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Introduction

In 1989, C. L. Terng ([62]) introduced the notion of an isoparametric subman-
ifold in the (separable) Hilbert space as the infinite dimensional version of an
isoparametric submanifold in the Euclidean space. In the gauge theoretic as-
pect, for a compact semi-simple Lie group G, so-called the parallel transport
map is defined as a Riemannian submersion of the Hilbert space consisting
of all L2-integrable paths in the Lie algebra g of G onto G, where we give g
an Ad(G)-invariant inner product and give G the bi-invariant metric induced
from the inner product. Here Ad is the adjoint representaion of G. In 1995,
C. L. Terng and G. Thorbergsson [64] introduced the notion of an equifocal
submanifold in a (Riemannian) symmetric space. This notion is defined as
a compact submanifold with flat section, trivial normal holonomy group and
parallel focal structure. Here ”with flat section” means that the images of
the normal spaces of the submanifold by the normal exponential map are flat
totally geodesic submanifolds and the parallelity of the focal structure means
that, for any parallel normal vector field v of the submanifold, the focal radii
along the normal geodesic γvx with γ′vx(0) = vx are independent of the choice
of x (with considering the multiplicities), where γ′vx(0) is the velocity vector
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of γvx at 0. Note that the focal radii of the submanifold along the normal
geodesic γvx coincide with the zero points of the real valued function

Fvx(s) := det

cos
(
s
√

R(vx)
)
−

sin
(
s
√

R(vx)
)

√
R(vx)

◦Avx


over R defined in terms of the shape operator Avx and the normal Jacobi
operator R(vx)(:= R(·, vx)vx), where R is the curvature tensor of the ambi-
ent symmetric space. In particular, in the case where G/K is a Euclidean
space, we have Fvx(s) = det(id − sAvx) and hence the focal radii along γvx
coincide with the inverse numbers of the eigenvalues of Avx (i.e., the princi-
pal curvature radii of direction vx). Compact isoparametric submanifolds in
a Euclidean space and compact isoparametric hypersurfaces in a sphere or a
hyperbolic space are equifocal. They ([64]) proved that the research of an
equifocal submanifold in a symmetric space G/K of compact type is reduced
to that of an isoparametric submanifold in the Hilbert space through the com-
position of the parallel transport map for G and the natural projection of G
onto G/K. In 2002, U. Christ ([8]) proved that a full irreducible equifocal
submanifold of codimension greater than one in a symmetric space of com-
pact type is homogeneous. He proved the homogeneity theorem by using the
homogeneity theorem (which was proved by E. Heintze and X. Liu ([20])) for
an isoparametric submanifold in the Hilbert space.

When a non-compact submanifold M in a symmetric space G/K of non-
compact type deforms as its principal curvatures approach to zero, its focal set
vanishes beyond the ideal boundary (G/K)(∞) of G/K (see Figure 1). For ex-
ample, when an open portion of a totally umbilic sphere in a hyperbolic space
of constant curvature c(< 0) deforms as its principal curvatures approach to√
−c, its focal point approach to (G/K)(∞) and, when it furthermore deforms

as its principal curvatures approach to a positive value smaller than
√
−c, the

focal point vanishes beyond (G/K)(∞). the parallelity of the complex focal
structure is an essential condition (even if M is not of Cω). So, we [31] de-
fined the notion of a complex equifocal submanifold as a (properly embedded)
complete submanifold with flat section, trivial normal holonomy group and
parallel complex focal structure, where we note that this submanifold should
be called an equi-complex focal submanifold but that we called it a complex
equifocal submanifold for simplicity. Note that equifocal submanifolds in the
symmetric space are complex equifocal. In fact, since they are compact, their
principal curvatures are not close to zero and hence the parallelity of their fo-
cal structure leads to that of their complex focal structure. On the base of this
fact, we recognized that, for a non-compact submanifold in a symmetric space
of non-compact type, the parallelity of the focal structure is not an essential
condition. So, we ([31]) introduced the notion of a complex focal radius of the



RESEARCH OF SUBMANIFOLDS IN SYMMETRIC SPACES 105

G/K

(G/K)(∞) M

The focal set of M

γv

G/K

(G/K)(∞) M

The focal set of M

γv

G/K

(G/K)(∞) M

The focal set of M (= {γv(∞)})

γv

G/K

(G/K)(∞)M γv

̸ ∃ the focal set of M

Figure 1.

submanifold along the normal geodesic γvx as the zero points of the complex
valued function FC

vx over C defined by

FC
vx(z) := det

cos

(
z
√

R(vx)C
)
−

sin
(
z
√

R(vx)C
)

√
R(vx)C

◦AC
vx


over C, where AC

vx and R(vx)
C are the complexifications of Avx and R(vx),

respectively. Here we note that complex focal radii along γvx can be directly
calculated from datas of Avx and R(vx) according to this definition. In the
case where M is of class Cω (i.e., real analytic), we can catch the geometrical
essence of complex focal radii as follows. We ([32]) defined the complexification
MC of M as an anti-Kaehler submanifold in the anti-Kaehler symmetric space
GC/KC, where we note that GC/KC is a space including both G/K and
its compact dual Gκ/K as submanifolds transversal to each other and that
it is interpreted as the complexification of both G/K and Gκ/K, where we
note that the induced metric on G/K coincides with the original metric of
G/K and that the induced metric on Gκ/K is the (−1)-multiple of the metric
of Gκ/K. Also, we note that an anti-Kaehler manifold means a manifold
M equipped with a pseudo-Riemannian metric g and a complex structure J
satisfying g(JX, JY ) = −g(X,Y ) (∀X,Y ∈ TM) and ∇J = 0, and an anti-
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Kaehler submanifold in the space means a J-invariant submanifold, where
∇ is the Levi-Civita connection of g. We ([32]) showed that z is a complex
focal radius of M along γvx if and only if γCvx(z) is a focal point of MC along
the complexified geodesic γCvx (see Figures 2 and 3). Here γCvx is defined by
γCvx(z) := γavx+bJvx(1) (z = a+ b

√
−1 ∈ C), where γavx+bJvx is the geodesic in

GC/KC with γ′avx+bJvx
(0) = avx + bJvx. Thus the complex focal radii of M

are the quantities indicating the positions of focal points of MC.

