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Abstract. For any z,y € B, a unital Banach algebra and n > 1 we show that

1
n n n—1
y" — 2" < nlly—fﬂ\l/ A=ty +ty|  dt.
0
Upper bounds for quantities such as

If (@) = f @I I (2y) = f w2l

and

Hf(w)ﬂ;f(y) _f(w;ry)H

oo

that can naturally be associated with the analytic function f (A) :== >°77, a; N
defined on the open disk D (0, R) and the elements = and y of the unital Banach
algebra B are given. Some applications for functions of interest such as the
exponential map on B and the resolvent function are provided as well.
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§1. Introduction

Let B be an algebra over C. An algebra norm on B is a map ||-|| : B—[0, c0)
such that (B, ||-||) is a normed space, and, further:

labll < {lall [[ol

for any a,b € B. The normed algebra (B, ||-||) is a Banach algebra if ||| is a
complete norm.

We assume that the Banach algebra is unital, this means that B has an
identity 1 and that ||1]] = 1.
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26 S. S. DRAGOMIR

Let B be a unital algebra. An element a € B is invertible if there exists
an element b € B with ab = ba = 1. The element b is unique; it is called
the inverse of a and written a=! or % The set of invertible elements of B is

denoted by Inv B. If a,b €Inv B then ab €lnv B and (ab) ™" = b~'a" 1.
For a unital Banach algebra we also have:

(i) If a € B and limp_,o0 [|a®||*™ < 1, then 1 — a €lnv B;
(i) {beB: ||]1 -] <1} Clnv B;
(iii) InvB is an open subset of B;
)

(iv) The map InvB > a — a~! €Inv B is continuous.

For simplicity, we denote A1, where A € C and 1 is the identity of B, by .
The resolvent set of a € B is defined by

pla):={ e C: X—a€lnv B};

the spectrum of a is o (a), the complement of p(a) in C, and the resolvent
function of a is R, : p (a) —=Inv B,

Ri(\):=(\—a)"t.
For each A\, € p(a) we have the identity
Ra(7) = Ra(A) = (A =7) Ra (A) Ra (7) -

We also have that
o(a) c{AeC: [N <a|}.

The spectral radius of a is defined as
v(a) =sup{|\|: A€o (a)}.
If a,b are commuting elements in B, i.e. ab = ba, then
v(ab) <v(a)v(b) and v(a+b) <v(a)+v(b).
Let B a unital Banach algebra and a € B. Then
(i) The resolvent set p (a) is open in C;

(ii) For any bounded linear functionals A\ : B —C, the function A o R, is
analytic on p(a);

(iii) The spectrum o (a) is compact and nonempty in C;
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(iv) We have

v(a) = lim |a"|"".

Let f be an analytic functions on the open disk D (0, R) given by the power
series

o0
FO) =) a;X (A <R).
j=0
If v(a) < R, then the series Z;io aja’ converges in the Banach algebra B
because 372 || HCL]H < 00, and we can define f (a) to be its sum. Clearly
f (a) is well defined and there are many examples of important functions on

a Banach algebra B that can be constructed in this way. For instance, the
exponential map on B denoted exp and defined as

o0
1 .
expa := E ,—'aj for each a € B.
— ]
J=0

If B is not commutative, then many of the familiar properties of the expo-
nential function from the scalar case do not hold. The following key formula
is valid, however with the additional hypothesis of commutativity for a¢ and b
from B

exp (a 4+ b) = exp (a) exp (b) .

In a general Banach algebra B it is difficult to determine the elements in
the range of the exponential map exp (B), i.e. the element which have a
" logarithm”. However, it is easy to see that if a is an element in B such that
Il —al| <1, then a is in exp (B) . That follows from the fact that if we set

b:—Z%(l—COn’

n=1

then the series converges absolutely and, as in the scalar case, substituting
this series into the series expansion for exp (b) yields exp (b) = a.

