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Abstract. Aoshima and Yata [1] observed that classification accuracy of Eu-
clidean distance-based classifiers have good performance at high dimensions.
For practical use, it is necessary to estimate the misclassification probability
using the training data set. Although cross-validation is usually used for such
problems, it does not necessarily have good estimation accuracy at high dimen-
sion. In this paper, we propose a new estimator of misclassification probabilities
at high-dimensional settings. Our estimator is obtained using the asymptotic
multivariate normality of discriminant functions at high-dimensional settings.
Finally, we numerically justify the high accuracy of our proposed estimator in
finite sample applications, inclusive of high-dimensional scenarios.
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§1. Introduction

In this paper, we focus on the multi-class classification concerned with the al-
location of a p-dimensional random vector X to one of the several populations,
G1, G2, . . . , Gq using training data sets

X11,X12, . . . ,X1n1 ,X21,X22, . . . ,X2n2 , . . . ,Xq1,Xq2, . . . ,Xqnq .

Here, Xi1,Xi2, . . . ,Xini is a p-dimensional random sample from the i-th pop-
ulation Gi. For p ≤

∑q
i=1 ni − q, a natural extension of Fisher linear discrim-

inant exists using multiple discriminant analysis (See, Johnson and Wichern
[8]). However, when p >

∑q
i=1 ni − q, it cannot be used due to the singularity

of pooled sample covariance matrix. In this case, the Euclidean distance-based
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classifier is often used. Recently, Aoshima and Yata [1] claimed that classifi-
cation accuracy of Euclidean distance-based classifiers have good performance
at high dimensions with some assumptions. Furthermore, Aoshima and Yata
[3] proposed a quadratic discriminant function in non-sparse setting and dis-
cusses its asymptotic properties. This discriminant rules can be discriminated
by using both the differences of mean vectors and covariance matrices.

We focus on evaluating the probabilities of misclassification of Euclidean
distance-based classifiers. Let X be test data generated from one of the sev-
eral populations G1, G2, . . . , Gq. The Euclidean distance-based discriminant
function is defined as

Uji = ∥X −Xj∥2 − ∥X −Xi∥2 −
tr(Sj)

nj
+

tr(Si)

ni

for i ̸= j, i, j ∈ {1, 2, . . . , q}, where Si and Sj are the sample covariance
matrices. Using this function, the classification rule for test data X is given
by

X ∈ Rk ⇒ X ∼ Gk.

where, the region Rk (k ∈ {1, 2, . . . , q}) is defined by

Rk = {X ∈ Rp ; Ujk > 0, j = 1, 2, . . . , q, j ̸= k}.

Here, the notation “X ∼ Gℓ” means X generated from Gℓ. Then, the mis-
classification probability of an observation from Gk is

ek = 1− Pr(X ∈ Rk|X ∼ Gk).

However, it is generally difficult to obtain an exact value for ek. Therefore,
there are many studies dealing with asymptotic approximations for misclas-
sification probability. For the Fisher linear discriminant rule, see, e.g., Fu-
jikoshi and Seo [5]. Tonda et al. [13] derived asymptotic unbiased estimator
of misclassification probability for two-class linear discriminant rule. Shutoh
[9, 10, 11] and Shutoh and Seo [12] discussed the asymptotic properties of two-
class linear discriminant function for monotone missing samples. The approx-
imation of ek is derived by using the asymptotic normality of the discriminant
function Uji. Aoshima and Yata [1] showed the asymptotic normality of Uji un-
der some conditions, and obtained the approximation of the upper bound of ek
by combining the asymptotic normality and Boole’s inequality. Aoshima and
Yata [3] showed the different type of asymptotic normality of Uji. Recently,
Watanabe et al. [14] obtained a plug-in type estimator of ek by estimating
unknown parameters contained in the approximate value of ek for two-class
classification. We extend Watanabe et al.’s results to multiple groups. For
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that, (q − 1)-dimensional distribution of (U1k, . . . , Uk−1k, Uk+1k, . . . , Uqk)
⊤ is

necessary. In general it is difficult to derive an exact distribution, so we con-
sider an asymptotic distribution. The asymptotic normality of univariate Uji

has already been shown in Aoshima and Yata [1, 3]. However, in general, uni-
variate asymptotic normality of Uji is not a sufficient condition of multivariate
asymptotic normality of (U1k, . . . , Uk−1k, Uk+1k, . . . , Uqk)