G/K

γvM

v

Jv
MC

γCv

x

in GC/KC

γCv (z0)

(G/K)(∞)

Figure 2.
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When M variates as above and real analytically, its focal set vanishes be-
yond (G/K)(∞) but the focal set of MC (i.e., the complex focal set of M)
does not vanish (see Figure 4). On the base of this fact, for non-compact sub-
manifolds in a symmetric space of non-compact type, we recognize that the
parallelity of the complex focal structure is an essential condition (even if M
is not of Cω). So, we [31] defined the notion of a complex equifocal submani-
fold as a (properly embedded) complete submanifold with flat section, trivial
normal holonomy group and parallel complex focal structure, where we note
that this submanifold should be called an equi-complex focal submanifold but
that we called it a complex equifocal submanifold for simplicity. Note that
equifocal submanifolds in the symmetric space are complex equifocal. In fact,
since they are compact, their principal curvatures are not close to zero and
hence the parallelity of their focal structure leads to that of their complex
focal structure.

In 2004, the author ([31]) introduced the notion of a complex isoparamet-
ric submanifold in the pseudo-Hilbert space as the infinite dimensional version
of an isoparametric submanifold in the pseudo-Euclidean space, and further-
more, he defined the parallel transport map for a semi-simple Lie group G as a
pseudo-Riemannian submersion of the pseudo-Hilbert space consisting of cer-
tain kind of paths in the Lie algebra g of G onto G. Also, in 2005, the author
([32]) introduced the notion of an anti-Kaehler isoparametric submanifold in
the infinite dimensional anti-Kaehler space, and furthermore, he defined the
parallel transport map for GC as an anti-Kaehler submersion of the infinite
dimensional anti-Kaehler space consisting of certain kind of paths in the Lie
algebra gC of GC onto GC. He ([31]) proved that the research of a complex
equifocal submanifold in a symmetric space G/K of non-compact type is re-
duced to that of a complex isoparametric submanifold in the pseudo-Hilbert
space through the composition of the parallel transport map for G and the
natural projection of G onto G/K. Also, he ([32]) proved that the research of
a real analytic complex equifocal submanifold in a symmetric space G/K of
non-compact type is reduced to that of an anti-Kaehler isoparametric subman-
ifold in the infinite dimensional anti-Kaehler space through the composition
of the parallel transport map for GC and the natural projection of GC onto
GC/KC. Recently, he ([46]) proved that a certain kind of full irreducible com-
plex equifocal submanifold of codimension greater than one in a symmetric
space of non-compact type is homogeneous. He ([46]) proved the homogeneity
theorem by using the homogeneity theorem (which also was proved by him
([41,45])) for a certain kind of anti-Kaehler isoparametric submanifold in the
infinite dimensional anti-Kaehler space.
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Figure 4.

§1. Isoparametric submanifolds, complex isoparametric
submanifolds and anti-Kaehler isoparametric submanifolds

In 1989, Terng [62] introduced the notion of an isoparametric submanifold
in a (separable) Hilbert space. This notion is defined as a (proper) Fredholm
submanifold with trivial normal holonomy group and constant principal curva-
tures, where a (proper) Fredholm submanifold means a (properly embedded)
submanifold of finite codimension such that the normal exponential map exp⊥

of the submanifold is a Fredholm map (i.e., the differential of exp⊥ at each
point is a Fredholm operator) and that the restriction of exp⊥ to unit ball nor-
mal bundle of M is proper. Note that the shape operators of this submanifold
are compact operators and that they are simultaneously diagonalizable with
respect to an orthonormal base. Also she [62] introduced the notion of the
parallel transport map for a compact semi-simple Lie group G. This map is
defined as a Riemannian submersion of a (separable) Hilbert spaceH0([0, 1], g)
onto G, where H0([0, 1], g) is the space of all L2-integrable paths in the Lie
algebra g of G. Let G/K be a symmetric space of compact type, π the nat-
ural projection of G onto G/K and ϕ the parallel transport map for G. Let

M be a submanifold in G/K and M̃ a component of the lifted submanifold

(π ◦ ϕ)−1(M). The relation between the focal structures of M and M̃ is as
in Figure 5. In 1995, Terng-Thorbergsson [64] showed that M is equifocal if
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and only if M̃ is isoparametric. Thus the research of an equifocal submanifold
in a symmetric space of compact type is reduced to that of an isoparametric
submanifold in a (separable) Hilbert space. An advantage of this reducement
of the research is as follows. The symmetric space is of non-trivial holonomy
group but the Hilbert space is a linear space, that is, it is of trivial holonomy
group and is identified with its tangent space at each point. By using this
reducement of the research, they proved some facts for an equifocal subman-
ifold in the symmetric space (see [64]). In [64], they proposed the following
problem:

Problem. Is there a similar method of research for equifocal submanifolds in
symmetric spaces of non-compact type?

H0([0, 1], g)

G/K

π ◦ ϕ

M̃

M

Figure 5.

By private discussion with Thorbergsson at Nagoya University in 2002, I knew
that this problem is important and began to tackle to this problem. In 2004-
2005, we [31,32] constructed a similar method of research for complex equifocal
submanifolds in symmetric spaces of non-compact type in more general. We
shall explain this method of research. First we shall recall the notions of
an isoparametric submanifold, a real isoparametric submanifold, a complex
isoparametric submanifold and a proper complex isoparametric submanifold
in a (finite dimensional) pseudo-Euclidean space. Let M be a (properly em-
bedded) complete submanifold in a pseudo-Euclidean space. Denote by A the
shape tensor of M . Assume that the normal holonomy group of M is trivial.
Let v be a parallel normal vector field of M . For each x ∈ M , the shape
operator Avx is expressed as in (∗) with respect to a pseudo-orthonormal base
of the tangent space (see [57] in detail), where 0 is entried in blank com-
ponents in each matrix in (∗). If Sx

i = ∅ (i ≥ 2) and S′x
i = ∅ (i ≥ 2),

that is, the complexification AC
vx of Avx is diagonalizable with respect to

a pseudo-orthonormal base, then Avx is called be proper (see [29]). If, for
each parallel normal vector field v of M , the set {λx

ij | 1 ≤ i ≤ n, j ∈ Sx
i }
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of all real eigenvalues of Avx is independent of the choice of x ∈ M (with
considering the multiplicities), then M is called a real isoparametric sub-
manifold. Also, if, for each parallel normal vector field v of M , the set
{λx

ij | 1 ≤ i ≤ n, j ∈ Sx
i } ∪ {αx

ij +
√
−1βx

ij | 1 ≤ i ≤ [n2 ], j ∈ S′x
i }

(∗)


n
⊕
i=1

⊕
j∈Sx

i


λx
ij 1

. . .
. . .
. . . 1

λx
ij


(i,i)−type



⊕



[n
2
]