Concerning other basic definitions and facts in the theory of Banach alge-
bras, the reader can consult the classical books [9] and [21].

Let B (H) be the Banach algebra of bounded linear operators on a separable
complex Hilbert space H. The absolute value of an operator A is the positive
operator |A| defined as |A| := (A*A)l/Q.

It is known that [3] in the infinite-dimensional case the map f (A) := |A] is
not Lipschitz continuous on B (H) with the usual operator norm, i.e. there is
no constant L > 0 such that

1Al =Bl < L[|A - B
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for any A,B € B(H).
However, as shown by Farforovskaya in [10], [11] and Kato in [16], the
following inequality holds

2 Al + 11 B]]
(1.1) 1Al =Bl < —[|A = B (2+10g(
G A =B

for any A, B € B(H) with A # B.
If the operator norm is replaced with Hilbert-Schmidt norm ||C| g =
(trC*C)l/ 2 of an operator C, then the following inequality is true [1]

(1.2) 1Al = Bllgs < V2I1A = Bligg

for any A, B € B(H).

The coefficient v/2 is best possible for a general A and B. If A and B are
restricted to be selfadjoint, then the best coefficient is 1.

It has been shown in [3] that, if A is an invertible operator, then for all
operators B in a neighborhood of A we have

(13) 1A= |Bll <@ |4~ Bl + a4~ B|*+0 (A - BI)

where 5

o = (A7 AN and @z = 47+ 471 g2,
In [2] the author also obtained the following Lipschitz type inequality
(1.4) If (A) = fF(B)II < f'(a) |A - B

where f is an operator monotone function on (0,00) and A, B > aly > 0.
One of the central problems in perturbation theory is to find bounds for

1 (A) = f (Bl

in terms of ||A — BY| for different classes of measurable functions f for which
the function of operator can be defined. For some results on this topic, see [4],
[12] and the references therein.

In this paper, motivated by the above considerations, we establish some
upper bounds for the following quantities

1 (@) = F @ (=y) = f o)l
Hf(x)-gf(y) g (%53/)”

Hf (%) + 7 (*)

and

5 — f(zy)
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that can naturally be associated with the analytic function f (\) := Z;’;O a; by
defined on the open disk D (0, R) and the elements z and y of the unital Banach
algebra B.

Some applications for functions of interest such as the exponential map on
B and the resolvent function are provided as well.

§2. Some Lipschitz Type Inequalities

The following result for powers holds.

Theorem 1. For any x,y € B and n > 1 we have

1
n—1
(2.1) Iy”—wnllénlly—xll/ 1A =t)z+tyl  dt.
0

Proof. We use the identity (see for instance [5, p. 254])
n—1

(2.2) a” —b" = Zan_l_] (a—0b)
j=0

that holds for any a,b € B and n > 1.

For x,y € B we consider the function ¢ : [0,1] — B defined by ¢ ()
[(1—t)x+ty]". Forte (0,1) and € # 0 with t+¢ € (0,1) we have from (2.2)
that

plt+e)—p) =[0-t—eaz+t+e)yl" —[(1-t)z+ty]"

n—1
e [l—t—e)z+t+e)y" T y—a)[(1-t)z+ty).
j=0

Dividing with € # 0 and taking the limit over ¢ — 0 we have in the norm
topology of B that

23) @) =lmlp(+e) - o)
n—1
= =tz +ty" " (y—a) (1 -tz +ty) .
j=0

Integrating on [0, 1] we get from (2.3) that

/ ¥ (1) dt = i/ (1=t + " (y—a) (1 - )z +ty) dt
0 =00
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and since .
| ®a=e)-om=y -2

then we get the following equality of interest
n—1 1 4 4
et =3 [ e - ) (- ek )
- 0
J:

for any z,y € B and n > 1.
Taking the norm and utilizing the properties of Bochner integral for vector
valued functions (see for instance [18, p. 21]) we have

