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Abstract. In linear regression analysis, estimation of the regression param-
eters in measurement error model is considered in this paper. Methods of es-
timation have been proposed and improved in many literature. We give an
approximated confidence region of regression parameters and examine the ac-
curacy of approximation by simulation.
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§1. Introduction

The linear model is widely used in data analysis, responses are observed along
with covariates, which may have measurement errors in some practical situa-
tions. Sutradhar (2013) reviewed on analysis in linear and generalized linear
models with measurement errors for longitudinal data. Fan, Sutradhar and
Rao (2012) gave a bias corrected generalized quasi-likelihood (BCGQL) esti-
mator and a bias corrected generalized method of moment (BCGMM) estima-
tor in the linear measurement error model. These estimators are extension of
the generalized quasi-likelihood estimator and the generalized method of mo-
ment estimator by Rao, Sutradhar and Pandit (2012). They compare these
estimators by simulation, in which the BCGQL estimator is more efficient than
the BCGMM estimator and prove that the BCGQL is a consistent estimator.

Let yi = (yi1, ..., yit)
′ denote the response variable for the ith individual

and Xi = (xijℓ) be the associated t × p (t > p) covariate matrix with normal
measurement errors (i = 1, ..., n; j = 1, ..., t; ℓ = 1, ..., p). Let Zi = (zijℓ)
and Vi = (νijℓ) be the unobserved true t× p covariate matrix of and the t× p
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measurement error matrix, respectively, then we assume Xi = Zi + Vi, and
consider the model

yi = Ziβ + εi (i = 1, ..., n), (1)

where β is the p-dimensional regression vector and εi = (εi1, ..., εit)
′ is the

model error. Let ε1, ..., εn be independent and has the t-variate distribution
with mean 0 and covariance matrix Σe, Nt(0,Σe), and the measurements be
observed repeatedly, that is z1jℓ = ... = znjℓ for each j (Z1 = ... = Zn ≡ Z).
Since Z is not observed, one may consider the inferences through the usual
regression model

yi = Xiβ + εi (i = 1, ..., n). (2)

Even if the model is the simple linear model y = β0+β1x+ε, it is impossible to
give estimators of regression parameters and variances uniquely, when n = 1.
Under model (2), let the measurement error νijℓ’s are independent of the
model error εi and are independent and identically distributed as N(0, σ2

v),
then E(yi) = Zβ and V ar(yi) = Σ = Σe + σ2

vdiag(β
2
1 , ..., β

2
p). Since the

covariate matrix Xi is a random matrix, rankXi = p with probability 1.

The BCGQL given by Fan, Strudhar and Rao (2012) is

β̂B =
[ n∑
i=1

∂ψ′
i

∂β
D−1

i

∂ψi

∂β′

]−1[ n∑
i=1

∂ψ′
i

∂β
D−1

i X ′
iΣ

−1yi

]
, (3)

where

ψi = X ′
iΣ

−1yi − [X ′
iΣ

−1Xi − σ2
v(trΣ

−1)Ip],

and Di = V ar(ψi), in which E(ψi) = 0. However it is difficult to derive the
distribution of (3), even if the model error variance and the measurement error
variance are known. That is, we cannot give a confidence region of β.

In this paper, an exact confidence region of β by extending Brown (1957)
is given in Section 2, when Σe = σ2

eIt and the variances σ2
e , σ

2
v are known. A

conservative confidence region is also given for known variances. An approxi-
mated confidence region is given by plug-in the estimators of variances, when
the variances are unknown. In Section 3, the accuracy of approximation is
examined by simulation.
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§2. Confidence region

Brown (1957) gave an exact confidence region of regression parameters in the
simple linear regression with measurement errors, when the model error and
the measurement error variances are known. Cheng and Van Ness (1999)
reviewed on confidence intervals of the slope parameter in the simple linear
regression model with measurement error. When the variances are unknown,
the asymptotic confidence interval of the slope parameter is given in Fuller
(1987). When the variances are unknown and the ratio of the model error
variance and and the measurement error variance σ2

e/σ
2
v is known, an exact

confidence interval of arctangent of the slope parameter is given by Creasy
(1956).