⊕
i=1

⊕
j∈S′x

i



αx
ij −βx

ij 1 0

βx
ij αx

ij 0 1
. . .

. . .
. . .

. . .
. . . 1 0
. . . 0 1

αx
ij −βx

ij

βx
ij αx

ij


(2i,2i)−type


of all complex eigenvalues of Avx is independent of the choice of x ∈ M (with
considering the multiplicities), then M is called a complex isoparametric sub-
manifold. In particular, ifM is complex isoparametric and each shape operator
of M is proper, then M is called a proper complex isoparametric submanifold.
Also, if, for any parallel normal vector field v of M , the characterisitic poly-
nomials of Avx are independent of the choice of x ∈ M , then M is called an
isoparametric submanifold (see [15,16,27,49] for example). Clearly we have

M : proper complex isoparametric ⇒ M : isoparametric
⇒ M : complex isoparametric ⇒ M : real isoparametric.

In 2004, we [31] defined the notions of a real isoparametric submanifold, a com-
plex isoparametric submanifold and a proper complex isoparametric submani-
fold in a pseudo-Hilbert space as Fredholm submanifolds satisfying the similar
conditions, where a pseudo-Hilbert space means a topological vector space
equipped with a (weak-sense) non-degenerate continuous symmetric bilinear
form which is Hilbertable. See [31] about the meaning of the Hilbertability
and the definition of a Fredholm submanifold in a pseudo-Hilbert space. Also,
we [31] introduced the notion of the parallel transport map for a (not neces-
sarily compact) semi-simple Lie group G. This map is defined as a pseudo-
Riemannian submersion of a pseudo-Hilbert space H0([0, 1], g) onto G, where
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H0([0, 1], g) is the space of all paths in the Lie algebra g of G which are L2-
integrable with respect to the positive definite inner product associated with
the Ad(G)-invariant non-degenerate inner product of g. Let G/K be a sym-
metric space of non-compact type, π the natural projection of G onto G/K
and ϕ the parallel transport map for G. Also, let M be a (properly embedded)

complete submanifold in G/K and M̃ a component of the lifted submanifold

(π ◦ ϕ)−1(M). We [31] showed that M is complex equifocal if and only if M̃
is complex isoparametric. Thus the research of complex equifocal submani-
folds in symmetric spaces of non-compact type is reduced to that of complex
isoparametric submanifolds in pseudo-Hilbert spaces. If M̃ is proper complex
isoparametric, then we ([33]) called M a proper complex equifocal submanifold.
Since the shape operators of a proper complex isoparametric submanifold is
simultaneously diagonalizeble with respect to a pseudo-orthonormal base, the
complex focal set of the submanifold at any point u consists of infinitely many
complex hyperplanes in the complexified normal space at u and the group
generated by the complex reflections of order two with respect to the complex
hyperplanes is discrete. From this fact, it follows that the complex focal set
of a proper complex equifocal submanifold at any point x consists of infinitely
many totally geodesic complex hypersurfaces in the complexified flat section
through x and the group generated by the complex reflections of order two with
respect to the totally geodesic complex hypersurfaces is discrete. In 2005, we
[32] introduced the notions of an anti-Kaehler isoparametric submanifold and
a proper anti-Kaehler isoparametric submanifold in an infinite dimensional
anti-Kaehler space, where an infinite dimensional anti-Kaehler space means a
topological complex vector space (V, J) equipped with a non-degenerate con-
tinuous symmetric bilinear form ⟨ , ⟩ such that ⟨JX, JY ⟩ = −⟨X,Y ⟩ for any
X,Y ∈ V and that (V, ⟨ , ⟩) is Hilbertable. See [32] about the definitions of
these notions. Let πC the natural projection of GC onto GC/KC and ϕC the

parallel transport map for GC. Assume that M is of class Cω. Let M̃C be a
component of the lifted submanifold (πC ◦ ϕC)−1(MC) of the complexification
MC of M . We [32] showed that M is complex equifocal (resp. proper com-

plex equifocal) if and only if M̃C is anti-Kaehler isoparametric (resp. proper
anti-Kaehler isoparametric) in the infinite dimensional anti-Kaehleian space
H0([0, 1], gC). Thus, in the case where M is of class Cω, the research of com-
plex equifocal (resp. proper complex equifocal) submanifolds is reduced to
that of anti-Kaehler isoparametric (resp. proper anti-Kaehler isoparametric)
submanifolds.
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§2. Hyperpolar actions

LetH be a closed subgroup ofG. TheH-action onG/K is called a polar action
if H is compact and if, for each x ∈ G/K, there exists a complete embedded
submanifold Σx through x meeting all principal H-orbits orthogonally. This

G/K GC/KCM MC

H0([0, 1], g) H0([0, 1], gC)M̃ M̃C

π ◦ ϕ πC ◦ ϕC

complex equifocal

complex isoparametric anti-Kaehlerian isoparametric

complexification

Figure 6.

submanifold Σx is called a section of this action through x. Furthermore, if
the induced metric on Σx is flat, then theH-action is called a hyperpolar action.
Here we illustrate that the assumption of the compactness ofH is indispensable
in these definitions. Consider the circle S1 := {z ∈ C | |z| = 1} on R2(= C) by
the multiplication in C. This action S1 y R2(= C) is a compact group action
with flat section, that is, a hyperpolar action, and the orbits and the sections
of this action give the images of parameter curves of the polar coordinate of R2

