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On units of a family of cubic number fields
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Abstract. We find the fundamental units of a family of cubic fields introduced
by Ishida. Using the family, we also construct a family of biquadratic fields
whose 3-class field tower has length greater than 1.
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§1. Introduction

Let Z be the ring of rational integers, and let θ be the real root of the irre-
ducible cubic polynomial f(X) = X3−3X− b3, b(̸= 0) ∈ Z. The discriminant
of f(X) is Df = −33(b3 − 2)(b3 + 2) and Df < 0 provided b ̸= ±1. Let
K = Q(θ) be the cubic field formed by adjoining θ to the rationals Q. The
family of cubic fields was introduced by Ishida [3]. Ishida constructed an
unramified cyclic extension of degree 32 over K provided b ≡ −1 (mod 32).

In this paper, we shall consider the case b ≡ 0 (mod 3) which we did not
consider in the former paper [7]. Using the family, we shall construct a family
of biquadratic fields, and show that the length of 3-class field tower of the
biquadratic fields is greater than 1 by means of the result of Yoshida [12].

§2. Fundamental units

In this section, we shall prove a theorem about the fundamental unit of Q(θ).
To prove the theorem, we need two lemmas about diophantine systems. Lee
and Spearman [8] proved the following Lemma 2.1 (see Lemma 3.1 in [7]).
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Lemma 2.1 ([8, Theorem 1.1]). The integer solutions (A,B, b) of the following
diophantine system are (0,−3,±1), (−1,−1, 0), (3, 3, 0) and (8, 17,±3):{

A2 − 2B = 3(b2 + 1),
B2 − 2A = 3(b4 + b2 + 1).

Lemma 2.2. The integer solutions (A,B, b) of the following diophantine sys-
tem are (0, 0, 0), (3, 3, 0) and (−3, 6,±3) :{

A3 − 3AB + 3 = 3(b2 + 1),
B3 − 3AB + 3 = 3(b4 + b2 + 1).

Proof. We have

A3 − 3AB = 3b2,(2.1)

B3 − 3AB = 3(b4 + b2).(2.2)

(i) The case b = 0: If A = 0, then we have B = 0. If A ̸= 0, then we have
B ̸= 0. And easily we have A = B = 3. Therefore, in this case, we have
(A,B, b) = (0, 0, 0), (3, 3, 0).

(ii) The case b ̸= 0: Obviously, we see A ̸= 0, B ̸= 0 and 3|A,B, b. We put
A = 3A0, B = 3B0, b = 3b0. From (2.1), (2.2) we have

A3
0 −A0B0 = b20,(2.3)

B3
0 −A0B0 = 9b40 + b20.(2.4)

From (2.3),(2.4), we have

B3
0 −A3

0 = 9b40.(2.5)

From (2.3), (2.5), we have B3
0 −A3

0 = 9(A3
0 −A0B0)

2. From this we have

B3
0 = A2

0(9(A
2
0 −B0)

2 +A0).(2.6)

We put A0 = A1m,B0 = B1m, where m = gcd(A0, B0)(≥ 1), gcd(A1, B1) = 1.
Hence, from (2.6), we have B3

1m
3 = A2

1m
2(9(A2

1m
2 − B1m)2 + A1m). From

this, we have

B3
1 = A2

1(9m(A2
1m−B1)

2 +A1).(2.7)

Since gcd(A1, B1) = 1, we have A1 = ±1. Hence, from (2.7), we have

B3
1 = 9m(m−B1)

2 ± 1.(2.8)
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From (2.8), we have

B3
1 − 9B2

1m+ 18B1m
2 − 9m3 = ±1.(2.9)

Using the KASH 2.5 command ThueSolve, the solutions of (2.9) are

(B1,m) = (±2,±1), (±1, 0), (±1,±1).(2.10)

Since m ≥ 1, we have (B1,m) = (2, 1), (1, 1). Hence, we have (A1, B1,m) =
(−1, 2, 1), (1, 1, 1). Since A0 = A1m,B0 = B1m, we have (A0, B0) = (−1, 2),
(1, 1). By (2.3), b20 = A3

0−A0B0 = 1 or 0. Since b0 ̸= 0, we have (A0, B0, b0) =
(−1, 2,±1). Hence, we have (A,B, b) = (3A0, 3B0, 3b0) = (−3, 6,±3).

Now, we shall show one of our main results. In [7, Theorem 3.2], we only
treated the case b ≡ ±1 (mod 3).

Theorem 2.3. Let b(̸= 0,±1,±3) ∈ Z and let θ3 − 3θ − b3 = 0. Then, if

4(4b4)
3
5 + 24 < |DK |,

ε =
1

1− b(θ − b)
(> 1)

is the fundamental unit of Q(θ).

Proof. First, we note that

F (ε) = ε3 − 3(b4 + b2 + 1)ε2 + 3(b2 + 1)ε− 1 = 0.

If ε is not a fundamental unit of Q(θ), there exists a unit ε0(> 1) of Q(θ) such
that ε = εn0 , with some n ∈ Z, n > 1. Suppose that ε0 satisfies

ε30 −Bε20 +Aε0 − 1 = 0 (A,B ∈ Z).

The case n = 2 (i.e., ε = ε20): We have relations{
A2 − 2B = 3(b2 + 1),
B2 − 2A = 3(b4 + b2 + 1).

(2.11)

By Lemma 2.1, the diophantine system (2.11) has the integer solutions (A,B, b)
= (0,−3,±1), (−1,−1, 0), (3, 3, 0) and (8, 17,±3). These solutions do not meet
the condition of b.