We give a confidence region of regression parameters in the multiple linear
regression model with measurement error by extending Brown (1957) in this
section. First of all, we assume that Σe = σ2

eIt. Since yi −Xiβ = εi − Viβ is
distributed as Nt(0, {σ2

e + σ2
vβ

′β}It) from the model (1),

w =

n∑
i=1

(yi −Xiβ)
′(yi −Xiβ)

σ2
e + σ2

vβ
′β

has the chi-square distribution with nt degrees of freedom, χ2
nt. Hence P{w <

χ2
nt(α)} = 1−α, where χ2

nt(α) is the upper 100α% point of χ2
nt. If the variances

σ2
e and σ2

v are known, then a 100(1− α)% confidence region of β is given by

(β − Ξ−1
∑n

i=1X
′
iyi)

′Ξ(β − Ξ−1
∑n

i=1X
′
iyi)

< χ2
nt(α)σ

2
e −

∑n
i=1 y

′
iyi + (

∑n
i=1X

′
iyi)

′Ξ−1(
∑n

i=1X
′
iyi),

(4)

which is equivalent to w < χ2
nt(α), where Ξ =

n∑
i=1

X ′
iXi − χ2

nt(α)σ
2
vIp. Since

Xi is a random matrix, Ξ is a nonsingular matrix with probability 1. When Ξ
is the positive definite and the right hand side of (4) is positive, the confidence
region (4) is the ellipsoidal region and the center of the ellipsoidal region

β̂c′ = Ξ−1
n∑

i=1

X ′
iyi (5)

may be considered as an estimator of β. It is not easy to investigate properties
of β̂c′ , because this estimator depends on the confidence coefficient.

It is difficult to derive the confidence region of β, when the model error
and the measurement error variances are unknown. So we consider that esti-
mators of variances are substituted to the confidence region (4). The moment
estimator of σ2

v is given by
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σ̂2
v =

n∑
i=1

t∑
j=1

(xijℓ − x̄i·ℓ)
2/nt

which has consistency, where x̄i·ℓ =
∑

j xijℓ. Let s(β) =
∑

i(yi −Xiβ)
′(yi −

Xiβ), then E[s(β)] = nt(σ2
e + σ2

vβ
′β). Hence

σ̂2
e = s(β̂)/nt− σ̂2

vβ̂
′
β̂

is an estimator of σ2
e , where β̂ is the ordinary least squares estimator of β.

Both of σ̂2
v and σ̂2

e have the consistency. By substituting σ̂2
e and σ̂2

v into (4),
the 100(1− α)% confidence region of β is approximated by

(β − Ξ̂−1
∑n

i=1X
′
iyi)

′Ξ̂(β − Ξ̂−1
∑n

i=1X
′
iyi)

< χ2
nt(α)σ̂

2
e −

∑n
i=1 y

′
iyi + (

∑n
i=1X

′
iyi)

′Ξ̂−1(
∑n

i=1X
′
iyi),

(6)

where Ξ̂ =
n∑

i=1

X ′
iXi − χ2

nt(α)σ̂
2
vIp. Then the estimator of the regression pa-

rameter is

β̂c = Ξ̂−1
n∑

i=1

X ′
iyi. (7)

Next, we consider the confidence region of β in a general covariance struc-
ture of Σe, which is the positive definite. Let λ is the maximum characteristic
root of Σe, then

n∑
i=1

(yi−Xiβ)
′(Σe+σ2

vβ
′βIt)

−1(yi−Xiβ) ≥
n∑

i=1

(yi −Xiβ)
′(yi −Xiβ)

λ+ σ2
vβ

′β
. (8)

The left hand side of (8) is distributed as χ2
nt, because the distribution of

yi −Xiβ is Nt(0,Σe + σvβ
′βIt). Hence we have

P
{ n∑

i=1

(yi −Xiβ)
′(yi −Xiβ)

λ+ σ2
vβ

′β
< χ2

nt(α)
}
≥ 1− α.