(see Figure 7). This action has the only fixed point (i.e., pole) (0, 0). Define
the S1-action on the unit sphere S2 := {(x,w) ∈ R × C |x2 + |w|2 = 1} by
z · (x,w) = (x, zw) ((z ∈ S1, (x,w) ∈ S2). This action also is hyperpolar and
has two fixed points (i.e., poles) (1, 0) and (−1, 0). On the other hand, the
group action R y R2 defined by t · (x, y) := (x + t, y) (t ∈ R, (x, y) ∈ R2) is
a non-compact group action with flat section. This action has no fixed point
(i.e., pole) and the orbits and the sections of this action give the images of
the parameter curves of the Euclidean coordinate (i.e., non-polar coordinate)
of R2 (see Figure 7). Thus the assumption of the compactness of the group is
indispensable in the definition of a polar (or hyperpolar) action. It is known
that principal orbits of a hyperpolar action are equifocal. On the other hand,
in 1995, E. Heintze, R.S. Palais, C.L. Terng and G. Thorbergsson ([24]) proved
that any homogeneous equifocal submanifold in a simply connected symmetric
space of compact type occurs as a principal orbit of a hyperpolar action.
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orbits

orbits

sections

sections
polar coordinate

non-polar coordinate

Figure 7.

If there exists an involution σ of G with (Fixσ)0 ⊂ H ⊂ Fixσ, then the
H-action on G/K is called a Hermann action, where Fixσ is the fixed point
group of σ and (Fixσ)0 is the identity component of Fixσ. It is easy to show
that Hermann actions are hyperpolar. In 2001, A. Kollross ([47]) proved that
hyperpolar actions of cohomogeneity greater than one on an irreducible simply
connected symmetric space of compact type are orbit equivalent to Hermann
actions. where the curvature-adaptedness means that, If, for any x ∈ M
and any unit normal vector v of M at x, the normal Jacobi operator R(v)
preserves the tangent space TxM and R(v)|TxM and the shape operator Av of
M commute, then it is said to be curvature-adapted. In 2007, O. Goertsches
and G. Thorbergsson proved the following fact.

Proposition 2.1([13]). Principal orbits of a Hermann action are curvature-
adapted.

This proposition together with above facts derives the following fact.

Proposition 2.2. All homogeneous equifocal submanifolds of codimension
greater than one in an irreducible simply connected symmetric space of com-
pact type are curvature-adapted.

§3. Homogeneity of equifocal submanifolds

In this section, we shall state a homogeneity theorem for an equifocal subman-
ifold in a symmetric space of compact type. In 1999, E. Heintze and X. Liu
proved the following homogeneity theorem for an isoparametric submanifold
in a Hilbert space.
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Theorem 3.1([19]). All irreducible isoparametric submanifolds of codimen-
sion greater than one in a Hilbert space are homogeneous.

This result is the infinite dimensional version of the homogeneity theorem
for isoparametric submanifolds in a (finite dimensional) Euclidean space by
G. Thorbergsson ([65]), which states that all irreducible isoparametric sub-
manifolds of codimension greater than two in a Euclidean space are homoge-
neous. G. Thorbergsson proved this fact by using the building theory. On
the other hand, E. Heintze and X. Liu proved the above homogeneity theo-
rem by constructing an isometry of the ambient Hilbert space mapping x to y
and preserving the submanifold invariantly for any two points x and y of the
submanifold connected by a certain kind of curve. In both proofs, is used the
fact that the ambient space is a linear space. In 2002, by using the result of
Heintze-Liu, U. Christ [8] proved the following homogeneity theorem for an
equifocal submanifold in a simply connected symmmetric space of compact
type.

Theorem 3.2([8]). All irreducible equifocal submanifolds of codimension
greater than one in a simply connected symmetric space of compact type are
homogeneous.

Here we note that C. Gorodski and E. Heintze ([14]) closed a gap in his
proof. From this homogeneity theorem and Proposition 2.1, we have the fol-
lowing fact.

Theorem 3.3. All equifocal submanifolds of codimension greater than one
in an irreducible simply connected symmetric space of compact type occur as
principal orbits of Hermann actions.

Since the principal orbits of a Hermann action is curvature-adapted, we
have the following fact.

Corollary 3.4. All equifocal submanifolds of codimension greater than one in
an irreducible simply connected symmetric space of compact type are curvatu-
re-adapted.

Conversely we have recently proved the following fact.

Theorem 3.5([44]). Let M be a compact curvature-adapted submanifold
with maximal flat section and trivial normal holonomy group in a symmetric
space G/K of compact type, where “with maximal flat section” means that
it has flat section and codimM = rankG/K. Also, let TM = ⊕i∈IRD

R
i be

the common eigenspace decomposition of the normal Jacobi operator R(v)’s
(v ∈ T⊥M) and TM = ⊕i∈IAD

A
i that of the shape operators Av’s (v ∈ T⊥M).

Assume that, for each i ∈ IR, dimDR
i ≥ 2 and there exists j ∈ IA such that
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DR
i ⊂ DA

j . Then M is equifocal.

§4. Complex hyperpolar actions

Let G/K be a symmetric space of non-compact type and H be a closed sub-
group of G. We ([32]) called the H-action on G/K a complex polar action
if, for each x ∈ G/K, there exists a complete embedded submanifold Σx

through x meeting all principal H-orbits orthogonally. Furthermore, if the
induced metric on Σx is flat, then we ([32]) called H-action a complex hyper-
polar action, where we note that this action should be called a hyper-complex
polar action but that we called it a complex hyperpolar action for simplic-
ity. We illustrate why we named this action thus. Define the R-action on
the hyperbolic space H2(= SO(1, 2)/SO(2) = {(x1, x2, x3) | − x21 + x22 + x23 =
−1}(⊂ R3

1)) by θ ·(x1, x2, x3) = (x1 cosh θ+x2 sinh θ, x1 sinh θ+x2 cosh θ, x3)
((θ ∈ R, (x1, x2, x3) ∈ H2), where R3

1 is the Lorentzian space equipped with
the Lorentzian inner product −dx21 + dx22 + dx23. This action is a complex hy-
perpolar action. By the way, this action has no fixed point (i.e., pole) but the
complexified action C on the anti-Kaehler symmetric space SO(3,C)/SO(2,C)
(which is the complexification of H2) has fixed points (i.e. poles). These fixed
points should be called complex poles of the original action. In this sense, we
named the above action a complex (hyper)polar action. See also Figure 8.

