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Abstract. In this paper we introduce the concept of quadratic operator per-
spective for a continuous function Φ defined on the positive semi-axis of real
numbers, the invertible operator T and operator V on a Hilbert space by

⃝Φ (V, T ) := T ∗Φ
“

˛

˛V T−1
˛

˛

2
”

T.

This generalize the quadratic weighted operator geometric mean of (T, V ) de-
fined by

T ⊙ν V :=
˛

˛

˛

˛

˛V T−1
˛

˛

ν
T

˛

˛

˛

2

for ν ∈ [0, 1] and the quadratic relative operator entropy defined by

⊙ (T |V ) := T ∗ ln
“

˛

˛V T−1
˛

˛

2
”

T.

Some inequalities for this perspective of convex functions are established. Appli-
cations for quadratic weighted operator geometric mean and quadratic relative
operator entropy are also provided.
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§1. Introduction

If Φ : I → R is a convex function on the real interval I and T is a selfadjoint
operator on the complex Hilbert space (H; 〈·, ·〉) with the spectrum Sp (T ) ⊂ I̊ ,
the interior of I, then we have the following Jensen’s type inequality

(1.1) 〈Φ(T ) x, x〉 ≥ Φ(〈Tx, x〉)

39
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for any x ∈ H with ∥x∥ = 1.

For various Jensen’s type inequalities for functions of selfadjoint operators,
see the recent monograph [1] and the references therein.

In the recent paper [4] we showed amongst others that if A is a positive
invertible operator and B is a selfadjoint operator such that

Sp
(
A−1/2BA−1/2

)
⊂ I̊ ,

then

(1.2)

〈
A1/2Φ

(
A−1/2BA−1/2

)
A1/2x, x

〉
〈Ax, x〉

≥ Φ
(
〈Bx, x〉
〈Ax, x〉

)
,

for any x ∈ H, x ̸= 0. This result can be reformulated in terms of perspective
as follows.

Let Φ be a continuous function defined on the interval I of real numbers, B a
selfadjoint operator on the Hilbert space H and A a positive invertible operator
on H. Assume that the spectrum Sp

(
A−1/2BA−1/2

)
⊂ I̊ . Then by using the

continuous functional calculus, we can define the perspective PΦ (B,A) by
setting

PΦ (B,A) := A1/2Φ
(
A−1/2BA−1/2

)
A1/2.

If A and B are commutative, then

PΦ (B,A) = AΦ
(
BA−1

)
provided Sp

(
BA−1

)
⊂ I̊ .

By using the perspective notation, we have by (1.2) that

(1.3)
〈PΦ (B,A) x, x〉

〈Ax, x〉
≥ Φ

(
〈Bx, x〉
〈Ax, x〉

)
,

for any x ∈ H with ∥x∥ = 1.

It is well known that (see [9] and [8] or [10]), if Φ is an operator convex
function defined in the positive half-line, then the mapping

(B,A) → PΦ (B,A)

defined in pairs of positive definite operators, is convex.
Assume that A, B are positive operators on a Hilbert space (H, 〈·, ·〉) . The

weighted operator arithmetic mean for the pair (A,B) is defined by

A∇νB := (1 − ν) A + νB.
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In 1980, Kubo & Ando, [20] introduced the weighted operator geometric mean
for the pair (A,B) with A positive and invertible and B positive by

A♯νB := A1/2
(
A−1/2BA−1/2

)ν
A1/2.

If A, B are positive invertible operators then we can also consider the weighted
operator harmonic mean defined by (see for instance [20])

A!νB :=
(
(1 − ν) A−1 + νB−1

)−1
.

We have the following fundamental operator means inequalities, or Young’s
inequalities

(1.4) A!νB ≤ A♯νB ≤ A∇νB, ν ∈ [0, 1]

for any A, B positive invertible operators. For ν = 1
2 , we denote the above

means by A∇B, A♯B and A!B.
For recent results on operator Young inequality see [13]-[16], [17] and [24]-

[25].
We denote by B−1 (H) the class of all bounded linear invertible operators

on H. For T ∈ B−1 (H) and V ∈ B (H) we define the quadratic weighted
operator geometric mean of (T, V ) by [5]

(1.5) T ⃝ν V :=
∣∣∣∣V T−1

∣∣ν T
∣∣2

for ν ≥ 0. For V ∈ B−1 (H) we can also extend the definition (1.5) for ν < 0.
By the definition of operator modulus, i.e., we recall that |U | :=

√
U∗U,

U ∈ B (H) , we also have

(1.6) T ⃝ν V = T ∗ ∣∣V T−1
∣∣2ν

T = T ∗
(
(T ∗)−1 V ∗V T−1

)ν
T

for any T ∈ B−1 (H) and V ∈ B (H) . For ν = 1
2 we denote

T ⃝ V :=
∣∣∣∣∣V T−1

∣∣1/2
T

∣∣∣2 = T ∗ ∣∣V T−1
∣∣ T = T ∗

(
(T ∗)−1 V ∗V T−1

)1/2
T.