(2.4)
Iy — -t D[ - 0z + 1)t
< Z/o H[(l —x+ty" T (y—z)[(1—t)z + ty]jH dt
j=0
n—1 1 ' 4
<> [ fia-oe w7 -l ia - 02+ | a
n—1 1 1 )
< [ 1a=nas el =l - 0w+ el
j=0
1 n—1
=nm—xwéuu—wx+wr dat
for any x,y € B and n > 1. O

Remark 1. Utilising the Hermite-Hadamard inequality for convex functions

t/f ca<p<a;§%,ﬂ@;qu7

(see for instance [8, p. 2]) we have the sequence of inequalities

1
(2.5) ly" — 2" < n\ly—x\/o (1= t) &+ ty|" " dt

-1 —1 —1
e+ ]

Tty
2

* 2

< Loy -z
_2ny x

1 1 1
< gnlly =l [l21"" + iyl

< nlly - afl max {Jlo|" ", Iyl" " }
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For other Hermite-Hadamard type inequalities that may be utilized to obtain
such upper bounds, see for instance [6], [7], [14], [15], [19], [20], [22], [23], [24],
[25] and [26]. The details are not presented here.

We also have

1
(2.6)  [ly" —a"[| < n!y—mH/o 11— t) @ + ty||" " dt

1
= n!y—frH/O (L= t) |+t llyl)" " at

1 el + Iy e+ [yl
5””9 || [(2 + 5

1 -1 -1
snlly =l [l=l"" + llyI" ]
< nly - afl max {|l|" ", Jyl" " }

We observe that if ||y|| # ||z||, then by the change of variable s = (1 — ) ||z|| +
t|ly|| we have

IN

IN

[ R a——
L—t) ||z +ty)" tdt = ———
0 Iyl = llzll Jya

B 7 14

oyl = el

s"ds

IE {lyl[ = [l]|, then

1
/0 (1 —t) llll + ¢yl de = [l=]" "

Utilising these observations we then get the following divided difference in-
equality for z # y

n __ .n 1
=20 < [0 =g+ttt
vl =");

n__ n .
Il lel™ gy # ]

(2.7)

-1 .
nllzl*7 i [yl = (=]l

Remark 2. We observe that the quantity nfol (1 = t) & + ty||" " dt, which
might be difficult to compute in various examples of Banach algebras, has got
the simpler bounds

n—1

)™+ gl
2

rry

Bl (wvy) = 9

1
2n
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and . .
I AEE it Jlyll # 12,
By (z,y) :==
nllzl"t iyl = el
It is natural then to ask which of these bounds is better?
Let m > 1. Then

1
By (z,y) = o™

2 + 2

-1 — —
HyHm 2™ + [y ™ ]

and

-1 -2 -1 .
yl™ ™ + Myl™ Nl 4+ ™ 3 [yl # (],
B2 (x7y) = 1
m ||z™ if [ly]| = [l| -

If we take y = tx with ||z|| = 1 and |t| # 1 then we get

1+tm—1 1+tm—1
By (t)=-m " +¢

2 2 2

and
By (t) = [t[™ " 4 At + 1.
If we take m = 4 and plot the difference

t+1) 1+ ef
d<t>:=2<‘ L g 2“)—(|t|3+|t|2+|t|+1)

3

on the interval [—8, 8], then we can conclude that some time the first bound
is better than the second, while other time the conclusion is the other way
around. The details for the plot are nor presented here.

Now, by the help of power series f(X) = > 7 o, A" we can naturally
construct another power series which will have as coefficients the absolute
values of the coefficients of the original series, namely, f, (X) := > 77 |on| A"
It is obvious that this new power series will have the same radius of convergence
as the original series. We also notice that if all coefficients «,, > 0, then f, = f.

The following result is valid.