HCpi’s
(i = 1, · · · , 7)

Hp1

Hp2

Hp3

Hp4

Hp5

Hp6

Hp7

γv G/K

γv

γCv

(G/K)(∞)

G/K

complex pole (for H-action)

HCp8

p8

in GC/KC

H y G/K

complex hyperpolar action

HC y GC/KC

(pole for HC-action)

̸ ∃ pole of H-action

Figure 8.

We proved the following facts for a complex hyperpolar action.

Proposition 4.1([32,35]). (i) Principal orbits of a complex hyperpolar ac-
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tion are complex equifocal.
(ii) Any homogeneous submanifolds with flat section in a symmetric space

of non-compact type occur as principal orbits of complex hyperpolar actions.

If there exists an involution σ of G with (Fixσ)0 ⊂ H ⊂ Fixσ, then we
called the H-action on G/K a Hermann type action. We proved the following
fact for a Hermann type action.

Proposition 4.2([33]). Principal orbits of a Hermann type action are proper
complex equifocal and curvature-adapted.

Also, we proved the following fact for a complex hyperpolar action.

Proposition 4.3([35]). Complex hyperpolar actions with a reflective orbit
are orbit equivalent to Hermann type actions.

From these facts, we can derive the following facts.

Proposition 4.4. Let M be a homogeneous submanifold with flat section
in a symmetric space of non-compact type. If it admits a reflective focal
submanifold, then it is a principal orbit of a Hermann type action. Hence it
is proper complex equifocal and curvature-adapted.

§5. Homogeneity of proper complex equifocal submanifolds

In this section, we shall state a homogeneity theorem for proper complex
equifocal submanifolds. In [41], we first proved the following homogeneity
theorem for a proper anti-Kaehler isoparametric submanifold in an infinite
dimensional anti-Kaehler space.

Theorem 5.1([41]). All irreducible proper anti-Kaehler isoparametric sub-
manifolds of codimension greater than one in the infinite dimensional anti-
Kaehler space are homogeneous.

Denote by I(V ) the group of all isometries of V and Ib(V ) the (Banach Lie)
group of all isometries of V whose associated Killing field is defined over the
whole of V . The homogeneity in the above theorem means that the submani-
fold is an orbit of a subgroup action of I(V ). We ([45]) have recently proved
that the submanifold is an orbit of a subgroup action of Ib(V ). Furthermore,
by using this improved homogeneity theorem, we proved the following homo-
geneity theorem for a proper complex equifocal Cω-submanifold in a symmetric
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space of non-compact type.

Theorem 5.2([46]). All irreducible curvature-adpated proper complex equi-
focal Cω-submanifolds of codimension greater than one in a symmetric space
of non-compact type are homogeneous. Furthermore they are principal orbits
of Hermann type actions.

Remark 1. In this theorem, we cannot replace ”proper complex equifocal” to
”complex equifocal”. In fact, principal orbits of the N -action on an irreducible
symmetric space G/K of non-compact type and rank greater than one are
irreducible curvature-adapted complex equifocal submanifolds of codimension
greater than one but they do not occur as principal orbits of a Hermann
type action, where N is the nilpotent part in the Iwasawa’s decomposition
G = KAN of G.

On the other hand, we ([42]) proved the following fact for a curvature-
adapted proper complex equifocal Cω-hypersurface.

Theorem 5.3([42]). All curvature-adapted proper complex equifocal Cω-
hypersurfaces in a symmetric space of non-compact type occur as principal
orbits of Hermann type actions.

The proof of this theorem is performed by deriving the Cartan type identity
(which is a relation among the prinipal curvatures and the eigenvalues of the
normal Jacobi operators) for the hypersurface and showing the existenceness
of a totally geodesic focal submanifold in terms of the identity.

Also, we have recently proved the following fact.

Theorem 5.5([44]). Let M be a complete curvature-adapted submanifold
with maximal flat section and trivial normal holonomy group in a symmetric
space G/K of non-compact type. Also, let TM = ⊕i∈IRD

R
i be the common

eigenspace decomposition of R(v)’s (v ∈ T⊥M) and TM = ⊕i∈IAD
A
i that of

Av’s (v ∈ T⊥M). Assume that, for each i ∈ IR, dimDR
i ≥ 2 and there exists

j ∈ IA such that DR
i ⊂ DA

j . Then M is complex equifocal.

§6. Isoparametric submanifolds with flat section in the sense of
Heintze-Liu-Olmos

In 2006, Heintze-Liu-Olmos [21] defined the notion of isoparametric subman-
ifold with flat section in a general Riemannian manifold as a (properly em-
bedded) complete submanifold with flat section and trivial normal holonomy
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group whose sufficiently close parallel submanifolds have constant mean cur-
vature with respect to the radial direction. For a compact submanifold with
trivial holonomy group and flat section in a symmetric space of compact type,
they [21] showed that it is equifocal if and only if, for each parallel normal
vector field v, Fvx is independent of the choice of a point x of the submanifold,
where Fvx is the function defined in Page 1. Thus, if it is an isoparametric
submanifold with flat section, then it is equifocal. Furthermore, for a compact
submanifold in a symmetric space of compact type, they proved te following
fact.

Theorem 6.1([21]). Let M be a compact submanifold in a symmetric space
of compact type. Then M is equifocal if and only if it is an isoparametric
submanifold with flat section.

The proof of this fact is performed by investigating the lift (π ◦ ϕ)−1(M)
of M to the Hilbert space H0([0, 1], g).