It has been shown in [5] that the following representation holds

(1.7) T ⃝ν V = |T |2 ♯ν |V |2

for T, V ∈ B−1 (H) and any real ν.
We have the following fundamental inequalities extending (1.4):

(1.8) |T |2 ∇ν |V |2 ≥ T ⃝ν V ≥ |T |2!ν |V |2
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for T, V ∈ B−1 (H) and for ν ∈ [0, 1]. In particular, we have

(1.9) |T |2 ∇|V |2 ≥ T ⃝ V ≥ |T |2! |V |2

for T, V ∈ B−1 (H) .
We have the following identities [6] as well

(1.10) (T ⃝ν V )−1 = (T ∗)−1 ⃝ν (V ∗)−1 and T ⃝1−t V = V ⃝t T

for any T, V ∈ B−1 (H) and ν ∈ [0, 1] .
Kamei and Fujii [11], [12] defined the relative operator entropy S (A|B) ,

for positive invertible operators A and B, by

(1.11) S (A|B) := A
1
2

(
ln

(
A− 1

2 BA− 1
2

))
A

1
2 ,

which is a relative version of the operator entropy considered by Nakamura-
Umegaki [23].

For some recent results on relative operator entropy see [2]-[3], [18]-[19] and
[21]-[22].

Consider the scalar function Tt : (0,∞) → R defined for t ̸= 0 by

(1.12) Tt (x) :=
xt − 1

t
.

We have

(1.13) T−t (x) =
1 − x−t

t
=

xt − 1
txt

= Tt (x) x−t.

For T, V ∈ B−1 (H) and t > 0 we define the quadratic Tsallis relative
operator entropy by [7]

⊙t (T |V ) := T ∗Tt

(∣∣V T−1
∣∣2) T = T ∗

(∣∣V T−1
∣∣2)t

− 1

t
T(1.14)

=
T ⃝t V − |T |2

t
=

∣∣∣∣∣V T−1
∣∣t T

∣∣∣2 − |T |2

t

and the quadratic relative operator entropy by [7]

(1.15) ⊙ (T |V ) := T ∗ ln
(∣∣V T−1

∣∣2) T.

We observe that for T = A1/2 ∈ B−1 (H) and V = B1/2 ∈ B−1 (H) we get the
equalities

⊙t

(
A1/2|B1/2

)
= Tt (A|B) :=

A♯νB − A

t
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and
⊙

(
A1/2|B1/2

)
= S (A|B) ,

that show the connection between the extended Tsallis and relative entropies
with the classical concepts defined for positive operators.

We have for t > 0 and T, V ∈ B−1 (H) that

(1.16) ⊙−t (T |V ) = T ∗T−t

(∣∣V T−1
∣∣2) T = ⊙t (T |V ) (T ⃝t V )−1 |T |2

and, by (1.7), we also have the representation

⊙t (T |V ) =
|T |2 ♯ν |V |2 − |T |2

t
= Tt

(
|T |2 | |V |2

)
or t > 0 and T, V ∈ B−1 (H) .

The following fundamental inequalities may be stated [7]:

(1.17) ⊙−t (T |V ) ≤ ⊙ (T |V ) ≤ ⊙t (T |V )

for any T, V ∈ B−1 (H) and t > 0.
Let T ∈ B−1 (H), V ∈ B (H) and I an interval of nonnegative numbers.

Assume that Sp
(∣∣V T−1

∣∣2) ⊂ I̊ and Φ is a continuous function defined on
the interval I. Then by using the continuous functional calculus for selfadjoint
operators, we can define the quadratic operator perspective of T , V and Φ by

(1.18) ⊙Φ (V, T ) := T ∗Φ
(∣∣V T−1

∣∣2) T.

If Φ (U∗AU) = U∗Φ(A) U holds for all unitary U and A ∈ B (H) , then

⊙Φ (V, T ) := |T |Φ
(
|T |−1 |V |2 |T |−1

)
|T | .

