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Abstract. When K is an algebraically closed field of characteristic p = 3, we
shall investigate the existence of a regular factorial subring R′ of R = K[x, y]
containing Rp = K[xp, yp] and the existence of a p-basis of R over R′.
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§1. Introduction

Throughout this paper let K be always an algebraically closed field of odd
prime characteristic p, R the polynomial ring K[x, y], Rp the polynomial ring
K[xp, yp] and R′ a subring of R such that Rp ⊂ R′ ⊂ R. In the previous paper
[10], we showed the following statements:

(A1) (Theorem 3.4 of [10]). For a given integer d greater than or equal to
3, there is a polynomial f ∈ R with deg f = d such that {f} is a p-basis of
Rp[f ] over Rp, Rp[f ] is regular non-factorial and R has a p-basis over Rp[f ].

(A2) (Theorem 3.5 of [10]). For a given integer d greater than or equal to
4, there is a polynomial f ∈ R with deg f = d such that {f} is a p-basis of
Rp[f ] over Rp, Rp[f ] is regular non-factorial and R has no p-basis over Rp[f ].

In the other paper [3], we showed the fact that R′ has a p-basis over Rp

if R′ is regular and factorial. From (A1), (A2) and this fact, it is natural
to ask whether a statement similar to (A1) or (A2) holds if ‘non-factorial’ is
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replaced with ‘factorial’. In particular we take an interest in the existence of a
regular factorial subring which is not a polynomial ring in two variables over
K. Under the condition p = 3 we shall consider this question (see Theorems
3.1 and 3.4). In [10], when f ∈ R has no monomial which belongs to Rp, we
have classified Rp[f ] when deg f ≤ 3 as below.

(B) (Theorem 6.1 and Corollary 6.4 of [10]). Let f be a non-zero polynomial
of R, and let R′ = Rp[f ]. Assume that no monomial appearing in f belongs to
Rp, and R′ is regular. Then R has a p-basis over R′. Moreover the following
hold:

(1) if deg f = 1 or 2, then R′ is a polynomial ring in two variables over K.

(2) if deg f = 3, then R′ is either a polynomial ring in two variables over K
or a non-factorial ring Rp[u+u2v] for some system u and v of variables
of R.

Similarly when deg f = 4, we shall classify Rp[f ] under the condition p = 3
(see Theorem 4.3). Consequently we see that there is no polynomial f with
deg f ≤ 4 such that Rp[f ] is regular and factorial, but is not a polynomial ring
in two variables over K (see Corollary 4.4).

§2. Preliminary facts

In this paper, for the terminology and notation of algebraic geometry resp.
commutative algebra, we use those of [1] resp. [6] and [7]. Let Ap ⊆ A′ ⊆ A be
a tower of commutative rings of prime characteristic p where Ap = {ap | a ∈ A}.
A subset {g1, . . . , gn} of A is called a p-basis of A over A′ if the monomials
gi11 · · · ginn (0 ≤ i1, . . . , in ≤ p − 1) are linearly independent over A′ and A =
A′[g1, . . . , gn]. Considering a tower of rings (A′)p ⊆ Ap ⊆ A′, a p-basis of
A′ over Ap is defined similarly. Under the conditions for R and R′ that are
specified in the previous section, we recall the results of the previous papers
([9], [10]). First note the well-known fact that {f} (f ∈ R) is a p-basis of
Rp[f ] over Rp if f ̸∈ Rp (cf. Lemma 2.1 of [10]).

Lemma 2.1 (Lemma 3.1 of [9]). Let f and g be polynomials of R−Rp. Then
the following hold:

(1) Rp[f ] is regular if and only if ∂f/∂x, ∂f/∂y generate R as an R-module.

(2) {f, g} is a p-basis of R over Rp if and only if the Jacobian determinant
∂(f, g)/∂(x, y) ∈ K − {0}.
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Lemma 2.2 (Lemma 2.6 of [10]). Let f be a polynomial of R such that ∂f/∂x
has a non-zero constant term, R′ = Rp[f ] and Q(R′) the field of fractions of
R′. Suppose that R′ is regular. Then,(∂f

∂x

)p−1
∈

p−2⊕
i=0

Q(R′)yi if and only if R has a p-basis over R′.

Lemma 2.3 (Lemma 2.7 of [10]). Let f = c0 + c1x + c2x
2 where c0, c1, c2 ∈

K[xp, y]. Then (∂f
∂x

)p−1
=

{
c21 + 4c2(f − c0)

}(p−1)/2
.

Lemma 2.4 (Lemma 2.5 of [10]). Let f be a polynomial of R−Rp which has
no monomial belonging to Rp. If Rp[f ] is regular and factorial, then f + hp is
irreducible for any polynomial h ∈ R such that pdeg h ≤ deg f .

§3. Regular factorial subrings of a polynomial ring

Theorem 3.1. Assume that p = 3. Then, for each d ∈ N with d ≥ 5 and
d ̸≡ 0 (mod 3), there exists f ∈ R with deg f = d which satisfies the following
conditions:

(1) No monomial appearing in f belongs to Rp;

(2) Rp[f ] is regular and factorial, but is not a polynomial ring in two vari-
ables over K;

(3) R has a p-basis over Rp[f ].

Proof. Let f1 = x− y(y + x2)p and f2 = x− y(y + x2)2p. For any odd prime
characteristic p, we proved in [10] that Rp[f1] is regular and factorial, but is
not a polynomial ring in two variables over K, and R has a p-basis over Rp[f1].
By the same argument as that in Example 4.2 of [10], we can show that Rp[f2]
is not a polynomial ring in two variables over K if p is an odd prime number,
as follows. Suppose that Rp[f2] is a polynomial ring in two variables over K.
According to the main theorem of [2] there exists a system u and v of variables
of R such that Rp[f2] = K[u, vp]. Set x := θ(u, v) and y := ϕ(u, v). Since u is
of the form

∑p−1
i=0 cif

i
2 (ci ∈ Rp), we have 1 = (

∑p−1
i=1 icif

i−1
2 )∂f2/∂u, and so

∂f2
∂u

=
∂θ

∂u
− (ϕ+ θ2)2p

∂ϕ

∂u
∈ K − {0}.