On the other hand, we [32] showed that, for a (properly embedded) com-
plete submanifold with trivial normal holonomy group and flat section in a
symmetric space of non-compact type, it is an isoparametric submanifold with
flat section if and only if, for each parallel normal vector field v, FC

vx is inde-
pendent of the choice of a point x of the submanifold, where FC

vx is the function
defined in Page 2. Thus if it is an isoparametric submanifold with flat section,
then it is complex equifocal. Conversely, we proved the following fact.

Theorem 6.2([32]). All curvature-adapted complex equifocal submanifolds
in a symmetric space of non-compact type are isoparametric submanifolds
with flat section.

For a submanifold M in a Hadamard manifold N , we ([39]) defined the
notion of a focal point of non-Euclidean type on the ideal boundary N(∞)
as follows. Denote by ∇̃ the Levi-Civita connection of N and A the shape
tensor of M . Let γv : [0,∞) → N be the normal geodesic of M of direction
v ∈ T⊥

x M . If there exists a M -Jacobi field (resp. strongly M -Jacobi field) Y

along γv satisfying lim
t→∞

||Yt||
t = 0, then we call γv(∞) (∈ N(∞)) a focal point

(resp. strongly focal point) on the ideal boundary N(∞) of M along γv (see
Figure 9), where γv(∞) is the asymptotic class of γv. Also, if there exists a

M -Jacobi field Y along γv satisfying lim
t→∞

||Yt||
t

= 0 and Sec(v, Y (0)) < 0, then

we call γv(∞) a focal point of non-Euclidean type on N(∞) of M along γv,
where Sec(v, Y (0)) is the sectional curvature for the 2-plane spanned by v and
Y (0).

We proved the following fact.
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Theorem 6.3([39]). Let M be a curvature-adapted submanifold in a sym-
metric space N := G/K of non-compact type. Then M is proper complex
equifocal if and only if it is an isoparametric submanifold with flat section
which admits no focal point of non-Euclidean type on the ideal boundary
N(∞) of N .

N

N(∞)

M

γv

γv(∞)Y (0)

Y

Figure 9.

At the end of this section, we propose the following question.

Question. Let M be a (properly embedded) complete submanifold in a sym-
metric space N = G/K of non-compact type. Is M a proper complex equifocal
submanifold if and only if it is an isoparametric submanifold with flat section
which admits no focal point of non-Euclidean type on N(∞)?

§7. Duality

In this section, we explain the duality of Hermann actions on symmetric
spaces of compact type and Hermann type actions on symmetric spaces of
non-compact type. Let G/K be a symmetric space of non-compact type and
Gκ/K the compact dual of G/K. Also, let θ be the Cartan involution of
G with (Fix θ)0 ⊂ K ⊂ Fix θ, where Fix θ is the fixed point group of θ and
(Fix θ)0 is the identity component of Fix θ. If H is a symmetric subgroup of G
(i.e., (Fixσ)0 ⊂ H ⊂ Fixσ for some involution σ of G), then the H-action on
G/K is called a Hermann type action. Here we explain the duality between
Hermann actions on Gκ/K and Hermann type actions on G/K. We may as-
sume that θ ◦ σ = σ ◦ θ by replacing H to a its suitable conjugate group if
necessary. Then we obtain the involution σ̂ of Gκ with θ◦σ̂ = σ̂◦θ from σ. Set
Ĥ := (Fix σ̂)0. Thus we obtain a Hermann action Ĥ y Gκ/K. Conversely,
we may assume that θ ◦ τ = τ ◦ θ by replacing H ′ to a its suitable conjugate
group if necessary except for three exceptional ones. Then we obtain the in-
volution τ̂ of G with θ ◦ τ̂ = τ̂ ◦ θ from τ . Set Ĥ ′ := (Fix τ̂)0. Thus we obtain
a Hermann type action Ĥ ′ y Gκ/K. Thus Hermann type actions on G/K
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correspond almost one-to-one to Hermann actions on Gκ/K.

PCI ⊂ I ⊂ CI ⊂ RI

duality

ικ

HT P ⊂ PCE ⊂ IWFS ⊂ CE ⊂ E ′

PCI∞ ⊂ ??? ⊂ CI∞ ⊂ RI∞

ι ι ι

IWFS = E ⊃ HP

I∞

?

Figure 10.

Notations in Figure 10 are as follows.

E : the set of all congruence classes of equifocal submanifolds in Gκ/K

HP : the set of all congruence classes of principal orbits of a Hermann actions on Gκ/K

I∞ : the set of all congruence classes of isoparametric submanifolds in H0([0, 1], gκ)

E ′ : the set of all congruence classes of equifocal submanifolds in G/K, where they may not be

CE : the set of all congruence classes of complex equifocal submanifolds in G/K

PCE : the set of all congruence classes of proper complex equifocal submanifolds in G/K

HT P : the set of all congruence classes of principal orbits of Hermann type actions on G/K

IWFS : the set of all congruence classes of isoparametric submanifolds with flat section in G/K

ι : CE → CI∞ ⇐⇒
def

ι([M ]) := [(π ◦ ϕ)−1(M)]

ικ : E → I∞ ⇐⇒
def

ικ([M ]) := [(π ◦ ϕ)−1(M)]

CI∞ : the set of all congruence classes of complex isoparametric submanifolds in H0([0, 1], g)

PCI∞ : the set of all congruence classes of proper complex isoparametric submanifolds in

RI∞ : the set of all congruence classes of real isoparametric submanifolds in H0([0, 1], g)

CI : the set of all congruence classes of complex isoparametric submanifolds in Rm
ν

PCI : the set of all congruence classes of proper complex isoparametric submanifolds in Rm
ν

RI : the set of all congruence classes of real isoparametric submanifolds in Rm
ν

I : the set of all congruence classes of isoparametric submanifolds in Rm
ν

compact

H0([0, 1], g)

The congruence classes of the orbits of the action of the nilpotent group N on
G/K belong to IWFS \PCE , where N is the nilpotent part in the Iwasawa’s
decomposition G = KAN of G. See [37] about examples other than these
classes belonging to IWFS \PCE . Also, for almost all complete submanifolds
all of whose principal curvatures are sufficiently close to zero in G/K, the
ε-tubes over them belong to E ′ \ CE , where ε is any positive constant. Thus
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E ′ is a very big class.