If we take in (1.18) Φ (x) = xν , x > 0, ν ̸= 0, then we recapture the
definition of quadratic weighted operator geometric mean, for Φ (x) = xt−1

t ,
t ̸= 0, x > 0, the definition of quadratic Tsallis relative operator entropy and
for Φ (x) = ln x, x > 0 the definition of quadratic relative operator entropy.

Motivated by the above facts, we establish in this paper some upper and
lower bounds for the quadratic operator perspective and apply them for the
quadratic operator entropy and geometric mean defined above.

§2. Operator Inequalities for Quadratic Perspectives

Suppose that I is an interval of real numbers with interior I̊ and Φ : I → R
is a convex function on I. Then Φ is continuous on I̊ and has finite left and
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right derivatives at each point of I̊. Moreover, if t, s ∈ I̊ and t < s, then
Φ′
− (t) ≤ Φ′

+ (t) ≤ Φ′
− (s) ≤ Φ′

+ (s) which shows that both Φ′
− and Φ′

+ are
nondecreasing function on I̊. It is also known that a convex function must be
differentiable except for at most countably many points.

For a convex function Φ : I → R, the subdifferential of Φ denoted by ∂Φ is
the set of all functions ϕ : I → [−∞,∞] such that ϕ

(
I̊
)
⊂ R and

(2.1) Φ (t) ≥ Φ(a) + (t − a) ϕ (a) for any t, a ∈ I.

It is also well known that if Φ is convex on I, then ∂Φ is nonempty, Φ′
−,

Φ′
+ ∈ ∂Φ and if ϕ ∈ ∂Φ, then

Φ′
− (t) ≤ ϕ (t) ≤ Φ′

+ (t) for any t ∈ I̊.

In particular, ϕ is a nondecreasing function.
If Φ is differentiable and convex on I̊, then ∂Φ = {Φ′} .
We need the following simple fact, see also [5]:

Lemma 2.1. Let T, V ∈ B−1 (H) and 0 < m < M < ∞. Then the following
statements are equivalent:

(i) The inequality

(2.2) m ∥Tx∥ ≤ ∥V x∥ ≤ M ∥Tx∥

holds for any x ∈ H;
(ii) We have the operator inequality

(2.3) m1H ≤
∣∣V T−1

∣∣ ≤ M1H .

Proof. The inequality (2.2) is equivalent to

m2 ∥Tx∥2 ≤ ∥V x∥2 ≤ M2 ∥Tx∥2

for any x ∈ H, namely

m2 〈T ∗Tx, x〉 ≤ 〈V ∗V x, x〉 ≤ M2 〈T ∗Tx, x〉

for any x ∈ H, which can be written in the operator order as

m2T ∗T ≤ V ∗V ≤ M2T ∗T.

Since T ∈ B−1 (H), then this inequality is equivalent to

m21H ≤
(
T−1

)∗
V ∗V T−1 ≤ M21H ,

namely
m21H ≤

∣∣V T−1
∣∣2 ≤ M21H ,

which in its turn is equivalent to (2.3).
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We have:

Theorem 2.2. Let Φ : I → R be a convex function on the interval of positive
numbers I, T, V ∈ B−1 (H) such that there exists the positive numbers m < M
with

[
m2,M2

]
⊂ I̊ satisfying either the condition (2.2), or, equivalently, the

condition (2.3). Then for any ϕ ∈ ∂Φ and any t ∈ I̊

(2.4) ⊙Φ (V, T ) ≥ Φ(t) |T |2 + ϕ (t)
(
|V |2 − t |T |2

)
.

In particular,

⊙Φ (V, T ) ≥ Φ
(

m2 + M2

2

)
|T |2(2.5)

+ ϕ

(
m2 + M2

2

)(
|V |2 − m2 + M2

2
|T |2

)
.

Proof. From (2.1)

(2.6) Φ (s) ≥ Φ(t) + (s − t) ϕ (t)

for any s ∈
[
m2,M2

]
and t ∈ I̊.

Using the continuous functional calculus for a selfadjoint operator X with
Sp (X) ⊆

[
m2, M2

]
⊂ I̊ we have from (2.6) in the operator order that

(2.7) Φ (X) ≥ Φ(t) 1H + ϕ (t) (X − t1H)

for any t ∈ I̊.
Now, if we take X =

∣∣V T−1
∣∣2 in (2.7), then we get

(2.8) Φ
(∣∣V T−1

∣∣2) ≥ Φ(t) 1H + ϕ (t)
(∣∣V T−1

∣∣2 − t1H

)
for any t ∈ I̊.

It is well know that, if P ≥ 0 then by multiplying at left with T ∗ and at
right with T, where T ∈ B (H) we have that T ∗PT ≥ 0. If A, B are selfadjoint
operators with A ≥ B then for any T ∈ B (H) we have T ∗AT ≥ T ∗BT.