Since f2 ∈ K[u, vp] = Ker ∂/∂v, we obtain

∂f2
∂v

=
∂θ

∂v
− (ϕ+ θ2)2p

∂ϕ

∂v
= 0.
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Hence, we see that

deg{u,v}
∂θ

∂u
> deg{u,v}

∂ϕ

∂u
,

deg{u,v}
∂θ

∂v
> deg{u,v}

∂ϕ

∂v
,

max
{
deg{u,v}

∂θ

∂u
, deg{u,v}

∂θ

∂v

}
≥ 2pdeg{u,v}(ϕ+ θ2),

where deg{u,v} f is the degree of f for the system u and v of variables of R.
We denote by dθ the maximal degree of monomials (for the system u and v of
variables of R) appearing in θ which do not belong to Rp. Similarly we use
the notations dθ2 , dϕ and dϕ+θ2 . The above first and second inequalities for
deg{u,v} imply dθ > dϕ, and so dθ2 > dϕ. Hence dϕ+θ2 = dθ2 . It follows that

deg{u,v}(ϕ+ θ2) ≥ dϕ+θ2 > dθ. On the other hand, we easily see that

dθ > max
{
deg{u,v}

∂θ

∂u
, deg{u,v}

∂θ

∂v

}
.

This is a contradiction. Thus R′ is not a polynomial ring in two variables over
K.

Next we shall prove that Rp[f2] is regular factorial if p = 3. First note
that by Lemma 2.1 Rp[f2] is regular and {y} is a p-basis of R over Rp[f2],
since ∂f2/∂x = 1. The second fact implies R =

⊕2
i=0R

p[f2]y
i. To show

that Rp[f2] is factorial, we make use of a derivation of R over Rp[f2]. Let
D = (y+x2)6∂/∂x+ ∂/∂y. First we shall show that KerD = Rp[f2]. Writing
g ∈ R as a0+a1y+a2y

2 (a0, a1, a2 ∈ Rp[f2]), we have D(g) = (a1−a2y)D(y).
Since D(y) ̸= 0, we see the following:

D(g) = 0 ⇔ a1 − a2y = 0 ⇔ a1 = a2 = 0 ⇔ g ∈ Rp[f2].

This implies KerD = Rp[f2]. Since {D, ∂/∂x} forms a basis for DerRp(R) and
∂f2/∂x ̸= 0, {D} forms a basis for DerRp[f2](R). Clearly D3 ∈ DerRp[f2](R).
Hence D3 = aD for some a ∈ R. From Dy = 1 we have a = 0, i.e.,

D3 = 0.

Put s := x and t := y + x2. Then ∂/∂x = ∂/∂s − s∂/∂t and ∂/∂y =
∂/∂t, so that D is expressed as t6∂/∂s+ (1− st6)∂/∂t. By a straightforward
computation we obtain

D2 = t12
∂2

∂s2
− t6(1− st6)

∂2

∂s∂t
+ (1− st6)2

∂2

∂t2
− t12

∂

∂t
.

To prove that Rp[f2] is factorial, suppose that Rp[f2] is not factorial. By
Lemma 4.1 of [10] there exist non-zero polynomials h, ξ of R such that D(h) =
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hξ, since KerD = Rp[f2]. Then D2(h) = D(h)ξ + hD(ξ), and so

D3(h) = D(D(h)ξ + hD(ξ))

= D2(h)ξ + 2D(h)D(ξ) + hD2(ξ)

= (D(h)ξ + hD(ξ))ξ + 2hξD(ξ) + hD2(ξ)

= h(ξ3 +D2(ξ)).

Since D3 = 0 and h ̸= 0, it follows that D2(ξ) = −ξ3. Here note that
deg{s,t} ξ ≤ 6, because D(h) = ξh. Let [D2(ξ)]r be the homogeneous part of

D2(ξ) with degree r (for the system s and t of variables of R). Hence, writing
ξ as

∑6
k=0 ξk where ξk is the homogeneous part of ξ with degree k, we have

(1)
∂2ξ2
∂t2

= [D2(ξ)]0 = −ξ30 ,

(2)
∂2ξ5
∂t2

= [D2(ξ)]3 = −ξ31 ,

(3)
∂2ξ6
∂t2

= [D2(ξ)]4 = 0,

(4) −t6
∂2ξ2
∂s∂t

= [D2(ξ)]6 = −ξ32 ,

(5) −t6
∂2ξ5
∂s∂t

+ st6
∂2ξ4
∂t2

= [D2(ξ)]9 = −ξ33 ,

(6) t12
∂2ξ2
∂s2

− t12
∂ξ1
∂t

= [D2(ξ)]12 = −ξ34 ,

(7) t12
∂2ξ5
∂s2

+ st12
∂2ξ4
∂s∂t

+ s2t12
∂ξ2
∂t

= [D2(ξ)]15 = −ξ35 ,

(8) st12
∂2ξ6
∂s∂t

+ s2t12
∂2ξ5
∂t2

− t12
∂ξ6
∂t

= [D2(ξ)]17 = 0,

(9) s2t12
∂2ξ6
∂t2

= [D2(ξ)]18 = −ξ36 .

From (9) it follows that ξ6 = cst5 (c ∈ K). Hence we obtain ξ6 = 0 by (3),
so that ∂2ξ5/∂t

2 = 0 by (8). Moreover we have ξ1 = 0 by (2). From (4) it
follows that ξ2 = 0. Hence we get ξ0 = 0 by (1), and moreover ξ4 = 0 by (6).
Since ξ2 = ξ4 = 0, ξ5 is of the form t4(c0s + c1t) (c0, c1 ∈ K) by (7), and so
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∂2ξ5/∂s
2 = 0. Hence ξ5 = 0 by (7), so that ξ3 = 0 by (5). Consequently we

obtain ξ = 0, which is a contradiction. Thus Rp[f2] is factorial.
Now, set u := x−(y+x2)α and v := y+x2 where α is a positive integer such

that α ̸≡ 0 (mod 3). Then u and v form a system of variables of R, and we
have f1 = u+vα−v3(v−u2+uvα−v2α) and f2 = u+vα−v6(v−u2+uvα−v2α).
Hence deg{u,v} f1 = 2α+3 and deg{u,v} f2 = 2α+6. Thus f1 and f2 have the
desired properties.

