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On units of a family of cubic number fields
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Abstract. We find the fundamental units of a family of cubic fields introduced
by Ishida. Using the family, we also construct a family of biquadratic fields
whose 3-class field tower has length greater than 1.
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8§1. Introduction

Let Z be the ring of rational integers, and let 6 be the real root of the irre-
ducible cubic polynomial f(X) = X3 —3X — b3, b(# 0) € Z. The discriminant
of f(X)is Dy = —=33(b® — 2)(b® + 2) and Dy < 0 provided b # +1. Let
K = Q(0) be the cubic field formed by adjoining 6 to the rationals Q. The
family of cubic fields was introduced by Ishida [3]. Ishida constructed an
unramified cyclic extension of degree 3% over K provided b = —1 (mod 32).
In this paper, we shall consider the case b = 0 (mod 3) which we did not
consider in the former paper [7]. Using the family, we shall construct a family
of biquadratic fields, and show that the length of 3-class field tower of the
biquadratic fields is greater than 1 by means of the result of Yoshida [12].

§2. Fundamental units

In this section, we shall prove a theorem about the fundamental unit of Q(6).
To prove the theorem, we need two lemmas about diophantine systems. Lee
and Spearman [8] proved the following Lemma 2.1 (see Lemma 3.1 in [7]).
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Lemma 2.1 ([8, Theorem 1.1]). The integer solutions (A, B, b) of the following
diophantine system are (0,—3,+1), (—1,—1,0), (3,3,0) and (8,17, £3):

A% 2B =3(b* + 1),
B2 —2A =3(b* + b +1).

Lemma 2.2. The integer solutions (A, B,b) of the following diophantine sys-
tem are (0,0,0), (3,3,0) and (—3,6,+3) :

A3 —3AB+3 = 3(b? + 1),
B3 —3AB+3=3(b*+b*+1).

Proof. We have

(2.1) A3 —3AB = 3b%,
(2.2) B® —3AB = 3(b" + b?).

(i) The case b = 0: If A = 0, then we have B = 0. If A # 0, then we have
B # 0. And easily we have A = B = 3. Therefore, in this case, we have
(A, B,b) = (0,0,0),(3,3,0).

(ii) The case b # 0: Obviously, we see A # 0, B # 0 and 3|4, B,b. We put
A =3Ay, B =3By, b=3by. From (2.1), (2.2) we have

(2.3) A3 — AgBy = b,
B — AgBy = 9b3 + b.

From (2.3),(2.4), we have
(2.5) B — A3 = 9b;.

From (2.3), (2.5), we have B§ — A} = 9(A} — A¢Bop)?. From this we have
(2.6) Bj = A3(9(AF — Bo)® + Ao).
We put Ag = Aym, By = Bym, where m = ged(Ag, Bo)(> 1), ged(A1, B1) = 1.
Hence, from (2.6), we have Bim? = A?m?(9(A?m? — Bym)? + Aym). From
this, we have
(2.7) B} = A2(9m(A3m — By)? + Ay).
Since ged(Ag, B1) = 1, we have A; = £1. Hence, from (2.7), we have

(2.8) B} =9m(m — B)? £1.
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From (2.8), we have
(2.9) B} —9B?m + 18Bym? — 9m® = +1.
Using the KASH 2.5 command ThueSolve, the solutions of (2.9) are

(2.10) (By,m) = (2, +1), (£1,0), (£1, £1).

Since m > 1, we have (B1,m) = (2,1),(1,1). Hence, we have (A1, B1,m)

(—=1,2,1),(1,1,1). Since Ay = Aym, By = Bym, we have (A, By) = (—1,2
(1,1). By (2.3), b3 = A3 — AgBo = 1 or 0. Since by # 0, we have (A, Bo, bo)

(—1,2,+£1). Hence, we have (A, B,b) = (340, 3By, 3by) = (—3,6,£3).

~—
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Now, we shall show one of our main results. In [7, Theorem 3.2], we only
treated the case b = +1 (mod 3).

Theorem 2.3. Let b(# 0,£1,43) € Z and let 63 — 30 — b3 = 0. Then, if
A(4b4)3 + 24 < | Dy,

€ (>1)

_ 1
1—-b(0-0)
is the fundamental unit of Q(0).

Proof. First, we note that
Fle) =& —3(b* + 1> + 1) + 3(b* + 1)e — 1 = 0.

If € is not a fundamental unit of Q(€), there exists a unit eo(> 1) of Q(6) such
that € = ¢fj, with some n € Z,n > 1. Suppose that ¢, satisfies

€8 —Bel+ Ao —1=0 (A, BeZ).

The case n = 2 (i.e., e = £3): We have relations

(2.11) { A% —2B =3(b? + 1),

B2 —2A =3(b* +b* +1).

By Lemma 2.1, the diophantine system (2.11) has the integer solutions (A, B, b)
= (0,-3,£1),(-1,-1,0),(3,3,0) and (8,17, £3). These solutions do not meet
the condition of b.