Then the confidence coefficient of the confidence region

(β − β̂c′)
′Ξ(β − β̂c′) < χ2

nt(α)λ−
n∑

i=1

y′iyi + (

n∑
i=1

X ′
iyi)

′Ξ−1(

n∑
i=1

X ′
iyi) (9)
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is greater than 100(1−α)%, when Σe and σ2
v are known. Let S(β) =

∑
i(yi−

Xiβ)(yi −Xiβ)
′, then E[S(β)] = n(Σe + σvβ

′βIt). So, we use the estimator

Σ̂e = S(β̂)/n− σ̂2
vβ̂

′
β̂It

and substitute λ̂ and Ξ̂ into (9), when the variances are unknown, where λ̂ is
the maximum characteristic root of Σ̂e. The 100(1−α)% confidence region of
β is approximated by

(β − β̂c)
′Ξ̂(β − β̂c) < χ2

nt(α)λ̂−
n∑

i=1

y′iyi + (

n∑
i=1

X ′
iyi)

′Ξ̂−1(

n∑
i=1

X ′
iyi). (10)

When the covariance matrix of the model error has an intraclass correlation
structure Σe = σ2

e{(1− ρ)It + ρ1t1
′
t}, the characteristic roots of Σ are σ2

e{1 +
(t−1)ρ}+σ2

vβ
′β and σ2

e(1−ρ)+σ2
vβ

′β, where −1/(t−1) < ρ < 1 and 1t is the
t dimensional vector of ones. Hence λ in (9) is max(τ1 + σ2

vβ
′β, τ2 + σ2

vβ
′β),

where τ1 = σ2
e{1 + (t − 1)ρ} and τ2 = σ2

e(1 − ρ). Since τ1 = 1′tΣe1t/t and

τ2 = (trΣe − τ1)/(t− 1), λ̂ = max(τ̂1 + σ̂2
vβ̂

′
β̂, τ̂2 + σ̂2

vβ̂
′
β̂) is substituted into

(10) for unknown intraclass correlation structure, where τ̂1 = 1′tΣ̂e1t/t and

τ̂2 = (trΣ̂e − τ̂1)/(t − 1). Note that trΣ̂e = s(β̂) − tσ̂vβ̂
′
β̂ by trS(β) = s(β),

that is trΣ̂e/t = σ̂2
e . In the intraclass correlation structure, the left hand side

of (8) is equivalent to

n∑
i=1

(yi −Xiβ)
′(yi −Xiβ)−

(τ1 − τ2)/t

τ1 + σ2
vβ

′β
1′tS(β)1t ≤ χ2

nt(α)(τ2 +σ2
vβ

′β). (11)

This is an exact confidence region of β, but we can not see what shape is

the region (11). By 1′tS(β̂)1t/t = τ̂1 + σ̂2
vβ̂

′
β̂, the confidence region would be

approximated by

(β−β̂c)
′Ξ̂(β−β̂c) < χ2

nt(α)τ̂2+n(τ̂1−τ̂2)−
n∑

i=1

y′iyi+(
n∑

i=1

X ′
iyi)

′Ξ̂−1(
n∑

i=1

X ′
iyi),

(12)

when the variances are unknown. By the χ2 table, χnt(α) > nt in usual
confidence level (say, α = 0.1, 0.05, 0.01), then the right hand side of (12) is
smaller than that of (10) for the case of intraclass correlation structure.
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§3. Simulation

In this section, we examine the properties of β̂c′ with known variances and
examine the accuracy of approximation of (6) with unknown variances by
simulation, when Σe = σ2

eIt. In simulation study, we choose p = 2; t = 4; n =
10, 20, 30 and α = 0.10, 0.05, 0.01. The covariates are in Table 1.

Table 1. Covariate

zi11 zi21 zi31 zi41 zi21 zi22 zi23 zi24
U(0, 2) U(0, 2) U(1, 4) U(1, 4) 1.0 2.0 N(0, 0.8) N(0, 0.8)

In Table 1, U(a, b) is the random number generated from the uniform distri-
bution over the interval (a, b) and N(0, 0.8) is the random number generated
from the normal distribution, but these random numbers are treated as fixed.
We choose the parameters as β = (3.0, 1.5)′, σ2

e = 1.0 and σ2
v = 0.1, 0.3. The

values of zijℓ’s chosen in this simulation are similar to the values chosen in
Fan, Sutradhar and Rao (2012). In their simulation, BCGQL, BCGMM and
other estimators are compared and confidence intervals of each component of
β are computed by using BCGQL and BCGMM. However we can not use their
confidence intervals for practical application.

First of all, we compute 5,000 estimators β̂B in (3) and β̂c in (5). When
the variances are known, the mean and the mean square error (MSE) of
each estimator are in Tables 2.1 and 2.2, in which β̂B = (β̂B1, β̂B2)

′ and
β̂c′ = (β̂c′1, β̂c′2)

′. The BCGQL estimator is not depend on the confidence co-
efficient, but the results are tabulated for each confidence coefficient for easily
comparison.