Corollary 3.2. Assume that p = 3. Then, for each d ∈ N with d ̸≡ 0 (mod 3),
there exist a polynomial g ∈ R with deg g = d and a subring R′ of R containing
Rp which satisfy the following properties:

(1) No monomial appearing in g belongs to Rp;

(2) {g} is a p-basis of R over R′;

(3) R′ is regular and factorial, but is not a polynomial ring in two variables
over K.

Proof. Let f2 be as in the proof of Theorem 3.1. Then, we have already seen
that {y} is a p-basis of R over Rp[f2]. Put g := y and y′ := y + xd. Then g is
expressed as y′ − xd. So the assertion holds.

Lemma 3.3. Let f be a polynomial of R − Rp, D a derivation of R over
K such that D(x) ̸= 0 and D(y) ̸= 0, and K(xp, yp) the field of fractions of
Rp. Suppose that D(f) = 0. Then KerD = K(xp, yp)[f ] ∩ R. Furthermore,
KerD = Rp[f ] if and only if Rp[f ]∩hR ⊂ hRp[f ] holds for any h ∈ Rp−{0}.

Proof. Let K(x, y) be the field of fractions of R, and D̄ the extension of D
to K(x, y). Set L := K(xp, yp)[f ]. Clearly L is a subfield of K(x, y), and
[L : K(xp, yp)] = p, since f ̸∈ K(xp, yp) and [K(x, y) : K(xp, yp)] = p2.
Hence [K(x, y) : L] = p, and so K(x, y) is either

⊕p−1
i=0 Lxi or

⊕p−1
i=0 Lyi. We

consider the case where K(x, y) =
⊕p−1

i=0 Lxi. Then any g ∈ K(x, y) is of

the form
∑p−1

i=0 aix
i (ai ∈ L). Therefore D̄(g) = (

∑p−1
i=1 iaix

i−1)D(x). Since
D(x) ̸= 0, we have the following:

D̄(g) = 0 ⇔
p−1∑
i=1

iaix
i−1 = 0 ⇔ a1 = a2 = · · · = ap−1 = 0 ⇔ g ∈ L.

Hence Ker D̄ = L. Similarly we can show Ker D̄ = L in the case where
K(x, y) =

⊕p−1
i=0 Lyi.

Next, we shall prove the second assertion. Suppose that KerD = Rp[f ].
Let h be a polynomial of Rp − {0}. For each g ∈ Rp[f ] ∩ hR, there exists
an element g′ of R such that g = hg′. Since 0 = D(g) = hD(g′) from the
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assumption, we have D(g′) = 0 so that g′ ∈ Rp[f ]. This implies g ∈ hRp[f ].
Thus Rp[f ] ∩ hR ⊂ hRp[f ] for each h ∈ Rp − {0}. Conversely suppose that
Rp[f ] ∩ hR ⊂ hRp[f ] for each h ∈ Rp − {0}. Any g ∈ KerD is of the form∑p−1

i=0 (ai/bi)f
i (ai, bi ∈ Rp) by the first assertion. Set h :=

∏p−1
i=0 bi. Then hg ∈

Rp[f ] ∩ hR and so hg ∈ hRp[f ]. Hence g ∈ Rp[f ]. Thus KerD = Rp[f ].

Theorem 3.4. Assume that p = 3. Then, for each d ∈ N with d ≥ 5 and
d ̸≡ 0 (mod 3), there exists a polynomial f ∈ R with deg f = d which satisfies
the following properties:

(1) No monomial appearing in f belongs to Rp;

(2) Rp[f ] is regular and factorial, but is not a polynomial ring in two vari-
ables over K;

(3) R has no p-basis over Rp[f ].

Proof. Let f1 = x− y2 + x2y3 and f2 = x− y5 + x2y6. We already treated f1
in Example 4.3 of [10]. So we only give a proof of the assertion that Rp[f2] is
regular and factorial, but is not a polynomial ring in two variables over K. Set
R′

2 := Rp[f2]. First note that R′
2 is regular by Lemma 2.1 (1). From Lemma

2.3 we see that (∂f
∂x

)2
= 1 + 4y6(f2 + y5) ̸∈ Q(R′

2)⊕Q(R′
2)y.

According to Lemma 2.2 this implies that R has no p-basis over R′
2, hence R′

2

is not a polynomial ring in two variables over K by the result of [2] (also see
[5]).

Let D = y4∂/∂x− (1 + 2xy6)∂/∂y. To show that KerD = R′
2, by Lemma

3.3 it is sufficient to verify the condition that R′
2 ∩ hR ⊂ hR′

2 holds for any
h ∈ Rp −{0}. Suppose that hg ∈ hR belongs to R′

2. From the assumption hg
is of the form h0 + h1f2 + h2f

2
2 (h0, h1, h2 ∈ Rp). Since f2 = x− y3y2 + y6x2,

we obtain

h0 + h1f2 + h2f
2
2 = (h0 − h2x

3y6) + (h1 + h2x
3y12)x+ h2y

9y

+ (h1y
6 + h2)x

2 − h1y
3y2 + h2y

3xy2 + h2y
9x2y2.

