
.

By interchanging N1 and N2,

S2(N2, N1)

D
= −1

2

n

m− 1

{
n

(
1√
N2
z1 −

1√
N1
z2 − δ

)′
W−1

(
1√
N2
z1 −

1√
N1
z2 − δ

)
− Np

N2N1

}
+

1

2

p

m− 1

(
n

N1
− n

N2

)
− 2(n− 1)

(m− 1)(m+ 1)

n

N1

+
n

2

(
1√
N2
z1 −

1√
N1
z2 − δ

)′
W−1

(
1√
N2
z1 +

1√
N1
z2 + δ

)
= −1

2

n

m− 1

{
n

(
1√
N1
z̃1 −

1√
N2
z̃2 − δ

)′
W−1

(
1√
N1
z̃1 −

1√
N2
z̃2 − δ

)
− Np

N1N2

}
− 1

2

p

m− 1

(
n

N2
− n

N1

)
− 2(n− 1)

(m− 1)(m+ 1)

n

N1

− n

2

(
1√
N1
z̃1 −

1√
N2
z̃2 − δ

)′
W−1

(
1√
N1
z̃1 +

1√
N2
z̃2 − δ

)
D
= S1(N1, N2),

where z̃1 = −z2 and z̃2 = −z1.

Next, we treat the equality in distribution for V0 and for V , which is given
as the following lemma.
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Lemma 3. Each of the distributions for V0 and for V is the same as the one
with exchanging N1 for N2.

We omit to write the proof of Lemma 3 since it is similar to Lemma 2.

§B. Proof of Theorem 2

In this section, we give a proof of Theorem 2. Firstly, we give the following
lemma.

Lemma 4. Suppose that a ∈ R and g(.) is a polynomial function. Let Z and
Y are random variables; Z is distributed as the standard normal distribution;
Y is distributed as the chi-square distribution with f degrees of freedom. Then,

E
[
g(Z)eitaZ

]
= exp

(
a2

2
(it)2

)
E[g(Z + ita)],

E
[
g(W )eitaW

]
=

(
1− ita

√
2

f

)−f/2

exp

(
−ita

√
f

2

)
E

[
g

(
W + ita

1− ita
√
2/a

)]
,

where i =
√
−1, and W =

√
f/2(Y/f − 1).

It is easy to prove Lemma 4, so we omit to write the proof.

Proof of Theorem 2. From the assumption for T given in (3.14), the charac-
teristic function can be expanded as

E[exp(itT )] = E

[
T0 +

it√
n

1√
h′h

T1

]
+O(n−1),

where

T0 = exp

(
it

1√
h′h

h′y

)
, T1 = y

′Hy exp

(
it

1√
h′h

h′y

)
.

From Lemma 4, we have

E[T0] =
4∏

k=1

(
1− it

hk√
h′h

√
2

fk

)−fk/2

exp

(
−it

hk√
h′h

√
fk
2

)

·
7∏

k=5

exp

(
1

2
(it)2

h2k
h′h

)

=

[
1 +

1√
n

{√
2

3
(it)3

4∑
k=1

√
n

fk

h3k
(h′h)3/2

}]
e(it)

2/2 +O(n−1)



CONSTRAINED LINEAR DISCRIMINANT RULE FOR LARGE DIMENSION 89

under A1. It can be expressed that

E[T1] =
7∑

k=1

hkkE

[
Y 2
k exp

(
it

hk√
h′h

Yk

)]
E

exp
it

7∑
ℓ=1
ℓ̸=k

hk√
h′h

Yk




+
7∑

k=1

7∑
ℓ=1
ℓ̸=k

hkℓE

[
YkYℓexp

(
it

hk√
h′h

Yk

)
exp

(
it

hℓ√
h′h

Yℓ

)]

· E

exp
it

7∑
α=1

α ̸=k,α ̸=ℓ

hα√
h′h

Yα





for (hkℓ) =H. From Lemma 2 again, we have

E[T1] = E[T0]

[
4∑

k=1

hkk
1 + (it)2h2k/h

′h

{1− it(hk/
√
h′h)

√
2/fk}2

+
7∑

k=5

hkk{1 + (it)2h2k/h
′h}

]

+ E[T0]


4∑

k=1

4∑
ℓ=1
ℓ̸=k

hkℓ
ithk/

√
h′h

1− it(hk/
√
h′h)

√
2/fk

ithℓ/
√
h′h

1− it(hℓ/
√
h′h)

√
2/fk

+2
4∑

k=1

7∑
ℓ=5

hkℓ
ithk/

√
h′h

1− it(hk/
√
h′h)

√
2/fk

it
hℓ√
h′h

+
7∑

k=5

7∑
ℓ=5
ℓ ̸=k

hkℓ(it)
2hkhℓ
h′h


= E[T0]

{
trH + (it)2

h′Hh

h′h
+O(n−1/2)

}
under A1. The desired result now follows by formally inverting the expansion
for the characteristic function.

§C. Analytic forms for P 0, P 1, P 2 and P 3

In this section, we give the analytic form for P i (i = 0, 1, 2, 3). The derivation
is straightforward, and so is omitted.
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