⊤. In this paper, we
newly obtain the asymptotic multivariate normality for (U21, U31, . . . , Uq1)

⊤.
By using this result, it is possible to construct an approximation that is not
the upper bound of ek. Further, we propose the plug-in type estimator of
misclassification probability of ek using asymptotic multivariate normality.

The rest of the paper is organized as follows. In Section 2, we demonstrate
the asymptotic multivariate normality for several Euclidean discriminant func-
tions and propose the plug-in estimator of misclassification probability of ek.
In Section 3, we summarize the results of numerical experiments, justifying
the validity of the suggested estimators for the data along with a number of
high-dimensional scenarios. Finally, in Section 4, we conclude this paper.

§2. Main result

We show the asymptotic multivariate normality for a p-dimensional vector
whose components are several Euclidean discriminant functions Ujk for j, k ∈
{1, 2, . . . , q}, j ̸= k. For simplicity of notation, we only deal with e1. Then,
k = 1 and j ∈ {2, 3, . . . , q}.

2.1. Statistical model and some moments of discriminant function

Assume that the data are generated by the following model:

X = Σ
1/2
1 Z10 + µ1, ∀ℓ∈{1,2,...,q},t∈{1,2,...,nℓ} Xℓt = Σ

1/2
ℓ Zℓt + µℓ,

where e⊤s Zℓt are iid random variables s.t. fourth moment is bounded. Here,
es denotes

es = (0 · · · 0
s

1̌0 · · · 0)⊤.

If e⊤s Zℓt ∼ N (0, 1), then the condition is trivially true. Under this model,
the population mean vector and covariance matrix of Xℓ1 are E(Xℓ1) = µℓ

and var(Xℓ1) = Σℓ, respectively. Let ∀i,i′∈{1,2,...,q} δii′ = µi − µi′ . The mean
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of Uj1, variance of Uj1, and covariance of (Uj1, Uj′1) for j, j
′ ∈ {2, 3, . . . , q} are

µj = E(Uj1) = ∥µ1 − µj∥2 = ∥δ1j∥2,

σ2
j = var(Uj1) = 4

{
∆1j +

∥Σ1∥2F
n1

+
tr(Σ1Σj) + ∆j1

nj

}
+

2∥Σ1∥2F
n1(n1 − 1)

+
2∥Σj∥2F

nj(nj − 1)
,

σjj′ = cov(Uj1, Uj′1) = 4

(
∆1jj′ +

∥Σ1∥2F
n1

)
,

respectively. Here, ∆i1i2 = ∥Σ1/2
i1

δi1i2∥2 and ∆i1i2i3 = δ⊤i1i2Σi1 δi1i3 for
i1, i2, i3 ∈ N.

2.2. Asymptotic normality

To obtain asymptotic normality, we make asymptotic frameworks for some
parameters.

Let nj , tr(Σ1Σj), tr{(Σ1Σj)
2}, tr{(Γ⊤

1 δ1jδ
⊤
1jΓ1) ⊙ (Γ⊤

1 δ1jδ
⊤
1jΓ1)}, ∥Σ1∥F ,

∥Σ2
1∥F , ∥Σj∥F and ∆1j be functions of p for j ∈ {2, 3, . . . , q}. Here, “A ⊙

B”denotes Hadamard product of same size matricesA andB. Then, we assume
(A1)–(A3).

(A1) min{n1, n2, . . . , nq} → ∞ and nj/n1 ∈ (0,∞).

(A2) tr(Σ1Σj)/∥Σ1∥2F ∈ (0,∞), ∆j1/∆1j ∈ (0,∞), ∥Σj∥2F /∥Σ1∥2F ∈ (0,∞).