Note that the coefficients of 1, x, y, x2, y2, xy2, x2y2 (as an Rp -linear com-
bination of xiyj for i, j ∈ {0, 1, 2}) belong to hRp, because {xiyj}0≤i,j≤2 is a
p-basis of R over Rp. Since h1y

6 + h2,−h1y
3 ∈ hRp, we see h2 ∈ hRp, and so

h0−h2x
3y6 ∈ hRp resp. h1+h2x

3y12 ∈ hRp implies h0 ∈ hRp resp. h1 ∈ hRp.
Therefore h0/h, h1/h, h2/h ∈ Rp. Hence g = h0/h+(h1/h)f2+(h2/h)f

2
2 ∈ R′

2.
Thus R′

2∩hR ⊂ hR′
2 holds for any h ∈ Rp−{0}. Put D′ := (1−2xy6)∂/∂x+

4x2y8∂/∂y. Then, since {D,D′} forms a basis for DerRp(R) and D′(f2) ̸= 0,
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we see that {D} forms a basis for DerR′
2
(R). Clearly D3 ∈ DerR′

2
(R). Hence,

D3 = aD for some a ∈ R. Since Dx = y4 and D3x = y13, we see a = y9, i.e.,

D3 = y9D.

(From this fact we can also see that R has no p-basis over R′
2 (see [8]).) By a

straightforward computation we obtain

D2 = y8
∂2

∂x2
+ y4(1 + 2xy6)

∂2

∂x∂y
+ (1 + 2xy6)2

∂2

∂y2

− y3(1 + 2xy6)
∂

∂x
+ y10

∂

∂y
.

To prove that R′
2 is factorial, suppose that R′

2 is not factorial. By Lemma 4.1
of [10] there exist non-zero polynomials h, ξ of R such that D(h) = hξ, and
we have D3(h) = h(ξ3 +D2(ξ)) as in the proof of Theorem 3.1. Hence

D2(ξ) = −ξ3 + y9ξ.

Clearly deg ξ ≤ 6. Let ξk (0 ≤ k ≤ 6) and [D2(ξ)]r (0 ≤ r ≤ 18) be as in the
proof of Theorem 3.1, and moreover we express ξ as

∑
0≤i+j≤6 ci,jx

iyj (ci,j ∈
K). Now we consider the equation D2(ξ) = −ξ3+y9ξ. Since x2y12∂2ξ6/∂y

2 =
[D2(ξ)]18 = −ξ36 , we have 2c4,2x

6y12 + 2c1,5x
3y15 = −ξ36 . It follows that

c6,0 = c5,1 = c4,2 = c3,3 = c2,4 = c0,6 = 0. Since y4∂2ξ4/∂x∂y − y3∂ξ4/∂x =
[D2(ξ)]6 = −ξ32 , we get c2,0 = 0. Since y4∂2ξ2/∂x∂y+ ∂2ξ6/∂y

2 − y3∂ξ2/∂x =
[D2(ξ)]4 = 0, we have c1,1y

4 + 2c1,5xy
3 − y3(2c2,0x+ c1,1y) = 0, and so c1,5 =

c2,0 = 0. Hence ξ6 = 0. Note that ∂2ξ3/∂y
2 = ∂2ξ4/∂y

2 = ∂2ξ5/∂y
2 = 0,

since ∂2ξ3/∂y
2 = [D2(ξ)]1 = 0, ∂2ξ4/∂y

2 = [D2(ξ)]2 = 0 and x2y12∂2ξ5/∂y
2 =

[D2(ξ)]17 = 0. The left-hand side of [D2(ξ)]15 = −ξ35 + y9ξ6 = −ξ35 is of the
form

2xy10
∂2ξ6
∂x∂y

+ x2y12
∂2ξ3
∂y2

+ xy9
∂ξ6
∂x

+ y10
∂ξ6
∂y

.

It follows that ξ5 = 0. Since y4∂2ξ5/∂x∂y + xy6∂2ξ2/∂y
2 − y3∂ξ5/∂x =

[D2(ξ)]7 = 0, we get ∂2ξ2/∂y
2 = 0. So we have ξ0 = 0, because ∂2ξ2/∂y

2 =
[D2(ξ)]0 = −ξ30 . Since y8∂2ξ3/∂x

2 + xy6∂2ξ4/∂y
2 = [D2(ξ)]9 = −ξ33 + y9ξ0 =

−ξ33 , we obtain 2c2,1y
9 = −ξ33 . This implies ξ3 = 0. The left-hand side of

[D2(ξ)]12 = −ξ34 + y9ξ3 = −ξ34 is of the form

y8
∂2ξ6
∂x2

+ 2xy10
∂2ξ3
∂x∂y

+ xy9
∂ξ3
∂x

+ y10
∂ξ3
∂y

.

It follows that ξ4 = 0. So, by considering the equation y4∂2ξ4/∂x∂y −
y3∂ξ4/∂x = [D2(ξ)]6 = −ξ32 again, we obtain ξ2 = 0. Since ∂2ξ5/∂y

2 −
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y3∂ξ1/∂x = [D2(ξ)]3 = −ξ31 , we have c1,0y
3 = ξ31 . This implies ξ1 = 0. Conse-

quently we see ξ = 0, which is a contradiction. Thus R′
2 is factorial.

Now, set u := x − yα and v := y where α is a positive integer such that
α ̸≡ 0 (mod 3). Then the system u and v is a system of variables of R, and we
have f1 = u+vα−v2+(u+vα)2v3 and f2 = u+vα−v5+(u+vα)2v6. Clearly
deg{u,v} f1 = 2α+ 3 and deg{u,v} f2 = 2α+ 6. Hence the assertion holds.

Next we give examples of a non-regular factorial subringK[xp, yp, f ] (deg f =
5) of the polynomial ring K[x, y].

Example 3.5. Assume that p = 3. Let f0 = x − y2 + x2y3 and f1 = x −
y4 + x2y3, and let ft be (1 − t)f0 + tf1 for any t ∈ K. Let Dt = {(1 − t)y −
ty3}∂/∂x − (1 − xy3)∂/∂y and Kt = KerDt. Then Kt = Rp[ft], and Kt is
factorial, but is not a polynomial ring in two variables over K. Moreover, the
following properties hold:

(1) Kt is regular if and only if t = 0 or 1.

(2) R has a p-basis over Kt if and only if t = 1.