Corollary 2. Let f(z) = > 2 anz" be a function defined by power series
with complex coefficients and convergent on the open disk D (0, R) C C, R > 0.
For any x,y € B with ||z||, ||y|| < R we have

1
(2.8) 1f () = f (@) < HnyH/O fa (I = 8) z + tyl]) dt.
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Proof. Now, for any m > 1, by making use of the inequality (2.1) we have
(2.9)

m m
E any” — E apx”
n=0 n=0

m
Z an (y" — ")
n=1
m
<Y el Iy — 2"
n=1

m 1
n—1
<ry—x|rzn\an|/0 11—t + iy dt
n=1

1 n n—1
= Iy:vll/0 (ananlll(lt)fc+ty!\ )dt-
n=1

Moreover, since ||z||, ||y|| < R, then the series Y > any™, > ooy anaz™ and

[e.e]

n—1
Y nlaal (1= t)z +ty]

n=1

are convergent and

Yoy =f(y), Y ana" = f(x)
n=0 n=0

while
oo

Sonlanl 0=tz 4ty = £ 010 -z +tyll).

n=1
Therefore, by taking the limit over m — oo in the inequality (2.9) we deduce
the desired result (2.8). O

Remark 3. We observe that f/, is monotonic nondecreasing and convex on
the interval [0, R) and since the function ¢ (t) := [[(1 —¢)x + ty|| is convex
on [0,1] we have that f, o is also convex on [0,1]. Utilising the Hermite-
Hadamard inequality for convex functions (see for instance [8, p. 2]) we have
the sequence of inequalities

1
210 17~ F @I < o=l [ 700D+
! e A ALED AU
sl —al |12 (|=52]) + d

2
% ly ==l [£2 (=) + fa (lyID)]
ly — @l max { fo (I=]) , fa (ly) }

IN

IN
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We also have

1
(2.11) [If (v) = F (o)l < Hy—ﬂf!/o fa (L —t) 2 + ty||) dt

IN

1
ly — =] /O fa (@ =) [l + t[ly[]) at

1 N NACIES AT
5yl |1 (1) o e e

5 Iy —all [£2 Q) + 7 lyI)]
Iy — el max {2 (), 2 (oD} -

We observe that if ||y|| # ||=|| , then by the change of variable s = (1 — t) ||z|| +
t|ly|| we have

IN

IN

IN

(lyll) = fa l)
lyll = fl=l

1 F
A.ﬁ«l—wmm+tmwﬂ= “

If {lyl[ = [l]|, then

1
A P2 = 1) llzll + ¢yl de = £ (1)

Utilising these observations we then get the following divided difference in-
equality for z # y

P O C]

! !
|y — || < /0 (1 =t)z + ty|) dt

Lellglfalzl) st 1y | |2,

fa (=) if lyll = =]l

If ||z||, |ly|| < M < R, then from either of the inequalities (2.5) or (2.6) we
have the Lipschitz type inequality

(2.13) 1f (y) = f (@) < fo (M) [ly —=|.
The following result for generalized commutator holds:

Corollary 3. Let f(X) = >_° jan\" be a function defined by power series
with complex coefficients and convergent on the open disk D (0, R) C C, R > 0.
For any x,y € B with ||zy||, |lyz|| < R we have

1
(2.14) If (zy) = f (o)l < lﬂ«“yyfd/O fa (11 = t) zy + tyz|)) dt.
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Since f! is monotonic nondecreasing and convex on the interval [0, R), then
(2.15) 1S (zy) = f (y)]]
1
<llay—yel [ F200 = ay-+ tye])ar

Ly E— [fg ( ) . fallayl) + £ (lyz])

>
% lzy — yell [£2 (leyll) + £2 (lyz])]

lzy — ya || max { £; (lzyll) . fa (ly=1) }
< ey = yall fo (] )

Y + Yyx
2

IN

IA

IN

and

(2.16) 1S (zy) = f (y)]]