(A3) ∥Σ2
1∥F = o(∥Σ1∥2F ),

√
tr{(Σ1Σj)2} = o(tr(Σ1Σj)),

tr{(Γ⊤
1 δ1jδ

⊤
1jΓ1)⊙ (Γ⊤

1 δ1jδ
⊤
1jΓ1)} = o(∆1j).

Here, for a function f(·),“f(p) ∈ (0,∞) as p → ∞” implies lim infp→∞ f(p) >
0, lim supp→∞ f(p) < ∞. In practical use, the assumption ∥Σ2

1∥F = o(∥Σ1∥2F )
in (A3) is often not appropriate. This assumption can be called as the non
strongly spiked eigenvalue (NSSE) model in Aoshima and Yata [2]. However, it
is natural to assume the strongly spiked eigenvalue (SSE) model for microarray
data analysis. When NSSE assumption is not satisfied, we recommend a data
transformation technique which is proposed in Aoshima and Yata [2]. This
transformation reduce the discussion under SSE model to the discussion under
NSSE model.

We consider the standardized Euclidean discriminant functions as follows:

Tj =
Uj1 − µj

σj
, for j ∈ {2, 3, . . . , q}.
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We show the asymptotic normality of T = (T2, T3, . . . , Tq)
⊤. Then, mean

vector E(T ) = 0 and cov(T ) = (ρjj′) =: R, where ρjj′ = σjj′/(σjσj′). The
multivariate asymptotic normality of T is given by the following theorem.

Theorem 1. Under (A1)–(A3), T ⇝ Nq−1(0, limp→∞R). Here, “⇝” denotes
the convergence in distribution.

Proof. From Cramér–Wold theorem(See, Cramér and Wold [4]), it is sufficient
to show β⊤T ⇝ N (0, limp→∞ β⊤Rβ) for any q − 1 dimensional nonrandom
vector β = (β1, β2, · · · , βq−1)

⊤ ∈ Rq−1/{0}. We define

ϵs = 2

q∑
j=2

βjσ
−1
j (δ⊤1jΣ

1/2
1 es +Z

⊤
1 Σ1es −Z

⊤
j Σ

1/2
j Σ

1/2
1 es)Zs,

where Zs = e⊤s Z10, Zi = n−1
i

∑ni
t=1Zit for i ∈ {1, 2, . . . , q}. Then, under (A1)

and (A2), β⊤T =
∑p

s=1 ϵs + op(1). Let F0 = σ{Z1,Z2, . . . ,Zq} and Fs−1 =
σ{Z1,Z2, . . . ,Zq, Z1, Z2, . . . , Zs−1} for s ≥ 2. Then, (ϵs) is a martingale dif-
ference sequence. Under (A1) and (A2), there exists limp→∞ β⊤Rβ(∈ (0,∞)).
Let σ2 = limp→∞ β⊤Rβ. Also, under (A1) and (A3),

p∑
s=1

E(ϵ2s|Fs−1) = σ2 + op(1),

p∑
s=1

E(ϵ4s) = o(1).

Applying the martingale central limit theorem(See, Hall and Heyde [6]), we
prove asymptotic normality of β⊤T .

2.3. The estimator of misclassification probability

Using Theorem 1, we propose the asymptotic approximation of misclassifica-
tion probability as follows:

ẽ1 = 1− F (r, R) ,(2.1)

where F (r, R) =
∫
D(2π)

−(q−1)/2|R|−1/2e−w⊤R−1w/2dw. Here,

D = {w ∈ Rq−1 ; e⊤1 w + r1, e
⊤
2 w + r2, . . . , e

⊤
q−1w + rq−1 > 0}.

and r = (µ2/σ2, µ3/σ3, . . . , µq/σq)
⊤.