So, if we multiply (2.8) at left with T ∗ and at right with T, then we get

T ∗Φ
(∣∣V T−1

∣∣2) T ≥ Φ(t) |T |2 + ϕ (t) T ∗
(∣∣V T−1

∣∣2 − t1H

)
T

= Φ(t) |T |2 + ϕ (t) T ∗
(
(T ∗)−1 V ∗V T−1 − t1H

)
T

= Φ(t) |T |2 + ϕ (t)
(
|V |2 − t |T |2

)
for any t ∈ I̊, which proves the desired inequality (2.4).
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Corollary 2.3. Under the same assumptions of Theorem 2.2, for any x ∈
H \ {0},

(2.9) ⊙Φ (V, T ) ≥ Φ

(
∥V x∥2

∥Tx∥2

)
|T |2 + ϕ

(
∥V x∥2

∥Tx∥2

)(
|V |2 − ∥V x∥2

∥Tx∥2 |T |2
)

in the operator order of B (H) .
In particular, we have the Jensen’s type inequality

(2.10)
〈⊙Φ (V, T ) x, x〉

∥Tx∥2 ≥ Φ

(
∥V x∥2

∥Tx∥2

)
x ∈ H \ {0} .

Proof. For x ∈ H \ {0} we have

tA,B =
∥V x∥2

∥Tx∥2 =

〈
|V |2 x, x

〉
〈
|T |2 x, x

〉 =

〈
T ∗ (T ∗)−1 V ∗V T−1Tx, x

〉
〈Tx, Tx〉

=

〈(
(T ∗)−1 V ∗V T−1

)
Tx, Tx

〉
〈Tx, Tx〉

=

〈(
(T ∗)−1 V ∗V T−1

)
Tx, Tx

〉
∥Tx∥2 .

If we put

u =
Tx

∥Tx∥
̸= 0,

then ∥u∥ = 1 and

tA,B =
〈(

(T ∗)−1 V ∗V T−1
)

u, u
〉
∈

[
m2,M2

]
⊂ I̊ .

By taking t = tA,B in (2.4) we get (2.9).
The inequality (2.9) is equivalent to

〈⊙Φ (V, T ) y, y〉 ≥ Φ

(
∥V x∥2

∥Tx∥2

)〈
|T |2 y, y

〉
+ ϕ

(
∥V x∥2

∥Tx∥2

)(〈
|V |2 y, y

〉
− ∥V x∥2

∥Tx∥2

〈
|T |2 y, y

〉)
for any y ∈ H.

It can be written as

〈⊙Φ (V, T ) y, y〉 ≥ Φ

(
∥V x∥2

∥Tx∥2

)
∥Ty∥2(2.11)

+ ϕ

(
∥V x∥2

∥Tx∥2

)(
∥V y∥2 − ∥V x∥2

∥Tx∥2 ∥Ty∥2

)
.
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This is an inequality of interest in itself.

In particular, if we take in (2.11) y = x, then we get the desired result
(2.10).

Corollary 2.4. Under the same assumptions of Theorem 2.2, we have

⊙Φ (V, T )(2.12)

≥ 2

(
1

M2 − m2

∫ M2

m2

Φ(t) dt

)
|T |2

− 1
M2 − m2

[
Φ

(
M2

) (
M2 |T |2 − |V |2

)
+ Φ

(
m2

) (
|V |2 − m2 |T |2

)]
.

Proof. If we take the integral mean in the interval
[
m2,M2

]
of the inequality

(2.4), then we get

⊙Φ (V, T ) ≥

(
1

M2 − m2

∫ M2

m2

Φ(t) dt

)
|T |2(2.13)

+

(
1

M2 − m2

∫ M2

m2

ϕ (t) dt

)
|V |2

−

(
1

M2 − m2

∫ M2

m2

tϕ (t) dt

)
|T |2 .