The case n = 3 (i.e., ¢ = 3): We have relations

3 _ _ 2
(2.12) { A3 —3AB+3=3(b?+1),

B3 —3AB+3=3(b*+b*+1).
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By Lemma 2.2, the diophantine system (2.12) has the integer solutions (A, B, b)
= (0,0,0), (3,3,0) and (—3,6,+£3). These solutions do not meet the condition
of b. Therefore we have shown that there exists no unit o(> 1) such that
€ = 5(2), 68 or 661. The other parts of the proof are the same as those of [7,
Theorem 3.2].

O

Remark. Lee and Spearman [8] pointed out that e is the sixth power of the
fundamental unit of Q(0) for the case b = +3.

Corollary 2.4. Let b(# 0,41,43) € Z and let 03 — 30 — b> = 0. Then, if
b3 — 2 or b3 + 2 is squarefree,

€ (>1)

B 1
1—-b(0—0b)

is the fundamental unit of Q(0). In particular, there exist infinitely many cubic

fields Q(0) such that € is the fundamental unit of Q(0).

Proof. The proof of Corollary 2.4 is the same as that of [7, Corollary 3.3] and
[7, Corollary 3.4]. O

83. A family of biquadratic fields

In this section, we shall construct a family of biquadratic fields using the
family of cubic fields. We shall show that the length of 3-class field tower of
the biquadratic field is greater than 1. As for class field tower, refer to Yoshida
[12]. Here, we need two lemmas.

Let K be a non-Galois cubic extension of Q; let L be the normal closure
of K and let k& be the quadratic field containd in L. Note that no primes
are totally ramified in the cubic field K < L/k is an unramified extension.
Assume that 3| Dy, (D is the discriminant of k) and that L/k is an unramified
extension. By [2, §1, (1)] (or [9, Theorem 3]), there exists some f € Z such
that Dx = Dif?. From this and 3| Dy, the decomposition of 3 in K is 3 = plp%,
where p1, po are distinct prime ideals lying above 3.

From Theorem 1 in [12], we obtain the following lemma.

Lemma 3.1 ([13, Lemma 8]). Let K, k be as above. If there exists a unit €
in K such that

1. € is not a cube of any unit of K,
2. €2 =1 (mod p?p3),
then the length of the 3-class field tower of k(v/—3) is greater than 1.
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The following lemma is shown in [12, Section 3].

Lemma 3.2. Let K,k be as Lemma 3.1. Let X® + AX? + BX — 1 be the
minimal polynomial of a unit n in K. Then

n=1 (mod pip3) <= 27| A+3,3°| A+ B.

Let b(# 0,43) € Z, 3|b and let 6 be the real root of the irreducible cubic
polynomial f(X) = X3 —3X — b® € Z[X]. The discriminant of f(X) is
Dy = =33(0b% —4) = =331 — 2)(b® + 2) and Dy < 0. Let K := Q(6),
k= Q(y/Dy) = Q(y/—3(b° — 4)). We shall consider a family of biquadratic

fields
Fy = Q(/—=3(t5 — 4),v/=3) = Q(/15 — 4,v/=3).

We can show that #{Fp; b(# 0,£3) € Z, 3|b} = oo. Indeed, let S be a finite
set of primes. By Dirichlet’s theorem on arithmetical progressions, we can
find an odd prime p such that p ¢ S and p = 2 (mod 3). For such p, we can
find ¢ € Z such that p||c® — 2. Then, for b € Z with b =0 (mod 3) and b = ¢
(mod p?), we have p||b® — 2 and 3|b. Since ged(b> — 2,0% +2) = 1 or 2, we
have p||Dy. Hence, we obtain p|Dj. Therefore, p is ramified in Fj, (see [11,
Hilfssatz 1]).

Using Lemma 3.1 and Lemma 3.2 we get the following theorem about Fj.

Theorem 3.3. Assume that b(# 0,£3) € Z, 3 | b. Then the length of the
3-class field tower of F, = Q(vVb% — 4,+/—3) is greater than 1.

Proof. We consider the minimal splitting field Kk of f(X). By [9, Theorem
1], no primes are totally ramified in the cubic field K. Hence, Kk/k is an
unramified cyclic cubic extension. Also, since 3 1 b% — 4, we have 3| Dy. There-
fore, the decomposition of 3 in K is 3 = p1p3, where py, pa are distinct prime
ideals lying above 3. Now, let F(X) = X® + AX? + BX — 1 be the minimal

m. Then A = —3(b4 +62 + 1) and B = 3(b2 + 1)
Hence, we have 27|(—3(b* + b%)) = A + 3, 3°|(—=3b*) = A + B. Therefore, by
Lemma 3.2, we have € = 1 (mod p2p3). Also, by the proof of Theorem 2.3, &

is not a cube of any unit of K. Therefore, by Lemma 3.1, the length of the
3-class field tower of k(/—3) = F} is greater than 1. O

polynomial of ¢ =

Remark. For the same reason as [12, p.334, example], the 3-rank of the ideal
class group of Fj is greater than 1.
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