1
< ||my—yz||/0 210 = 0wy + tye]) dt

1
< [lzy - y:z:||/0 fa (@ =1) lzyll + t ly=|) dt
< % - [f; <Hﬂfy\| ; ny||> o Ja(lzyl) g fa (ly=l))
1
< 5 llzy =yl [fa (lyl) + fa (ly=()]

< llzy — yaol| max { fz (Jzyll), fa (ly=]) }
< llwy = yall fo (] yll) -

If |z||,|lyll < M < R'Y2 then from the inequalities (2.15) we get the
simpler inequality

(2.17) I1f (yz) — f (@y)]| < fo (M?) |lyz — 2y -

§3. Bounds for the Jensen Difference

In this section we establish some bounds for the norm of the Jensen difference,
namely, the quantity

)

where z,y € B and f is a function defined on the Banach algebra B.
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Theorem 4. Let f(A) = > 2 anA" be a function defined by power series
with complex coefficients and convergent on the open disk D (0, R) C C, R > 0.
For any x,y € B with ||z||, |ly|| < R we have

) [f0ri0_(2ty)|

1
<gl=all [ [00=02+ ) - £ 0)]

The constant  is best possible in (3.1).
Proof. For any z,y € B and n > 2 we have from (2.1) that

n n—1
(3.2) ‘y” (x;y) <n H ‘ ﬂﬂy dt
n—1
*n ly dt
and
n n—1
(3.3) " — <x—;—y> < nHy dt.

We add (3.2) with (3.3), use the triangle inequality and divide by 2 to get

" 4y z+y\"
3.4 —
(3.4 (2
<snly—=|
1 1 n—1 n—1
x/ [Hu—t)wﬂ +H(1—t)+y+t dt
2 )y 2
Snlly - al
=-n|y—=x
9 Yy
1 1 1 n—1
x/ sx+y+(1—s —i—”sw—i-(l—s)x ]ds,
2 Jy 2 2

where we used for the last equality the change of variable s =1 — t.
Now, using the change of variable s = 27 we have

1 1
o,

and by the change of variable s =1 — v we have

1 1 n—1 1 1
/ .y,
2 Jo 2 Jo

r+y
2

n—1 1/2
s +(1—3s)x ds:/ (1 =7z +7y|" tdr
0

n—1

s$+y dv.

T+
5 (l—v)iy-f—vy

2

+(1-9)y
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Moreover, if we make the change of variable v = 27 — 1 we also have

1 1
2,

n—1 1
do — / (1= )z + 7y dr.
Therefore

1/2
1 1 n—1
2/ ] ds
0

1/2 1
= / (1 —T)x—i-TyH”*l dT—l—/ II(1 —T)a:+7'y\|"71 dr
0 1/2

(1_v)x+y

+ vy

z+ n—1
Y +

5~ +(1-s)y sx+y

5 +(1—-s)z

1
— / 11— )2+ ry|" " dr.
0

Utilising (3.4) we get

:U"—i—y”i z+y\"
2 2

Now, by making use of an argument similar to the one from the proof of
Corollary 2 we deduce that

0o 1 )
"f(x)—gf(y)_f<x—;y>“ < ;Hy—fL’Hann]/ (L=t o + g dt

- Hy—xu/ o (1@ =tz +tyll) — fo (0)] dt

0 (n=0,1),
<

1 -
snlly =zl fy 11 =tz +ty|" " dt (n>2).

and the inequality (3.1) is proved.
Now, assume that the inequality (3.1) holds with a constant C' > 0, i.e.

55) Lt (zia)|

1
< Clly — ] /0 [fa (1L =)@ + tyll) — fz (0)] dt,

for any =,y € B with ||z, [|y|| < R.
If we take in (3.5) f(z) = 2% and y = —2, € B, x # 0, then we get from
(3.5)

1
o] < 4C ol 11— 201t = 20
0
since fol |t — %} dt = 1.