Observe that, since ϕ ∈ ∂Φ, hence

1
M2 − m2

∫ M2

m2

ϕ (t) dt =
Φ

(
M2

)
− Φ

(
m2

)
M2 − m2

and

1
M2 − m2

∫ M2

m2

tϕ (t) dt =
1

M2 − m2

[
tΦ(t)|M

2

m2 −
∫ M2

m2

Φ(t) dt

]

=
M2Φ

(
M2

)
− m2Φ

(
m2

)
M2 − m2

− 1
M2 − m2

∫ M2

m2

Φ(t) dt
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and by (2.13) we get

⊙Φ (V, T ) ≥

(
1

M2 − m2

∫ M2

m2

Φ (t) dt

)
|T |2 +

Φ
(
M2

)
− Φ

(
m2

)
M2 − m2

|V |2

−

(
M2Φ

(
M2

)
− m2Φ

(
m2

)
M2 − m2

− 1
M2 − m2

∫ M2

m2

Φ(t) dt

)
|T |2

= 2

(
1

M2 − m2

∫ M2

m2

Φ(t) dt

)
|T |2

− 1
M2 − m2

[
Φ

(
M2

) (
M2 |T |2 − |V |2

)
+ Φ

(
m2

) (
|V |2 − m2 |T |2

)]
that proves the desired result (2.12).

The following result also provides upper bounds for the quadratic perspec-
tive.

Theorem 2.5. Let Φ : I → R be a continuously differentiable convex function
on I̊, T, V ∈ B−1 (H) such that there exists the positive numbers m < M
with

[
m2,M2

]
⊂ I̊ satisfying either the condition (2.2), or, equivalently, the

condition (2.3). Then for any t ∈ I̊

⊙Φ (V, T ) ≤ Φ(t) |T |2 + ⊙Φ′ℓ (V, T ) − t ⊙Φ′ (V, T )(2.14)

≤ Φ(t) |T |2 + Φ′ (t)
(
|V |2 − t |T |2

)
+

[
Φ′ (M2

)
− Φ′ (m2

)]
⊙|·|,t (V, T ) ,

where ℓ is the identity function, i.e. ℓ (t) = t and

⊙|·|,t (V, T ) := T ∗
∣∣∣(T ∗)−1

(
|V |2 − t |T |2

)
T−1

∣∣∣ T.

In particular, we have

⊙Φ (V, T )(2.15)

≤ Φ
(

m2 + M2

2

)
|T |2 + ⊙Φ′ℓ (V, T ) − m2 + M2

2
⊙Φ′ (V, T )

≤ Φ
(

m2 + M2

2

)
|T |2 + Φ′

(
m2 + M2

2

)(
|V |2 − m2 + M2

2
|T |2

)
+

[
Φ′ (M2

)
− Φ′ (m2

)]
⊙

|·|, m2+M
2

2 (V, T )

≤ Φ
(

m2 + M2

2

)
|T |2 + Φ′

(
m2 + M2

2

)(
|V |2 − m2 + M2

2
|T |2

)
+

1
2

(
M2 − m2

) [
Φ′ (M2

)
− Φ′ (m2

)]
|T |2 .
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Proof. By the gradient inequality we have

(2.16) Φ′ (s) (s − t) + Φ (t) ≥ Φ (s)

for any s ∈
[
m2,M2

]
and t ∈ I̊ .

Using the continuous functional calculus for a selfadjoint operator X with
Sp (X) ⊆

[
m2, M2

]
⊂ I̊ we have from (2.16) in the operator order that

(2.17) Φ′ (X) (X − t1H) + Φ (t) 1H ≥ Φ(X)

for any t ∈ I̊.
Now, if we take X =

∣∣V T−1
∣∣2 in (2.17) and since

Sp
(∣∣V T−1

∣∣2) ⊆
[
m2,M2

]
,

then we get

(2.18) Φ′
(∣∣V T−1

∣∣2)(∣∣V T−1
∣∣2 − t1H

)
+ Φ(t) 1H ≥ Φ

(∣∣V T−1
∣∣2)

for any t ∈ I̊.
So, if we multiply (2.18) at left with T ∗ and at right with T, then we get

(2.19) T ∗Φ′
(∣∣V T−1

∣∣2)(∣∣V T−1
∣∣2 − t1H

)
T + Φ(t) |T |2 ≥ T ∗Φ

(∣∣V T−1
∣∣2) T

for any t ∈ I̊.
Since

T ∗Φ′
(∣∣V T−1

∣∣2)(∣∣V T−1
∣∣2 − t1H

)
T = ⊙Φ′ℓ (V, T ) − t ⊙Φ′ (V, T ) ,

hence by (2.19) we get the first inequality in (2.14).
Now, observe that

T ∗Φ′
(∣∣V T−1

∣∣2)(∣∣V T−1
∣∣2 − t1H

)
T + Φ(t) |T |2

= T ∗
(
Φ′

(∣∣V T−1
∣∣2) − Φ′ (t) 1H

)(∣∣V T−1
∣∣2 − t1H

)
T + Φ(t) |T |2

+ Φ′ (t) T ∗
(∣∣V T−1

∣∣2 − t1H

)
T

= T ∗
(
Φ′

(∣∣V T−1
∣∣2) − Φ′ (t) 1H

)(∣∣V T−1
∣∣2 − t1H

)
T + Φ(t) |T |2

+ Φ′ (t)
(
|V |2 − t |T |2

)
for any t ∈ I̊.
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Since Φ′ is nondecreasing on I̊ we have for any s ∈
[
m2,M2