Proof. Note that f0 is the same as f1 in the proof of Theorem 3.4. Hence,
Rp[f0] is regular and factorial, but is not a polynomial ring in two variables
over K, and R has no p-basis over Rp[f0]. Consider the system u = x and
v = y− x2 of variables of R. Then f1 = x− (y− x2)y3 = u− v(v+ u2)3 is the
same as f1 in the proof of Theorem 3.1. Hence, Rp[f1] is regular and factorial,
but is not a polynomial ring in two variables over K, and R has a p-basis over
Rp[f1].

To show that Kt = Rp[ft], by Lemma 3.3 we only check that Rp[ft]∩hR ⊂
hRp[ft] holds for any h ∈ Rp − {0}. Take any h0 + h1ft + h2f

2
t ∈ Rp[ft] ∩ hR

with h0, h1, h2 ∈ Rp, and write

h0 + h1ft + h2f
2
t = h0 + h2{−x3y3 + t(t− 1)y6}+ (h1 + h2x

3y6)x

+ {−th1 + (t− 1)2h2}y3y + (h1y
3 + h2)x

2

+ th2y
3xy + {(t− 1)h1 + t2h2y

6}y2 + th2y
6x2y

+ (1− t)h2xy
2 + (1− t)h2y

3x2y2.

Then, by looking at the coefficients of 1, x, x2, y2 and xy2 (as an Rp-linear
combination of xiyj for i, j ∈ {0, 1, 2}), we know that h0 + h2{−x3y3 + t(t −
1)y6}, h1 + h2x

3y6, h1y
3 + h2, (t− 1)h1 + t2h2y

6, (1− t)h2 belong to hRp as
in the proof of Theorem 3.4. When t = 1, we have h1 + h2x

3y6, h2y
6 ∈ hRp,

and hence h1 ∈ hRp. Since h1y
3 + h2, h0 − h2x

3y3 ∈ hRp, it follows that h0
and h2 also belong to hRp. Similarly, we have h0, h1, h2 ∈ hRp when t ̸= 1,
since (1− t)h2, h0 + h2{−x3y3 + t(t− 1)y6} and h1 + h2x

3y6 belong to hRp.
Hence h0 + h1ft + h2h

2
t ∈ hRp[ft].
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From now on assume that t ̸= 0, 1. The equations ∂ft/∂x = 1 − xy3 = 0
and ∂ft/∂y = (1− t)y− ty3 = 0 have common zeros. Lemma 2.1 (1) says that
Kt is not regular. Hence Kt is not a polynomial ring in two variables over K,
and R has no p-basis over Kt by Theorem 15.7 of [6] (cf. [4]). Clearly D3

t ∈
DerKt(R) ⊂ DerRp(R), so that D3

t is of the form at∂/∂x+ bt∂/∂y (at, bt ∈ R).
By an easy computation we have at = D3

t (x) = (1− t)y3{(1− t)y − ty3} and
bt = D3

t (y) = −(1− t)y3(1− xy3). It follows that

D3
t = (1− t)y3Dt.

By a straightforward computation we obtain

D2
t = {(1− t)y − ty3}2 ∂2

∂x2
+ {(1− t)y − ty3}(1− xy3)

∂2

∂x∂y

+ (1− xy3)2
∂2

∂y2
− (1− t)(1− xy3)

∂

∂x
+ y3{(1− t)y − ty3} ∂

∂y
.

To prove that Kt is factorial, suppose that Kt is not factorial. Then, by
Lemma 4.1 of [10] there exist non-zero polynomials ht, ξt of R such that
Dt(ht) = htξt, and moreover deg ξt ≤ 3. We obtain D2

t (ξt) = −ξ3t +(1− t)y3ξt
as in the proof of Theorem 3.4. To consider this equation, we prepare the
notations ξt k (0 ≤ k ≤ 3) and [D2

t (ξt)]r (0 ≤ r ≤ 9) as in the proof of
Theorem 3.1, and we express ξt as

∑
0≤i+j≤3 ct i, jx

iyj (ct i,j ∈ K). Since

x2y6∂2ξt 3/∂y
2 = [D2

t (ξt)]9 = −ξ3t 3, we get ct 3,0 = ct 2,1 = ct 0,3 = 0. The
left-hand side of [D2

t (ξt)]8 = 0 is of the form

x2y6
∂2ξt 2
∂y2

+ txy6
∂2ξt 3
∂x∂y

− xy6
∂ξt 3
∂y

.

Hence we obtain ct 0,2 = 0. The left-hand side of [D2
t (ξt)]6 = −ξ3t 2 + y3ξt 3 is

of the form

t2y6
∂2ξt 2
∂x2

− (1− t)xy4
∂2ξt 3
∂x∂y

+ (1− t)xy3
∂ξt 3
∂x

+ (1− t)y4
∂ξt 3
∂y

− ty6
∂ξt 1
∂y

.

It follows that (1 − t)ct 1,2xy
5 − tct 0,1y

6 = −(c3t 2,0x
6 + c3t 1,1x

3y3) + ct 1,2xy
5.

Hence ct 1,2 = ct 0,1 = ct 2,0 = ct 1,1 = 0, so that ξt 2 = ξt 3 = 0. From these facts
we have

−(1− t)ct 1,0(1− xy3) = D2
t (ξt) = −ξ3t 0 − ct 1,0x

3 + ξt 0y
3 + ct 1,0xy

3.