§8. The mean curvature flows

In this section, we state the results for the mean curvature flows starting
from an equifocal submanifold and a proper complex equifocal submanifold.
In 2009, X. Liu and C.L. Terng proved the following result for the mean
curvature flow starting from a compact isoparametric submanifold in a (finite
dimensional) Euclidean space.

Theorem 8.1([48]). Let M be a compact isoparametric submanifold in a
Euclidean space. Then the following statements (i) and (ii) hold:

(i) The mean curvature flow Mt starting from M collapses to a focal sub-
manifold of M in a finite time T . If a focal map of M onto F is spherical,
then the mean curvature flow Mt has type I singularity, that is,

lim
t→T−0

max
v∈S⊥Mt

||At
v||2∞(T − t) < ∞,

where At
v is the shape operator of Mt for v, ||At

v||∞ is the sup norm of At
v and

S⊥Mt is the unit normal bundle of Mt.
(ii) For any focal submanifold F of M , there exists a parallel submanifold

of M collapsing to F along the mean curvature flow and the set of all parallel
submanifolds collapsing to F along the mean curvature flow is a one-parameter
C∞-family.

In 2011, we proved the following result for the mean curvature flow starting
from an equifocal submanifold in a symmetric space of compact type.

Theorem 8.2([40]). Let M be an equifocal submanifold in a symmetric
space G/K of compact type. Then the following statements (i) and (ii) hold:

(i) If M is not minimal, then the mean curvature flow Mt starting from M
collapses to a focal submanifold F of M in a finite time T . Furtheremore, if
M is irreducible, the codimension of M is greater than one and if the fibration
of M onto F is spherical, then the flow Mt has type I singularity.

(ii) For any focal submanifold F of M , there exists a parallel submanifold
of M collapsing to F along the mean curvature flow and the set of all parallel
submanifolds collapsing to F along the mean curvature flow is a one-parameter
C∞-family.

The proof of this theorem was performed by reducing to the investigation
of the mean curvature flow starting from the lift of the submanifold to the
Hilbert space H0([0, 1], g).
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Recently we have recently proved the similar result for the mean curvature
flow starting from a certain kind of curvature-adapted and proper complex
equifocal submanifold with maximal flat section in a symmetric space G/K
of non-compact type (see [43, Theorem A]) . The proof of this theorem was
performed by reducing to the investigation of the mean curvature flow starting
from the lift of the submanifold to the pseudo-Hilbert space H0([0, 1], g).

Appendix

In this appendix, we shall give models of isoparametric submanifolds in the
Hilbert space. For its purpose, we suffice to give examples of polar actions
on the Hilbert space because the principal orbits of of the polar action are
isoparametric. First we recall the notion of the affine Kac-Moody Lie algebra
and the affine Kac-Moody Lie group. Let g be a simple Lie algebra over the
field F = R or C and σ an automorphism of g. Then the twisted loop algebra
L(g, σ) is defined as

L(g, σ) := {u ∈ C∞(R, g) |u(t+ 2π) = σ(u(t)) for all t ∈ R}

equipped with the bracket product [ , ]0 defined by [u, v]0(t) := [u(t), v(t)] (t ∈
R) for u, v ∈ L(R, g). Let ⟨ , ⟩ be the Killing form of g. Define an inner

product ⟨ , ⟩0 of L(R, g) by ⟨u, v⟩0 :=
∫ 2π

0
⟨u(t), v(t)⟩dt (u, v ∈ L(g, σ)). For

λ ∈ F\{0}, define a skew-symmetric bilnear form ωλ on L(g, σ) by ωλ(u, v) :=
λ⟨u′, v⟩0 (u, v ∈ L(g, σ)). The affine Kac-Moody Lie algebra L̂(g, σ) is defined
as L̂(g, σ) := L(g, σ)+Fc+Fd equipped with the bracket product [ , ] defined
by

[u, v] := [u, v]0 + ωλ(u, v)c
[d, u] := u′

[c, x] := 0

for all u, v ∈ L(g, σ) and all x ∈ L̂(g, σ). Note that L̂(g, σ) is not simple.
The isomorphism class of L̂(g, σ) is independent of the choice of λ. Also, for
automorphisms σi (i = 1, 2) of g, L̂(g, σ1) ∼= L̂(g, σ2) if and only if σ1 and
σ2 are conjugate in Aut(g)/Int(g). Hence we may replace σ by an element of
finite order. In the sequel, we assume that F = R, g is compact and that σ is
finite order. Let G be a simply connected Lie group with Lie algebra g and
denote by the same symbol the involution of G inducing from σ. Then the
twisted loop group L(G, σ) is defined as

L(G, σ) := {g ∈ C∞(R, G) | g(t+ 2π) = σ(g(t)) for any t ∈ R},

which is a Frechet Lie group with Lie algebra L(g, σ). The affine Kac-Moody
Lie group L̂(G, σ) is defined as a torus bundle over L(G, σ) as follows. Let ω̃λ



RESEARCH OF SUBMANIFOLDS IN SYMMETRIC SPACES 123

be the left invariant 2-form on L(G, σ) obtained from ωλ, which is closed. By
retaking λ if necessary, we may assume that 1

2π ω̃λ is an integral cohomology
class. Is determined uniquely a S1-bundle over L(G, σ) with a connection
whose curvature form is equal to ω̃λ (up to the bundle isomorphicness). Denote
by L̃(G, σ) the total space of lthis S1-bundle, which is a Frechet Lie group with
Lie algebra L̃(g, σ) := L(g, σ) + Rc. We define an action of R on L(G, σ) by
(s · u)(t) := u(t+ s) (t ∈ R). This action is lifted to L̃(G, σ) because it leaves
ω̃λ invariantly. Furthermore, since σ is of finite order, this lifted action of R
descends to an action of S1. The affine Kac-Moody Lie group L̂(G, σ) is the
semi-direct product S1 n L̃(G, σ) defined in terms of this S1-action, which is
a Frechet Lie group. Define an inner product ⟨ , ⟩K of L̂(g, σ) by

⟨u1α1c+ β1d, u2 + α2c+ β2d⟩K := −⟨u1, u2⟩0 + α1β2 + β1α2

(ui ∈ L(G, σ), αi, βi ∈ R (i = 1, 2)).