]
and t ∈ I̊ that

0 ≤
(
Φ′ (s) − Φ′ (t)

)
(s − t) =

∣∣(Φ′ (s) − Φ′ (t)
)
(s − t)

∣∣
=

∣∣Φ′ (s) − Φ′ (t)
∣∣ |s − t| ≤

[
Φ′ (M2

)
− Φ′ (m2

)]
|s − t| ,

which, as above, implies in the operator order that

T ∗
(
Φ′

(∣∣V T−1
∣∣2) − Φ′ (t) 1H

)(∣∣V T−1
∣∣2 − t1H

)
T

≤
[
Φ′ (M2

)
− Φ′ (m2

)] ∣∣∣T ∗ ∣∣V T−1
∣∣2 − t1H

∣∣∣ T

=
[
Φ′ (M2

)
− Φ′ (m2

)]
⊙|·|,t (V, T ) .

This proves the second inequality in (2.14).
We need to prove only the last part of (2.15).
Since s ∈

[
m2,M2

]
, then

∣∣∣s − m2+M2

2

∣∣∣ ≤ 1
2

(
M2 − m2

)
that implies in the

operator order ∣∣∣∣∣∣V T−1
∣∣2 − m2 + M2

2
1H

∣∣∣∣ ≤ 1
2

(
M2 − m2

)
1H ,

which by multiplying at left with T ∗ and at right with T gives that

⊙|·|, m2+M2

2

(V, T ) ≤ 1
2

(
M2 − m2

)
|T |2 .

Corollary 2.6. With the assumptions of Theorem 2.5, we have for any x ∈
H \ {0} that

⊙Φ (V, T ) ≤ Φ

(
∥V x∥2

∥Tx∥2

)
|T |2 + ⊙Φ′ℓ (V, T ) − ∥V x∥2

∥Tx∥2 ⊙Φ′ (V, T )(2.20)

≤ Φ

(
∥V x∥2

∥Tx∥2

)
|T |2 + Φ′

(
∥V x∥2

∥Tx∥2

)(
|V |2 − ∥V x∥2

∥Tx∥2 |T |2
)

+
[
Φ′ (M2

)
− Φ′ (m2

)]
⊙

|·|, ∥V x∥2

∥Tx∥2
(V, T ) .

In particular

〈⊙Φ (V, T ) x, x〉(2.21)

≤ Φ

(
∥V x∥2

∥Tx∥2

)
∥Tx∥2 + 〈⊙Φ′ℓ (V, T ) x, x〉 − ∥V x∥2

∥Tx∥2 〈⊙Φ′ (V, T ) x, x〉

≤ Φ

(
∥V x∥2

∥Tx∥2

)
∥Tx∥2 +

[
Φ′ (M2

)
− Φ′ (m2

)] 〈
⊙

|·|, ∥V x∥2

∥Tx∥2
(V, T ) x, x

〉
for any x ∈ H \ {0} .
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If we take the integral mean in the interval
[
m2,M2

]
of the inequality (2.14)

we can also state the following result.

Corollary 2.7. With the assumptions of Theorem 2.5, we have

⊙Φ (V, T )

(2.22)

≤

(
1

M2 − m2

∫ M2

m2

Φ(t) dt

)
|T |2 + ⊙Φ′ℓ (V, T ) − m2 + M2

2
⊙Φ′ (V, T )

≤ 2

(
1

M2 − m2

∫ M2

m2

Φ(t) dt

)
|T |2

− 1
M2 − m2

[
Φ

(
M2

) (
M2 |T |2 − |V |2

)
+ Φ

(
m2

) (
|V |2 − m2 |T |2

)]
+

[
Φ′ (M2

)
− Φ′ (m2

)] 1
M2 − m2

∫ M2

m2

⊙|·|,t (V, T ) dt.

§3. Applications for Quadratic Weighted Geometric Mean

For x ̸= y and p ∈ R \ {−1, 0}, we define the p-logarithmic mean (generalized
logarithmic mean) Lp(x, y) by

Lp(x, y) :=
[

yp+1 − xp+1

(p + 1)(y − x)

]1/p

.