It follows that ct 1,0 = ξt 0 = 0. Hence we have ξt = 0, which is a contradiction.
Thus Kt is factorial. The assertion follows from these facts.
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§4. Regular subrings Rp[f ] with deg f = 4

Throughout this section, let A2 resp. P2 be the affine plane SpecmR resp. the
projective plane over K, and let K[X,Y, Z] be the homogeneous coordinate
ring of P2 and we denote by [a, b, c] the point of P2 given by X = a, Y =
b, Z = c. Let ι : A2 → P2 be the canonical embedding of A2 given by
(a, b) 7→ [a, b, 1], and put L∞ := P2 − ι(A2) = {Z = 0}, P := [0, 1, 0] and
Q := [1, 0, 0]. Let f(x, y) be a polynomial

∑
1≤i+j≤4 ci,jx

iyj of R with degree 4
such that ∂f/∂x, ∂f/∂y generate R as an R-module. Note that either c1,0 ̸= 0
or c0,1 ̸= 0. Let F (X,Y, Z) ∈ K[X,Y, Z] be the homogeneous polynomial∑

1≤i+j≤4 ci,jX
iY jZ4−i−j such that f(x, y) = F (X,Y, Z)/Z4. Then

∂F

∂X
=

∑
1≤i+j≤3

ici,jX
i−1Y jZ4−i−j + c4,0X

3 + 2c2,2XY 2 + c1,3Y
3,

∂F

∂Y
=

∑
1≤i+j≤3

jci,jX
iY j−1Z4−i−j + c3,1X

3 + 2c2,2X
2Y + c0,4Y

3.

We put HX := c4,0X
3 + 2c2,2XY 2 + c1,3Y

3 and HY := c3,1X
3 + 2c2,2X

2Y +
c0,4Y

3.
Since ∂f/∂x and ∂f/∂y generate R as an R-module, V (∂f/∂x)∩V (∂f/∂y) =
∅ and so V (∂F/∂X) ∩ V (∂F/∂Y ) ⊆ L∞. If HX ̸= 0 and HY ̸= 0, we have
V (∂F/∂X) ∩ V (∂F/∂Y ) = V (HX) ∩ V (HY ) ∩ L∞.

Lemma 4.1. Assume that p = 3. Let f ∈ R be such that deg f = 4 and
R′ := Rp[f ] is regular. If the monomial x2y2 appears in f , then R′ is not
factorial, R′ = Rp[u + u2v2] for some system u and v of variables of R, and
R has no p-basis over R′.

Proof. Since c2,2 ̸= 0, after a suitable K-linear change of the system x and
y of variables of R, we are able to assume that c2,2 = 1 and c4,0 = c0,4 = 0.
Moreover we may assume that c2,1 = c1,2 = 0 with a suitable affine change of
the system x and y of variables of R. We will argue about 4 cases as below.

Case 1. Suppose that c3,1 = c1,3 = 0. Clearly V (∂F/∂X) ∩ V (∂F/∂Y ) =
{P, Q}. Now we consider the intersection number I(P, ∂F/∂X ∩ ∂F/∂Y ) of
∂F/∂X and ∂F/∂Y at P . Set

fX1 :=
1

Y 3

∂F

∂X
= c1,0z

3 + 2c2,0xz
2 + c1,1z

2 + 2x,

fY 1 :=
1

Y 3

∂F

∂Y
= c0,1z

3 + c1,1xz
2 + 2c0,2z

2 + 2x2,
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where x = X/Y (we use the same symbol with an affine coordinate x of A2)
and z = Z/Y . Then

I(P, ∂F/∂X ∩ ∂F/∂Y ) = I(P, fX1 ∩ fY 1) = I(P, fX1 ∩ (fY 1 − xfX1)).

Since fY 1 − xfX1 = z2fY 2 where fY 2 = −c0,2 + c0,1z + c2,0x
2 − c1,0xz, we

obtain
I(P, ∂F/∂X ∩ ∂F/∂Y ) = 2 + I(P, fX1 ∩ fY 2).

If c0,2 = 0, we have

I(P, fX1 ∩ fY 2) =


1 if c0,1 ̸= 0,

3 if c0,1 = 0, c1,1 ̸= 0,

4 if c0,1 = 0, c1,1 = 0.

On the other hand, if c0,2 ̸= 0, we have I(P, fX1 ∩ fY 2) = 0. Hence we obtain

I(P, ∂F/∂X ∩ ∂F/∂Y ) =


2 if c0,2 ̸= 0,

3 if c0,2 = 0, c0,1 ̸= 0,

5 if c0,2 = 0, c0,1 = 0, c1,1 ̸= 0,

6 if c0,2 = 0, c0,1 = 0, c1,1 = 0.

Similarly we have

I(Q, ∂F/∂X ∩ ∂F/∂Y ) =


2 if c2,0 ̸= 0,

3 if c2,0 = 0, c1,0 ̸= 0,

5 if c2,0 = 0, c1,0 = 0, c1,1 ̸= 0,

6 if c2,0 = 0, c1,0 = 0, c1,1 = 0.

Bézout’s theorem says I(P, ∂F/∂X ∩ ∂F/∂Y ) + I(Q, ∂F/∂X ∩ ∂F/∂Y ) = 9,
so we see that c2,0 = c0,2 = c1,1 = 0, and either c1,0 ̸= 0 and c0,1 = 0, or
c1,0 = 0 and c0,1 ̸= 0. Thus f is either c1,0x+ c3,0x

3 + c0,3y
3 + x2y2 (c1,0 ̸= 0)

or c0,1y + c3,0x
3 + c0,3y

3 + x2y2 (c0,1 ̸= 0).
Case 2. Suppose that c3,1 ̸= 0 and c1,3 = 0. First note that V (∂F/∂X) ∩

V (∂F/∂Y ) = {P}. Set

fX1 :=
1

Y 3

∂F

∂X
= c1,0z

3 + 2c2,0xz
2 + c1,1z

2 + 2x,

fY 1 :=
1

Y 3

∂F

∂Y
= c0,1z

3 + c1,1xz
2 + 2c0,2z

2 + c3,1x
3 + 2x2,

where x = X/Y and z = Z/Y . Then, since I(P, fX1 ∩ fY 1) = I(P, ∂F/∂X ∩
∂F/∂Y ) = 9, we have c0,2 = 0 and so fY 1 − xfX1 = c3,1x

3 + c0,1z
3 − c1,0xz

3 +



A REGULAR SUBRING AND A P -BASIS OF A POLYNOMIAL RING 13

c2,0x
2z2. Hence c0,1 = 0, because I(P, fX1∩(fY 1−xfX1)) = I(P, fX1∩fY 1) =

9. It follows that c1,0 ̸= 0 and fY 1 − xfX1 = xfY 2 where fY 2 = c3,1x
2 −

c1,0z
3 + c2,0xz

2. Clearly I(P, fX1 ∩ x) ≤ 3. Since fY 2 + c3,1xfX1 = z2fY 3

where fY 3 = (c2,0 + c1,1c3,1)x− c1,0z + c1,0c3,1xz − c2,0c3,1x
2, we have

I(P, fX1 ∩ fY 2) = I(P, fX1 ∩ (fY 2 + c3,1xfX1)) = 2 + I(P, fX1 ∩ fY 3) = 3,

and so I(P, fX1 ∩ fY 1) = I(P, fX1 ∩ x) + I(P, fX1 ∩ fY 2) ≤ 6. This is a
contradiction. Hence this case never occurs.