The approximation (2.1) include the unknown values ∥δ1j∥2, tr(Σ1Σj),
∥Σi∥2F , ∆1j , ∆j1 and ∆1jj′ . We prepare unbiased estimators of these unknown



16 H. WATANABE, T. SEO, AND M. HYODO

values as follows:

µ̂j = ∥X1 −Xj∥2 −
tr(S1)

n1
− tr(Sj)

nj
, ̂tr(Σ1Σj) = tr(S1Sj),

∥̂Σi∥2F =
(ni − 1)[(ni − 1)(ni − 2)tr(S2

i ) + {tr(Si)}2 − niKi]

ni(ni − 2)(ni − 3)
,

∆̂1j = V1jj −
2U1j

(n1 − 1)(n1 − 2)
− tr(S1Sj)

n1

+
2n1K1 − (n1 − 1) {tr(S1)}2 − (n1 − 1)2tr(S2

1)

n1(n1 − 2)(n1 − 3)
,

∆̂j1 = Vj11 −
2Uj1

(nj − 1)(nj − 2)
− tr(SjS1)

nj

+
2njKj − (nj − 1) {tr(Sj)}2 − (nj − 1)2tr(S2

j )

nj(nj − 2)(nj − 3)
,

∆̂1jj′ = V1jj′ −
U1j + U1j′

(n1 − 1)(n1 − 2)

+
2n1K1 − (n1 − 1) {tr(S1)}2 − (n1 − 1)2tr(S2

1)

n1(n1 − 2)(n1 − 3)
.

Here, for i1, i2, i3 ∈ {1, 2, . . . , q},

Ki1 =
1

ni1 − 1

ni1∑
t=1

∥Xi1t −Xi1∥2,

Vi1i2i3 = (Xi1 −Xi2)
⊤Si1(Xi1 −Xi3),

Ui1i2 = (Xi1 −Xi2)
⊤

ni1∑
t=1

(Xi1t −Xi1)(Xi1t −Xi1)
⊤(Xi1t −Xi1).

The unbiased estimator ∆̂1jj′ is newly obtained in this paper. The unbi-

ased estimator ∥̂Σi∥2F was proposed by Himeno and Yamada [7]. The unbi-

ased estimator ∆̂1j and ∆̂j1 were proposed by Watanabe et al. [14]. How-
ever, some estimators do not always take appropriate values. We note that
∆1j ,∆1j′ ,∆j1 > 0 and ∆1jj′ ∈ [−

√
∆1j∆1j′ ,

√
∆1j∆1j′ ]. We truncate esti-

mators of these parameters so that they take appropriate values. Thus, we
obtain ∆̃1j = max{0, ∆̂1j}, ∆̃1j′ = max{0, ∆̂1j′}, ∆̃j1 = max{0, ∆̂j1} and

∆̃1jj′ = min

{√
∆̃1j∆̃1j′ ,max

{
∆̂1jj′ ,−

√
∆̃1j∆̃1j′

}}
.
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We estimate σj and σjj′ using the following estimators:

σ̂j =

√√√√√4

(
∆̃1j +

∥̂Σ1∥2F
n1

+
̂tr(Σ1Σj) + ∆̃j1

nj

)
+ 2

∑
i∈{1,j}

∥̂Σi∥2F
ni(ni − 1)

,

σ̂jj′ = 4

(
∆̃1jj′ +

∥̂Σ1∥2F
n1

)
.

Let ρ̂jj′ = σ̂jj′/(σ̂j σ̂j′). Replacing the unknown value ρjj′ in R, we obtain

the estimator R̂ = (ρ̂jj′). We note that the matrix R̂ is always a positive
matrix. Moreover, we estimate r: r̂ = (µ̂2/σ̂2, µ̂3/σ̂3, . . . , µ̂q/σ̂q)

⊤. By substi-
tuting each estimator of unknown value in (2.1), we obtain the estimator of
misclassification probability as follows:

ê1 = 1− F
(
r̂, R̂

)
.(2.2)

§3. Simulation Studies

We investigate the numerical performances of the asymptotic approximation
ẽ1 and its plug-in estimator ê1 using Monte Carlo simulation. For simplicity,
we treat the discrimination problem among three groups.