In fact the singularities at p = −1, 0 are removable and Lp can be defined for
p = −1, 0 so as to make Lp(x, y) a continuous function of p. In the limit as
p → 0 we obtain the identric mean I(x, y), given by

(3.1) I(x, y) :=
1
e

(
yy

xx

)1/(y−x)

,

and in the case p → −1 the logarithmic mean L(x, y), given by

L(x, y) :=
y − x

ln y − lnx
.

In each case we define the mean as x when y = x, which occurs as the limiting
value of Lp(x, y) for y → x.

If we consider the continuous function fν : [0,∞) → [0,∞), fν (t) = tν

then the quadratic weighted operator geometric mean can be interpreted as



52 S. S. DRAGOMIR

the quadratic perspective ⊙fν (B,A) of T, V ∈ B−1 (H) and fν , namely, see
for instance [5],

⊙fν (V, T ) = T ⃝ν V = |T |2 ♯ν |V |2 ,

Consider the convex function f = −fν . Then by applying the inequalities (2.4)
and (2.5) we have

(3.2) |T |2 ♯ν |V |2 ≤ (1 − ν) tν |T |2 + νtν−1 |V |2 =
(
tν |T |2

)
∇ν

(
tν−1 |V |2

)
,

for any t > 0 and ν ∈ [0, 1] , and

(3.3) |T |2 ♯ν |V |2 ≤ (1 − ν)
(

m2 + M2

2

)ν

|T |2 + ν

(
m2 + M2

2

)ν−1

|V |2

for any ν ∈ [0, 1] , provided either the condition (2.2), or, equivalently, the
condition (2.3) is valid.

From (2.9) and (2.10) we have for any x ∈ H \ {0} and ν ∈ [0, 1] that

(3.4) |T |2 ♯ν |V |2 ≤ (1 − ν)

(
∥V x∥2

∥Tx∥2

)ν

|T |2 + ν

(
∥Tx∥2

∥V x∥2

)1−ν

|V |2

and

(3.5)
〈
|T |2 ♯ν |V |2 x, x

〉
≤ ∥Tx∥2(1−ν) ∥V x∥2ν ,

for any ν ∈ [0, 1] .
The inequality (1.8) can be written as

(3.6)
〈
|T |2 ♯ν |V |2 x, x

〉
≤ (1 − ν) ∥Tx∥2 + ν ∥V x∥2

for any x ∈ H.

By utilizing the scalar arithmetic mean-geometric mean inequality we also
have

(3.7) ∥Tx∥2(1−ν) ∥V x∥2ν ≤ (1 − ν) ∥Tx∥2 + ν ∥V x∥2

for any x ∈ H.

Therefore by (3.5) and (3.7) we have the following vector inequality im-
proving (3.6)

(3.8)
〈
|T |2 ♯ν |V |2 x, x

〉
≤ ∥Tx∥2(1−ν) ∥V x∥2ν ≤ (1 − ν) ∥Tx∥2 + ν ∥V x∥2

for any x ∈ H.
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From (2.12) we have

|T |2 ♯ν |V |2 ≤ 2Lν
ν(m

2,M2) |T |2
(3.9)

− 1
M2 − m2

[
M2ν

(
M2 |T |2 − |V |2

)
+ m2ν

(
|V |2 − m2 |T |2

)]
for any ν ∈ (0, 1) , provided either the condition (2.2), or, equivalently, the
condition (2.3) is valid.

If T, V ∈ B−1 (H) satisfy the condition (2.2), then by (2.15) we have

|T |2 ♯ν |V |2 ≥
(

m2 + M2

2

)ν

|T |2 + ν |T |2 ♯ν |V |2 − ν
m2 + M2

2
|T |2 ♯ν−1 |V |2

(3.10)

≥ (1 − ν)
(

m2 + M2

2

)ν

|T |2 + ν

(
m2 + M2

2

)ν−1

|V |2

+ ν
(
M2(ν−1) − m2(ν−1)

)
⊙|·|, m2+M2

2

(V, T )

≥ (1 − ν)
(

m2 + M2

2

)ν

|T |2 + ν

(
m2 + M2

2

)ν−1

|V |2

+
1
2
ν

(
M2 − m2

) (
M2(ν−1) − m2(ν−1)

)
.

From the last inequality in (3.10) we get

1
2
ν

(
M2 − m2

) (
M2(1−ν) − m2(1−ν)

m2(1−ν)M2(1−ν)

)(3.11)

≥ (1 − ν)
(

m2 + M2

2

)ν

|T |2 + ν

(
m2 + M2

2

)ν−1

|V |2 − |T |2 ♯ν |V |2 ≥ 0,

for any ν ∈ [0, 1] , which provides a simple reverse for (3.3).