Case 3. Suppose that c3,1 = 0 and c1,3 ̸= 0. By the change of x and y, this
case is reduced to the previous case. Thus this case does not occur.

Case 4. Suppose that c3,1 ̸= 0 and c1,3 ̸= 0. Since HX = Y 2(−X + c1,3Y ),
HY = X2(c3,1X − Y ) and V (HX) ∩ V (HY ) ∩ L∞ ̸= ∅,we have c3,1c1,3 = 1.
Hence F is written as∑

1≤i+j≤3

ci,jX
iY jZ4−i−j +XY

(√
c3,1X − 1

√
c3,1

Y
)2

.

Setting X ′ :=
√
c3,1X − (1/

√
c3,1)Y , the polynomial F is given by

F ′ =
∑

1≤i+j≤3

c′i,j(X
′) iY jZ4−i−j +

1
√
c3,1

(X ′) 3Y +
1

c3,1
(X ′) 2Y 2.

Hence this case is reduced to Case 2 so that it never occurs.

We conclude that f is either c1,0x + c3,0x
3 + c0,3y

3 + x2y2 (c1,0 ̸= 0) or
c0,1y+ c3,0x

3+ c0,3y
3+x2y2 (c0,1 ̸= 0). This implies that there exists a system

u and v of variables of R such that R′ = Rp[u + u2v2]. When f = u + u2v2,
Rp[f ] is non-factorial by Lemma 2.4 and (∂f/∂u)2 = 1+fv2 ̸∈ Q(R′)⊕Q(R′)v
by Lemma 2.3. According to Lemma 2.2 the later fact implies that R has no
p-basis over R′.

Lemma 4.2. Assume that p = 3. Let f ∈ R be such that R′ = Rp[f ] is regular
and deg f = 4. If the monomial x2y2 does not appear in f , then there exists
a system u and v of variables of R such that one of the following conditions
holds:

(1) R′ is equal to the polynomial ring K[u, v3];

(2) R′ is a non-factorial ring, and is equal to Rp[u+u2v], or Rp[u+cu2+u3v]
for some c ∈ K.

Moreover, R has a p-basis over R′ in all cases.
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Proof. Case A. Suppose that c4,0 = c0,4 = 0. If c3,1 ̸= 0 and c1,3 ̸= 0, we have
V (HX)∩V (HY ) = ∅. Hence either c3,1 = 0 or c1,3 = 0. So we may assume that
c3,1 = 1 and c1,3 = 0. Moreover we may assume that c0,1 = 0 with a suitable
affine change of the system x and y of variables of R, and so c1,0 ̸= 0. Put
FX := c1,0Z

2 + 2c2,0XZ + c1,1Y Z + 2c2,1XY + c1,2Y
2. Then ∂F/∂X = ZFX .

Since I(P,Z ∩ ∂F/∂Y ) = 3, we have V (FX)∩V (∂F/∂Y ) = {P} and c1,2 = 0.
Set

fX1 :=
1

Y 2
FX = c1,0z

2 + 2c2,0xz + c1,1z + 2c2,1x,

fY 1 :=
1

Y 3

∂F

∂Y
= c1,1xz

2 + 2c0,2z
2 + c2,1x

2z + x3,

where x = X/Y and z = Z/Y .
Now we claim that c2,1 = 0. To show this, assume that c2,1 ̸= 0. Since

I(P, fX1 ∩ fY 1) = 6, we see that c0,2 = 0 and fY 1 = x(c1,1z
2 + c2,1xz + x2).

Moreover we get I(P, fX1 ∩ (c1,1z
2 + c2,1xz + x2)) ≥ 4. This implies that

fX1 and c1,1z
2 + c2,1xz + x2 have a tangent line in common at P . Hence

c1,1(c1,1 − c22,1) = 0. If c1,1 = 0, we have I(P, fX1 ∩ (c2,1xz+ x2)) = I(P, fX1 ∩
x) + I(P, fX1 ∩ (c2,1z + x)) = 3. This is contradictory to the fact I(P, fX1 ∩
(c2,1xz + x2)) ≥ 4. Hence c1,1 = c22,1, it follows that 6 = I(P, fX1 ∩ fY 1) =

I(P, fX1 ∩x)+ I(P, fX1 ∩ (c1,1z
2+ c2,1xz+x2)) = 1+2I(P, fX1 ∩ (c2,1z−x)),

which is a contradiction. Thus c2,1 = 0.
From the claim we obtain I(P, fX1 ∩ fY 1) = I(P, z ∩ fY 1) + I(P, (c1,0z −

c2,0x+ c1,1)∩ fY 1) = 3+ I(P, (c1,0z − c2,0x+ c1,1)∩ fY 1), and so I(P, (c1,0z −
c2,0x + c1,1) ∩ fY 1) = 3. Hence c1,1 = 0. If c0,2 = 0, we see that R′ =
Rp[c1,0x+ c2,0x

2 + x3y] is regular and non-factorial by Lemma 2.4, and R has
a p-basis over R′ by Lemmas 2.2 and 2.3. On the other hand, if c0,2 ̸= 0, we
obtain c2,0 = 0 and so

f = c1,0x+ c0,2y
2 + c3,0x

3 + c0,3y
3 + x3y

= c1,0x+ c0,2

(
y − 1

c0,2
x3

)2
+ c3,0x

3 + c0,3y
3 − 1

c0,2
x6.