It is shown that (L̂(G, σ), ⟨ , ⟩K) is a Lorentzian symmetric space. Next we
recall the notion of the affine Kac-Moody symmetric space. Let ρ̂ be an
involution of L̂(G, σ). This involution ρ̂ is said to be of the first kind (resp.
the second kind) if ρ̂c = c (resp. ρ̂c = −c). For simplicity, set Ĝ := L̂(G, σ)
and K̂ := Fix ρ̂. Let ĝ (resp. k̂) be the Lie algebra of Ĝ (resp. K̂) and p̂
the (−1)-eigenspace decomposition of ρ̂∗e, which is identified with T

eK̂
(Ĝ/K̂).

Give Ĝ/K̂ the Ĝ-invariant (Lorentzian) metric obtained from the restriction
⟨ , ⟩K to p̂. Then the space Ĝ/K̂ is a Lorentzian symmetric space. This
space Ĝ/K̂ is called the affine Kac-Moody symmetric space of the first (resp.
the second) kind if ρ̂ is of the first (resp. the second) kind. In the sequel,
we treat only affine Kac-Moody symmetric spaces of the second kind. For
(general) Frechet manifolds, the inverse function theorem is not valid. R.S.
Hamilton introduced the class of tame Frechet manifolds. He showed that the
inverse function theorem is valid for tame Frechet manifolds. On the other
hand, B. Popescu [58] showed that affine Kac-Moody symmetric spaces are
tame Frechet manifolds. Define a submanifold R∞

σ in the affine Kac-Moody
Lie algebra L̂(g, σ) by

R∞
σ := {u− (1− 1

2
⟨u, u⟩0)c+ d |u ∈ L(g, σ)},

which is a horosphere in the infinite dimensional hyperbolic space H∞
σ :=

{u + αc + d |u ∈ L(g, σ), α ∈ R} (⊂ L̂(g, σ)) and is isometric to L(g, σ)(∼=
H0([0, 1], g)).

Here we give examples of the affine Kac-Moody symmetric spaces.

Example 1. Let σ be an automorphism of G and ρ̂ the involution of the second
kind of the affine Kac-Moody Lie group L̂(G×G, σ×σ−1) satisfying ρ̂∗e(c) =
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−c, ρ̂∗e(d) = −d and ρ̂∗e(u, v)(t) := (v(−t), u(−t)) ((u, v) ∈ L(g × g, σ∗e ×
σ−1
∗e )). Then the affine Kac-Moody symmetric space L̂(G×G, σ×σ−1)/Fix ρ̂ is

isometric to the affine Kac-Moody Lie group L̂(G×G, σ×σ−1). For simplicity,

set Ĝ×G := L̂(G×G, σ× σ−1), K̂ := Fix ρ̂, ĝ× g := L̂(g× g, σ∗e × σ−1
∗e ) and

k̂ := Fix ρ̂∗e. Denote by p̂ the (−1)-eigenspace of ρ̂∗e and set V := p̂∩R∞
σ×σ−1 ,

where R∞
σ×σ−1 is the horosphere in the infinite dimensional hyperbolic space

in ĝ× g corresponding to the above R∞
σ . Also, set G(σ) := {(g, σ(g)) | g ∈ G}.

The isotropy action of Ĝ×G/K̂ leaves V invariantly and the restriction of
this action to V is equivalent to the gauge action P (G,G(σ)) y H0([0, 1], g).

Example 2. Let ρ± be involutions of G and set σ := ρ−◦ρ+. Let ρ̂ be the invo-
lution of the second kind of the affine Kac-Moody Lie group L̂(G, σ) satisfying
ρ̂(g)(t) = ρ+(g(−t)) (g ∈ L(G, σ)). For simplicity, set Ĝ := L̂(G, σ), K̂ :=
Fix ρ̂, ĝ := L̂(g, σ∗e) and k̂ := Fix ρ̂∗e. Denote by p̂ the (−1)-eigenspace of ρ̂∗e
and set V := p̂ ∩ R∞

σ . Also, set K± := Fix ρ±. Denote by Âd the adjoint

representation of Ĝ. The isotropy action Âd(K̂) : p̂ → p̂ of Ĝ/K̂ leaves V
invariantly and the restriction of this action to V is equivalent to the gauge
action P (G,K+ ×K−) y H0([0, 1], g).

The affine Kac-Moody symmetric spaces are classified as follows.

Theorem A.1([17,18]). The affine Kac-Moody symmetric spaces as in Ex-
amples 1 and 2 are all of the affine Kac-Moody symmetric space.

C. L. Terng and G. Thorbergsson proved the following fact.

Theorem A.2([62,63,64]). Let G/K be a symmetric space of compact type
and H be a symmetric subgroup. Then the gauge action P (G,H × K) y
H0([0, 1], g) be a polar action (hence the principal orbits of this action are
isoparametric). In particular, the restriction of the isotropy representation of
an Affine Kac-Moody symmetric space L̂(G, σ)/K̂ to V := p̂∩ (R∞

σ ) is a polar
action.

Conjecture 1. Is any polar action on a Hilbert space equivalent to the
restriction of the isotropy representation of an Affine Kac-Moody symmetric
space L̂(G, σ)/K̂ to V := p̂ ∩ (R∞

σ )?

According to Theorem A.1, this conjecture can be restated as follows.

Conjecture 1′. Is any polar action on a Hilbert space equivalent to one of
polar actions of the following two types:
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(I) P (G,K+×K−) y H0([0, 1], g), where G is a compact simple Lie group
and K±’s are the fixed point groups of some involutions ρ± of G.

(II) P (G,G(σ)) y H0([0, 1], g), where G is a compact simple Lie group, σ
is an involution of G and G(σ) := {(g, σ(g)) | g ∈ G}?
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