Consequently ||z?|| < 2C |z||? for any = € B, x # 0 which implies that
c>1 O
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We observe that f! is monotonic nondecreasing and convex on the interval
[0, R) and since the function ¥ (t) := [[(1 — t) = + ty|| is convex on [0, 1] then
we have the sequence of inequalities:

(3.6)

e ()

1
slm—xw/ 7 =) + tyl) — ()] de

We also have

(3.7)

R A (2] pRACIER AT
SR I A R AIEEIAC)

< S lly =l fmax {2 (1) 2 (D} — 4 )]

e ()

§||Z/—:I:|/ (I =ty + tyl) — £1.(0)] det
<yl [ L0 el + 2l - £ 0] a

Lty [ (Lol SO LA
< 5 =l [£2 el + S2 (o) — 274 (0]

< S lly =l fmax {2 (1) 2 (oD} = £ )]

The inequalities (3.6) and (3.7) are sharp.
From (3.7) we get the following divided difference inequality as well:

(3.8)

()

S;Hy—xH/ 2=ty +tyl) — £(0)] dt
{(f<>f> £2(0)) i Iyl # =],

(fa (lzll) = £2 (0)) if [yl = ll=[l-
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Remark 4. If ||z]|, ||y|| < M < R, then from the inequalities (3.7) we have
the simpler inequality

|f(:v)—2Ff(y) _f<x+y

(3.9 )| <5 o0 - o) -2

The constant 3 is best possible in (3.9).

If we consider the exponential function exp (A) = 3°0° ) LA", then for any
z,y € B we have:

exp (z) +exp (y) exp <w2+y> H

(3.10) 5

1 1
< gly=al [ (e (=0t~ 1)
<% {exp (e exp(l\wll);reXp(llyH)} _ 1) ’
1
< glly—allx g (ealliealel _ ) i ) £ |jo]),

(exp (lall) = 1) it iyl = e
< 5 lly =l foxp (M) ~ 1],

where, for the last inequality we assume that ||y, ||z| < M.
Now, if we consider the functions (1 —A)~! and (1+ A\)™!, then for any
z,y € B with ||z], [Jy|]| <1 we have:

(lfz)'+0xy " <1ix+y>1

(3.11) ‘ 5

1
<gly—al | [ a=1a-0z+uh -1

IN

1
Sy — 2
_ 2 _ —2
(% [(17 Hw;ryH) 2 O=lel) 42r(1 llwlD) ]71>7

< [a=lleh ™ =™ =1 ] Iyl # el

(= el = 1] 3t iyl = e,
< g ly—al [0 1],

where, for the last inequality we assume that ||y||,||z]| < M < 1.
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84. Some Inequalities for Commuting Elements

For two commuting elements x,y € B it is of interest to estimate the distance

between % [f (:1:2) +f (y2)] and f (zy), namely the quantity

'f I ),

2

where f is a function defined on the Banach algebra B.
We have the following result:

Theorem 5. Let f(A) = Y 02 apn A" be a function defined by power series
with complex coefficients and convergent on the open disk D (0, R) C C, R > 0.
For any x,y € B with xy = yx and H$2H , Hy2H ,|lzyl] < R we have

(@) + ()

5 — f(xy)

m H

<iy—al2[ [ 5 (10— 0w )
=5 ) 0 a Yy
1
+ [0l 1 (0= 0e ).
0
Proof. We have from (2.1), for n > 1, that
1 . 2
(42) WP < nly -l (/O 11— t)z + ty] dt)
1 2(n—1)
< wly—al? [ 0= oa )
0

for any x,y € B.
The second inequality follows from the Cauchy-Bunyakovsky-Schwarz inte-

gral inequality
1 1
(/ h(s) ds> < / h? (s) ds.
0 0

Since x,y € B are commutative, then

2

2n 2n
(y" — a™)? =y — gt — 2y 4 2P =2 (y ;Lm - (ﬂcy)n> ;

which gives that

y2n + :L,Qn B

w8
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for n > 1.
Therefore, from (4.2) and (4.3) we have

y2TL + .’1:2” 2(n—1

(4.4) ' = ()" Lt

1 1
<l =al® [ 10 —ta -+

for n > 1 and for any commuting elements x,y € B.
Using the generalized triangle inequality and the inequality (4.4) we have