§4. Applications for Quadratic Relative Operator Entropy

Consider the logarithmic function ln . Then the quadratic relative operator
entropy can be interpreted as the perspective of ln, namely, see for instance
[7],

⊙ln (V, T ) = ⊙ (T |V ) = T ∗ ln
(∣∣V T−1

∣∣2) T = S
(
|T |2 | |V |2

)
,

provided T, V ∈ B−1 (H) .
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If we use the inequalities (2.4) and (2.5) for the convex function f = − ln
we have

(4.1) S
(
|T |2 | |V |2

)
≤ (ln t) |T |2 − |T |2 + t−1 |V |2 ,

for any t > 0 and T, V ∈ B−1 (H) .
In particular, if T, V satisfy the condition (2.2), then

S
(
|T |2 | |V |2

)
≤

[
ln

(
m2 + M2

2

)]
|T |2(4.2)

+
(

m2 + M2

2

)−1 (
|V |2 − m2 + M2

2
|T |2

)
.

From the inequalities (2.9) and (2.10) we have

(4.3) S
(
|T |2 | |V |2

)
≤ ln

(
∥V x∥2

∥Tx∥2

)
|T |2 +

∥Tx∥2

∥V x∥2 |V |2 − |T |2

and

(4.4)
〈
S

(
|T |2 | |V |2

)
x, x

〉
≤ ∥Tx∥2 ln

(
∥V x∥2

∥Tx∥2

)
,

for any x ∈ H, x ̸= 0.
The following inequality for the relative operator entropy is known

(4.5) S
(
|T |2 | |V |2

)
≤ |V |2 − |T |2

for any T, V ∈ B−1 (H) .
This inequality is equivalent to

(4.6)
〈
S

(
|T |2 | |V |2

)
x, x

〉
≤ ∥V x∥2 − ∥Tx∥2

for any x ∈ H.
We know the following elementary inequality that holds for the logarithm

ln t ≤ t − 1 for any t > 0.

If we take in this inequality t = ∥V x∥2

∥Tx∥2 > 0, x ∈ H, x ̸= 0 and multiply with

∥Tx∥2 > 0, then we get

(4.7) ∥Tx∥2 ln

(
∥V x∥2

∥Tx∥2

)
≤ ∥V x∥2 − ∥Tx∥2
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for any x ∈ H, x ̸= 0.

Therefore, by (4.4) and (4.7) we have

〈
S

(
|T |2 | |V |2

)
x, x

〉
≤ ∥Tx∥2 ln

(
∥V x∥2

∥Tx∥2

)
≤ ∥V x∥2 − ∥Tx∥2

for any x ∈ H, x ̸= 0 that is an improvement of (4.6).
From (2.12) we also have

S
(
|T |2 | |V |2

)
≤ 2

[
ln I

(
m2,M2

)]
|T |2(4.8)

− 1
M2 − m2

×
[
lnM2

(
M2 |T |2 − |V |2

)
+ lnm2

(
|V |2 − m2 |T |2

)]
,

where I (·, ·) is the identric mean defined in (3.1) and

1
M2 − m2

∫ M2

m2

ln tdt = ln I
(
m2,M2

)
.

From (2.15) we also have

S
(
|T |2 | |V |2

)
(4.9)

≥
[
ln

(
m2 + M2

2

)]
|T |2 + |T |2 − m2 + M2

2
|T |2 |V ∗|−2 |T |2

≥
[
ln

(
m2 + M2

2

)]
|T |2 +

(
m2 + M2

2

)−1 (
|V |2 − m2 + M2

2
|T |2

)
− M2 − m2

m2M2
⊙|·|, m2+M2

2

(T |V )

≥
[
ln

(
m2 + M2

2

)]
|T |2 +

(
m2 + M2

2

)−1 (
|V |2 − m2 + M2

2
|T |2

)
− 1

2

(
M2 − m2

)2

m2M2
,

provided T, V ∈ B−1 (H) satisfying the condition (2.2).
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From the last part of (4.9) we get

1
2

(
M2 − m2

)2

m2M2
(4.10)

≥
[
ln

(
m2 + M2

2

)]
|T |2

+
(

m2 + M2

2

)−1 (
|V |2 − m2 + M2

2
|T |2

)
− S

(
|T |2 | |V |2

)
≥ 0

that provides a simple reverse of (4.2).
If one considers the convex function f (t) = t ln t for t > 0, that one can get

other logarithmic inequalities as above. The details are left to the interested
reader.
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