The case n = 3 (i.e., ε = ε30): We have relations{
A3 − 3AB + 3 = 3(b2 + 1),
B3 − 3AB + 3 = 3(b4 + b2 + 1).

(2.12)
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By Lemma 2.2, the diophantine system (2.12) has the integer solutions (A,B, b)
= (0, 0, 0), (3, 3, 0) and (−3, 6,±3). These solutions do not meet the condition
of b. Therefore we have shown that there exists no unit ε0(> 1) such that
ε = ε20, ε

3
0 or ε40. The other parts of the proof are the same as those of [7,

Theorem 3.2].

Remark. Lee and Spearman [8] pointed out that ε is the sixth power of the
fundamental unit of Q(θ) for the case b = ±3.

Corollary 2.4. Let b(̸= 0,±1,±3) ∈ Z and let θ3 − 3θ − b3 = 0. Then, if
b3 − 2 or b3 + 2 is squarefree,

ε =
1

1− b(θ − b)
(> 1)

is the fundamental unit of Q(θ). In particular, there exist infinitely many cubic
fields Q(θ) such that ε is the fundamental unit of Q(θ).

Proof. The proof of Corollary 2.4 is the same as that of [7, Corollary 3.3] and
[7, Corollary 3.4].

§3. A family of biquadratic fields

In this section, we shall construct a family of biquadratic fields using the
family of cubic fields. We shall show that the length of 3-class field tower of
the biquadratic field is greater than 1. As for class field tower, refer to Yoshida
[12]. Here, we need two lemmas.

Let K be a non-Galois cubic extension of Q; let L be the normal closure
of K and let k be the quadratic field containd in L. Note that no primes
are totally ramified in the cubic field K ⇔ L/k is an unramified extension.
Assume that 3|Dk (Dk is the discriminant of k) and that L/k is an unramified
extension. By [2, §1, (1)] (or [9, Theorem 3]), there exists some f ∈ Z such
that DK = Dkf

2. From this and 3|Dk, the decomposition of 3 in K is 3 = p1p
2
2,

where p1, p2 are distinct prime ideals lying above 3.
From Theorem 1 in [12], we obtain the following lemma.

Lemma 3.1 ([13, Lemma 8]). Let K, k be as above. If there exists a unit ε
in K such that

1. ε is not a cube of any unit of K,

2. ε2 ≡ 1 (mod p21p
3
2),

then the length of the 3-class field tower of k(
√
−3) is greater than 1.
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The following lemma is shown in [12, Section 3].

Lemma 3.2. Let K, k be as Lemma 3.1. Let X3 + AX2 + BX − 1 be the
minimal polynomial of a unit η in K. Then

η ≡ 1 (mod p21p
3
2) ⇐⇒ 27 | A+ 3, 35 | A+B.

Let b(̸= 0,±3) ∈ Z, 3|b and let θ be the real root of the irreducible cubic
polynomial f(X) = X3 − 3X − b3 ∈ Z[X]. The discriminant of f(X) is
Df = −33(b6 − 4) = −33(b3 − 2)(b3 + 2) and Df < 0. Let K := Q(θ),

k := Q(
√

Df ) = Q(
√

−3(b6 − 4)). We shall consider a family of biquadratic
fields

Fb := Q(
√
−3(b6 − 4),

√
−3) = Q(

√
b6 − 4,

√
−3).

We can show that #{Fb; b(̸= 0,±3) ∈ Z, 3|b} = ∞. Indeed, let S be a finite
set of primes. By Dirichlet’s theorem on arithmetical progressions, we can
find an odd prime p such that p ̸∈ S and p ≡ 2 (mod 3). For such p, we can
find c ∈ Z such that p||c3 − 2. Then, for b ∈ Z with b ≡ 0 (mod 3) and b ≡ c
(mod p2), we have p||b3 − 2 and 3|b. Since gcd(b3 − 2, b3 + 2) = 1 or 2, we
have p||Df . Hence, we obtain p|Dk. Therefore, p is ramified in Fb (see [11,
Hilfssatz 1]).

Using Lemma 3.1 and Lemma 3.2 we get the following theorem about Fb.

Theorem 3.3. Assume that b( ̸= 0,±3) ∈ Z, 3 | b. Then the length of the
3-class field tower of Fb = Q(

√
b6 − 4,

√
−3) is greater than 1.

Proof. We consider the minimal splitting field Kk of f(X). By [9, Theorem
1], no primes are totally ramified in the cubic field K. Hence, Kk/k is an
unramified cyclic cubic extension. Also, since 3 - b6− 4, we have 3|Dk. There-
fore, the decomposition of 3 in K is 3 = p1p

2
2, where p1, p2 are distinct prime

ideals lying above 3. Now, let F (X) = X3 + AX2 + BX − 1 be the minimal

polynomial of ε =
1

1− b(θ − b)
. Then A = −3(b4 + b2 +1) and B = 3(b2 +1).

Hence, we have 27|(−3(b4 + b2)) = A + 3, 35|(−3b4) = A + B. Therefore, by
Lemma 3.2, we have ε ≡ 1 (mod p21p

3
2). Also, by the proof of Theorem 2.3, ε

is not a cube of any unit of K. Therefore, by Lemma 3.1, the length of the
3-class field tower of k(

√
−3) = Fb is greater than 1.

Remark. For the same reason as [12, p.334, example], the 3-rank of the ideal
class group of Fb is greater than 1.
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