1 m m m
3 [Z ™+ anx2”] - an (wy)”H
n=0 n=0 n=0
m
< Z |oun|

L y2n + an "
Z On | =5 7 (zy)
n=1

n=1
1 “ 1 2(n—1)
<gly=al? Y aln? [ 10— t)a+ e
n=1

(4.5)

5 (zy)"

1 T 2(n—1)
=g ly=al? [ 3wl =+ e
n=1

Consider, for u # 0, the series

o 1 oo

E na,u™ = = g n2a,u™.
U

n=0 n=0

If we denote g (u) := > >2

[e.e]
ug' (u) = Z no,u”
n=0
and -
u (ug' (u)) = Z n?a,u”
n=0
However
u(ug' (w)" = ug' (u) +u’g" (u)
and then
[ee]
S nfanun = ¢/ (u) + ug” (0
n=0

for u # 0.
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Utilising the above relations we can conclude that

s 2 2(n—1)
> nlan| (1~ 1)z +ty]

n=1
= 2(n—1)
=Yl |1 =)@ + 1y
n=0
= (10 =tz +ty)?) + 11 = Oz +tyl? 2 (10 = Do+ ty]?)

for almost any ¢ € [0, 1].

Since all the series whose partial sums are involved in (4.5) are convergent,
then by letting m — oo in (4.5) we get the desired inequality (4.1). O

Remark 5. If we use the notation
D (f) () = f, (u) + uf) (u), u e D(0,R),

then the inequality (4.1) can be written in a simpler form as

(4.6) — [ (zy)

Hf (%) + f (%)
2

1 1
<glu=al® [ D& ) (100 +l) ar

)

’|

where x,y € B with xy = yx and Hx

vl eyl < R.

Remark 6. Utilising the Hermite-Hadamard inequality for convex functions,
we have

1
/ 11— )+ ey e
0

2(n=1) 2(n—1 2(n—1
1 P + g2 >]

L
=2

2

* 2

2(n—1) 2(n—1)
& + n— n—

for any n > 1.
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If we multiply this inequality with n? |a,| and sum, then we get
1 1
@n  glu=al® [ DR (10 =02+ 1)) i
1
<y ol

r+y
2

) D () (Jl21") + D () (ol )
+ 2

X
=)
ic
=
N

(D () (l21") + D& () (1)
2

1 2
< 2|y —
<3 ly — ||

< 3l al?max { D@ () (I1") .02 (1) (1ul) }

where z,y € B with zy = yz and HxQH ) Hy2H

simpler upper bounds for the quantity

f (@) + ()
2

, |zy|| < R, which provides some

— f(zy)

Moreover, if we assume that ||z||, |ly|| < M with M? < R, then
2 2 2
D@ (1) (1) . D& (1) (Iyll*) < D () (M”)
(o) ar s (o)
and from (4.6) and (4.7) we get the simple inequality

CORFAUS)

5 — f(zy)

(48) H < o lly =l [72 (") + 2 g2 (a17)]

for any x,y € B with xy = yz and ||z||, |ly]| < M with M? < R.

If we consider the exponential function exp (\), then for any z,y € B with
xy = yx and ||z||, ||ly|| < M we have the inequality

exp (3:2) + exp (yQ)

(4.9) .

1
—exp (ay) | < 5 lly—al” (14207 ) exp (M)

Now, if we consider the functions (1 — A) ™! and (1 + A)™", then for any z,y €

B with zy = yz and ||z|,||y|| < M < 1, we have the inequalities
(122 + (1+¢?) "

2 1+ M2
2

(4.10) T

-1+ ;ry)_1

<L
=5 y—x
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