Setting y′ := y − (1/c0,2)x
3, the polynomial f − c3,0x

3 − c0,3y
3 + (1/c0,2)x

6 is
given by f ′ = c1,0x+c0,2(y

′)2. Thus R′ = Rp[f ′ ] = K[f ′, (y′)p] is a polynomial
ring.

Case B. From now on suppose that c4,0 ̸= 0. By a suitable K-linear change
of the system x and y of variables of R, we may assume that c4,0 = 1, c0,4 = 0.
Moreover, we shall divide this case into three subcases.

Case B1. Suppose that c3,1 = c1,3 = 0. Then ∂F/∂Y = ZFY where
FY = c0,1Z

2 + c1,1XZ + 2c0,2Y Z + c2,1X
2 + 2c1,2XY . Clearly V (∂F/∂X) ∩

V (FY ) = {P}. Set

fX1 :=
1

Y 3

∂F

∂X
= c1,0z

3 + 2c2,0xz
2 + c1,1z

2 + 2c2,1xz + c1,2z + x3,
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fY 1 :=
1

Y 2
FY = c0,1z

2 + c1,1xz + 2c0,2z + c2,1x
2 + 2c1,2x,

where x = X/Y and z = Z/Y . Since I(P, fX1 ∩ fY 1) = 6, we get c1,2 = 0.
First we consider the case where c2,1 ̸= 0. Then, by a suitable affine change of
the system x and y of variables of R, we may assume that c2,0 = c1,1 = 0. If
c0,2 ̸= 0, we obtain c0,2fX1−c2,1xfY 1 = c1,0c0,2z

3−c0,1c2,1xz
2+(c0,2−c22,1)x

3,

and so c0,2 = c22,1 and c0,1 = 0. Hence

f = c1,0x+ c22,1y
2 + c3,0x

3 + c2,1x
2y + c0,3y

3 + x4

= c1,0x+ (c2,1y − x2)2 + c3,0x
3 + c0,3y

3.

Setting y′ := c2,1y − x2, the polynomial f − c3,0x
3 − c0,3y

3 is given by f ′ =
c1,0x+(y′)2. Hence, if c0,2 ̸= 0, then R′ = Rp[f ′ ] = K[f ′, (y′)p] is a polynomial
ring. On the other hand, if c0,2 = 0, we obtain c0,1 = 0, so that

f = c1,0x+ c3,0x
3 + c2,1x

2y + c0,3y
3 + x4.

Setting y′ := c2,1y + x2, the polynomial f − c3,0x
3 − c0,3y

3 is given by f ′ =
c1,0x + x2y′. Thus R′ = Rp[f ′ ] is regular and non-factorial, and R has a p-
basis over R′ (see (B) in §1). Next we consider the case where c2,1 = 0. Since
I(P, fX1 ∩ z) = 3, we have c0,2 = c1,1 = 0 and c0,1 ̸= 0, so that

f = c1,0x+ c0,1y + c2,0x
2 + c3,0x

3 + c0,3y
3 + x4.

Thus R′ is the polynomial ring K[f ′, (y′)p] where f ′ = f − c3,0x
3 − c0,3y

3 and
y′ = c0,1y + c2,0x

2 + x4.
Case B2. Suppose that c3,1 ̸= 0. ThenHX = X3+c1,3Y

3 andHX = c3,1X
3.

Hence c1,3 = 0. Setting Y ′ := X + c3,1Y , the polynomial F is given by

F ′ =
∑

1≤i+j≤3

c′i,jX
i(Y ′)jZ4−i−j +X3Y ′.

Hence this case is reduced to Case A.
Case B3. Suppose that c3,1 = 0 and c1,3 ̸= 0. Then F is written as∑

1≤i+j≤3

ci,jX
iY jZ4−i−j +X(X + 3

√
c1,3Y )3.

Setting X ′ := X + 3
√
c1,3Y and Y ′ := X, the polynomial F is given by

F ′ =
∑

1≤i+j≤3

c′i,j(X
′)i(Y ′)jZ4−i−j + (X ′)3Y ′.

Hence this case is reduced to Case A.
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Lemma 4.1 and Lemma 4.2 are made up into the following statement:

Theorem 4.3. Assume that p = 3. Let f ∈ R be such that R′ = Rp[f ] is
regular and deg f = 4. Then, there exists a system u and v of variables of R
such that one of the following conditions holds:

(1) R′ is equal to the polynomial ring K[u, v3];

(2) R′ is a non-factorial ring, and is equal to Rp[u + u2v2] or Rp[u + u2v],
or Rp[u+ cu2 + u3v] for some c ∈ K.

Moreover, R has no p-basis over R′ in the case of R′ = Rp[u+ u2v2], while R
has a p-basis over R′ in the other case.

Corollary 4.4. Assume that p = 3. Let f ∈ R be such that R′ = Rp[f ] is
regular and deg f ≤ 4. If R′ is factorial, then it is a polynomial ring in two
variables over K.

Proof. This assertion immediately follows from Theorem 4.3 and (B) in §1.

§5. Questions

Finally we present three questions under the condition that K has a prime
characteristic p greater than 3.

Question 1. For each d ∈ N with d ≥ p + 2 and d ̸≡ 0 (mod p), does
there exist a polynomial f ∈ R with deg f = d such that Rp[f ] is regular and
factorial, but is not a polynomial ring in two variables over K, and R has a
p-basis over Rp[f ]?

Question 2. For each d ∈ N with d ≥ p + 2 and d ̸≡ 0 (mod p), does
there exist a polynomial f ∈ R with deg f = d such that Rp[f ] is regular and
factorial, but is not a polynomial ring in two variables over K, and R has no
p-basis over Rp[f ]?

Question 3. Let f be a polynomial of R−Rp such that deg f ≤ p+1 and
Rp[f ] is regular and factorial. Does it follow that Rp[f ] is a polynomial ring
in two variables over K?
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