First, we investigate the accuracy of the asymptotic approximations

(I) : e1 ≈ ẽ1, (II) : e1 ≈
3∑

j=2

Φ

(
−∥δ1j∥2

δj

)
,

where

δj =

√
4tr(Σ2

1)

n1
+

4tr(Σ1Σj)

nj
+

2tr(Σ2
1)

n1(n1 − 1)
+

2tr(Σ2
j )

nj(nj − 1)
.

Here, the approximation (I) represents our proposed method based on (2.1),
and the approximation (II) represents the method proposed by Aoshima and
Yata [1]. (I) is derived by using the asymptotic multivariate normality for
(U21, U31, . . . , Uq1)

⊤ which is obtained Theorem 1. (II) is the approximation
of the upper bound of e1 by combining the asymptotic normality of Uij and
Boole’s inequality. This approximation is valid under some regularity condi-
tions. Note that (I) approximates e1 directly, whereas (II) approximates the
upper bound of e1.
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The misclassification probability e1 is calculated via simulation with 100,000
replications.
For the distribution of Zit = (Ziℓt), we set the following two distributions:

(D1) Ziℓt ∼ N (0, 1),

(D2) Ziℓt = Uiℓt/
√

5/4 for Uiℓt ∼ T10.

Note that (D1) and (D2) satisfies our moment condition. The structure of the
covariance matrix is set with the following:

Σ1 =
(
0.3|i−j|

)
, Σ2 = 1.2

(
0.3|i−j|

)
, Σ3 = 2.4

(
0.3|i−j|

)
.

We set the mean vectors as following two cases:

(M1) µ1 = 0, µ2 =
(√

30/p,
√
30/p, . . . ,

√
30/p

)⊤
, µ3 = −µ2,

(M2) µ1 = 0, µ2 = (−1, 1,−1, 1, . . . ,−1, 1, 0, . . . , 0)⊤ , µ3 = −µ2.

Here, in (M2), the number of non-zero elements in µ2 and µ3 is ⌈{tr(Σ2
1)}1/2/2⌉.

The dimensions and sample sizes are chosen as follows:

p = 100, 250, 500, 1000; (n1, n2, n3) = (20, 40, 60), (40, 80, 120), (60, 120, 180).

Then, we compare the true value e1, the approximation (I) and the approxi-
mation (II) on these settings. By comparing the approximations in Table 1,
it is seen that approximation (I) is closer to the true value e1 than (II) is for
all cases. In Table 2, (I) and (II) are close to true value e1 when the sample
size is relatively small, and (I) is closer to the true value than (II) when the
sample size is relatively large. In situations where the dimension p is large and
sample size n is small, (II) is close to the true value e1 and is a conservative
approximation.

Next, we investigate the mean squared error (MSE) of the consistent esti-
mator ê1 on the same settings. For comparison, we consider the leave-one-out
cross-validation method (CV ), which is a popular method for estimating pre-
diction errors for small samples. The MSEs of the estimators CV and ê1 are
given in Tables 3-6. These tables show that ê1 has smaller MSEs than CV does
for all cases. Moreover, it can be confirmed that the MSE of our estimator is
not influenced even if the distribution of Ziℓt is a t distribution.
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Table 1: Comparison of approximations when (M1)
(n1, n2, n3)

p (20,40,60) (40,80,120) (60,120,180)
100 e1 (D1) 0.0663 0.0552 0.0508

(D2) 0.0662 0.0543 0.0515
approx (I) 0.0683 0.0557 0.0516

(II) 0.0000 0.0000 0.0000
250 e1 (D1) 0.0998 0.0702 0.0627

(D2) 0.0984 0.0721 0.0627
approx (I) 0.1007 0.0718 0.0623

(II) 0.0034 0.0000 0.0000
500 e1 (D1) 0.1489 0.0979 0.0795

(D2) 0.1469 0.0977 0.0796
approx (I) 0.1499 0.0983 0.0799

(II) 0.0377 0.0032 0.0003
1000 e1 (D1) 0.2217 0.1474 0.1134

(D2) 0.2217 0.1464 0.1134
approx (I) 0.2229 0.1472 0.1146

(II) 0.1414 0.0367 0.0104

Table 2: Comparison of approximations when (M2)
(n1, n2, n3)