Table 2.1. Mean and MSE (σ2
v = 0.1)

β̂B β̂c′

mean MSE mean MSE

n 1− α β̂B1 β̂B2 β̂c′1 β̂c′2
10 0.90 3.006 1.449 0.0248 3.021 1.532 0.0458

0.95 3.003 1.452 0.0251 3.024 1.552 0.0498
0.99 2.995 1.435 0.0242 3.033 1.565 0.0581

20 0.90 3.024 1.467 0.0203 3.007 1.526 0.0222
0.95 3.028 1.465 0.0208 3.014 1.533 0.0241
0.99 3.017 1.450 0.0217 3.018 1.540 0.0256

30 0.90 3.027 1.466 0.0169 3.008 1.513 0.0179
0.95 3.032 1.456 0.0172 3.013 1.514 0.0186
0.99 3.033 1.459 0.0173 3.020 1.527 0.0202
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Table 2.2. Mean and MSE (σ2
v = 0.3)

β̂B β̂c′

mean MSE mean MSE

n 1− α β̂B1 β̂B2 β̂c′1 β̂c′2
10 0.90 2.992 1.443 0.0355 3.044 1.617 0.1251

0.95 2.986 1.456 0.0363 3.060 1.692 0.1929
0.99 2.984 1.451 0.0368 3.104 1.744 0.2201

20 0.90 2.996 1.435 0.0322 3.031 1.591 0.0604
0.95 2.998 1.434 0.0326 3.034 1.583 0.0699
0.99 3.002 1.426 0.0346 3.066 1.642 0.0898

30 0.90 3.003 1.437 0.0299 3.026 1.552 0.0385
0.95 3.003 1.433 0.0306 3.031 1.561 0.0406
0.99 2.997 1.431 0.0304 3.045 1.609 0.0520

From Tables 2.1 and 2.2, the MSE of BCGQL estimator β̂B is smaller than that
of β̂c′ as stated in Section 1. The estimator β̂c′ may not have unbiasedness,
however the bias of β̂c′ would be small. The bias of β̂c′ would be small when
the confidence coefficient and the measurement error variance are small. The
MSE of β̂c′ is also small, when 1− α and σ2

v are small. The difference of the
MSEs of β̂B and β̂c′ is small, when n is large.

Next we examine the accuracy of approximation of (6) under the same sit-
uation as above. When the variances σ2

e and σ2
v are unknown, the proportion,

that confidence regions include the true values β = (3.0, 1.5), is calculated.
The mean and MSE of β̂c = (β̂c1, β̂c2)

′ in (7) are also calculated. The results
are in Tables 3.1 and 3.2.

Table 3.1. Coverage probability (σ2
v = 0.1)

CP mean MSE

n 1− α β̂c1 β̂c2
10 0.90 0.916 3.026 1.544 0.0489

0.95 0.962 3.027 1.555 0.0512
0.99 0.989 3.042 1.595 0.0633

20 0.90 0.952 3.019 1.532 0.0239
0.95 0.970 3.020 1.538 0.0247
0.99 0.997 3.022 1.554 0.0261

30 0.90 0.957 3.011 1.523 0.0176
0.95 0.976 3.014 1.528 0.0182
0.99 0.998 3.016 1.530 0.0189
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Table 3.2. Coverage probability (σ2
v = 0.3)

CP mean MSE

n 1− α β̂c1 β̂c2
10 0.90 0.874 3.073 1.665 0.1630

0.95 0.925 3.096 1.708 0.1983
0.99 0.968 3.132 1.778 0.2722

20 0.90 0.919 3.044 1.587 0.0681
0.95 0.964 3.059 1.608 0.0772
0.99 0.986 3.071 1.655 0.0924

30 0.90 0.939 3.036 1.563 0.0388
0.95 0.972 3.044 1.585 0.0470
0.99 0.995 3.056 1.618 0.0562

From Tables 3.1 and 3.2, the coverage probabilities are larger than the given
confidence coefficient except for σ2

v = 0.3 and n = 10, in which the mean and
the MSE of the estimator β̂c are not good in Table 3.2. However, the coverage
probability, the mean and the MSE are good, when n is large. It seems that
the proposed confidence region (6) is good approximation for large n and small
σ2
v .
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