p (20,40,60) (40,80,120) (60,120,180)
100 e1 (D1) 0.3598 0.2854 0.2482

(D2) 0.3573 0.2879 0.2459
approx (I) 0.3642 0.2909 0.2500

(II) 0.3517 0.1855 0.1043
250 e1 (D1) 0.3433 0.2629 0.2125

(D2) 0.3460 0.2604 0.2150
approx (I) 0.3485 0.2626 0.2135

(II) 0.3772 0.2093 0.1235
500 e1 (D1) 0.3225 0.2313 0.1750

(D2) 0.3232 0.2303 0.1753
approx (I) 0.3258 0.2307 0.1770

(II) 0.3672 0.1998 0.1158
1000 e1 (D1) 0.3183 0.2175 0.1613

(D2) 0.3171 0.2169 0.1633
approx (I) 0.3201 0.2190 0.1617

(II) 0.3773 0.2094 0.1236
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Table 3: Comparison of MSEs when (M1) and (D1)
(n1, n2, n3)

p (20,40,60) (40,80,120) (60,120,180)
100 ê1 0.0016 0.0007 0.0004

CV 0.0032 0.0013 0.0008
250 ê1 0.0022 0.0008 0.0005

CV 0.0044 0.0017 0.0010
500 ê1 0.0030 0.0011 0.0006

CV 0.0060 0.0022 0.0012
1000 ê1 0.0040 0.0015 0.0008

CV 0.0078 0.0030 0.0016

Table 4: Comparison of MSEs when (M1) and (D2)
(n1, n2, n3)

p (20,40,60) (40,80,120) (60,120,180)
100 ê1 0.0016 0.0007 0.0004

CV 0.0031 0.0013 0.0008
250 ê1 0.0022 0.0008 0.0005

CV 0.0044 0.0016 0.0010
500 ê1 0.0030 0.0011 0.0006

CV 0.0060 0.0021 0.0012
1000 ê1 0.0041 0.0015 0.0008

CV 0.0078 0.0030 0.0016

Table 5: Comparison of MSEs when (M2) and (D1)
(n1, n2, n3)

p (20,40,60) (40,80,120) (60,120,180)
100 ê1 0.0042 0.0022 0.0014

CV 0.0091 0.0041 0.0026
250 ê1 0.0042 0.0021 0.0012

CV 0.0090 0.0038 0.0023
500 ê1 0.0041 0.0019 0.0011

CV 0.0087 0.0036 0.0020
1000 ê1 0.0042 0.0017 0.0010

CV 0.0088 0.0035 0.0019
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Table 6: Comparison of MSEs when (M2) and (D2)
(n1, n2, n3)

p (20,40,60) (40,80,120) (60,120,180)
100 ê1 0.0042 0.0022 0.0014

CV 0.0091 0.0041 0.0026
250 ê1 0.0042 0.0021 0.0013

CV 0.0090 0.0039 0.0023
500 ê1 0.0041 0.0019 0.0011

CV 0.0088 0.0036 0.0020
1000 ê1 0.0042 0.0017 0.0010

CV 0.0088 0.0035 0.0019

§4. Conclusion

We considered the multi-class classification problem for high-dimensional data.
In this paper, we showed the asymptotic multivariate normality for several Eu-
clidean distance-based discriminant functions under high-dimensional settings.
Our theoretical results have been established under variance heterogeneity and
nonnormality. Further, using asymptotic multivariate normality, we proposed
a new estimator of misclassification probability of Euclidean distance-based
discriminant rule. We confirmed that proposed estimators have good perfor-
mances in high-dimensional situations through numerical simulations.
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