On units of a family of cubic number fields

Kan Kaneko

(Received November 22, 2013; Revised September 1, 2014)

Abstract. We find the fundamental units of a family of cubic fields introduced by Ishida. Using the family, we also construct a family of biquadratic fields whose 3-class field tower has length greater than 1.

AMS 2010 Mathematics Subject Classification. 11R16, 11R27.

Key words and phrases. Cubic fields, fundamental units, biquadratic fields.

§1. Introduction

Let \mathbb{Z} be the ring of rational integers, and let θ be the real root of the irreducible cubic polynomial $f(X) = X^3 - 3X - b^3$, $b(\neq 0) \in \mathbb{Z}$. The discriminant of f(X) is $D_f = -3^3(b^3 - 2)(b^3 + 2)$ and $D_f < 0$ provided $b \neq \pm 1$. Let $K = \mathbb{Q}(\theta)$ be the cubic field formed by adjoining θ to the rationals \mathbb{Q} . The family of cubic fields was introduced by Ishida [3]. Ishida constructed an unramified cyclic extension of degree 3^2 over K provided $b \equiv -1 \pmod{3^2}$.

In this paper, we shall consider the case $b \equiv 0 \pmod{3}$ which we did not consider in the former paper [7]. Using the family, we shall construct a family of biquadratic fields, and show that the length of 3-class field tower of the biquadratic fields is greater than 1 by means of the result of Yoshida [12].

§2. Fundamental units

In this section, we shall prove a theorem about the fundamental unit of $\mathbb{Q}(\theta)$. To prove the theorem, we need two lemmas about diophantine systems. Lee and Spearman [8] proved the following Lemma 2.1 (see Lemma 3.1 in [7]).

20 K. KANEKO

Lemma 2.1 ([8, Theorem 1.1]). The integer solutions (A, B, b) of the following diophantine system are $(0, -3, \pm 1)$, (-1, -1, 0), (3, 3, 0) and $(8, 17, \pm 3)$:

$$\begin{cases} A^2 - 2B = 3(b^2 + 1), \\ B^2 - 2A = 3(b^4 + b^2 + 1). \end{cases}$$

Lemma 2.2. The integer solutions (A, B, b) of the following diophantine system are (0, 0, 0), (3, 3, 0) and $(-3, 6, \pm 3)$:

$$\begin{cases} A^3 - 3AB + 3 = 3(b^2 + 1), \\ B^3 - 3AB + 3 = 3(b^4 + b^2 + 1). \end{cases}$$

Proof. We have

$$(2.1) A^3 - 3AB = 3b^2,$$

$$(2.2) B^3 - 3AB = 3(b^4 + b^2).$$

(i) The case b = 0: If A = 0, then we have B = 0. If $A \neq 0$, then we have $B \neq 0$. And easily we have A = B = 3. Therefore, in this case, we have (A, B, b) = (0, 0, 0), (3, 3, 0).

(ii) The case $b \neq 0$: Obviously, we see $A \neq 0$, $B \neq 0$ and 3|A, B, b. We put $A = 3A_0$, $B = 3B_0$, $b = 3b_0$. From (2.1), (2.2) we have

$$(2.3) A_0^3 - A_0 B_0 = b_0^2,$$

$$(2.4) B_0^3 - A_0 B_0 = 9b_0^4 + b_0^2.$$

From (2.3),(2.4), we have

$$(2.5) B_0^3 - A_0^3 = 9b_0^4.$$

From (2.3), (2.5), we have $B_0^3 - A_0^3 = 9(A_0^3 - A_0B_0)^2$. From this we have

(2.6)
$$B_0^3 = A_0^2 (9(A_0^2 - B_0)^2 + A_0).$$

We put $A_0 = A_1 m$, $B_0 = B_1 m$, where $m = \gcd(A_0, B_0) (\geq 1)$, $\gcd(A_1, B_1) = 1$. Hence, from (2.6), we have $B_1^3 m^3 = A_1^2 m^2 (9(A_1^2 m^2 - B_1 m)^2 + A_1 m)$. From this, we have

(2.7)
$$B_1^3 = A_1^2 (9m(A_1^2m - B_1)^2 + A_1).$$

Since $gcd(A_1, B_1) = 1$, we have $A_1 = \pm 1$. Hence, from (2.7), we have

(2.8)
$$B_1^3 = 9m(m - B_1)^2 \pm 1.$$

From (2.8), we have

$$(2.9) B_1^3 - 9B_1^2m + 18B_1m^2 - 9m^3 = \pm 1.$$

Using the KASH 2.5 command *ThueSolve*, the solutions of (2.9) are

$$(2.10) (B_1, m) = (\pm 2, \pm 1), (\pm 1, 0), (\pm 1, \pm 1).$$

Since $m \ge 1$, we have $(B_1, m) = (2, 1), (1, 1)$. Hence, we have $(A_1, B_1, m) = (-1, 2, 1), (1, 1, 1)$. Since $A_0 = A_1 m, B_0 = B_1 m$, we have $(A_0, B_0) = (-1, 2), (1, 1)$. By $(2.3), b_0^2 = A_0^3 - A_0 B_0 = 1$ or 0. Since $b_0 \ne 0$, we have $(A_0, B_0, b_0) = (-1, 2, \pm 1)$. Hence, we have $(A, B, b) = (3A_0, 3B_0, 3b_0) = (-3, 6, \pm 3)$.

Now, we shall show one of our main results. In [7, Theorem 3.2], we only treated the case $b \equiv \pm 1 \pmod{3}$.

Theorem 2.3. Let $b(\neq 0, \pm 1, \pm 3) \in \mathbb{Z}$ and let $\theta^3 - 3\theta - b^3 = 0$. Then, if $4(4b^4)^{\frac{3}{5}} + 24 < |D_K|$,

$$\varepsilon = \frac{1}{1 - b(\theta - b)} (> 1)$$

is the fundamental unit of $\mathbb{Q}(\theta)$.

Proof. First, we note that

$$F(\varepsilon) = \varepsilon^3 - 3(b^4 + b^2 + 1)\varepsilon^2 + 3(b^2 + 1)\varepsilon - 1 = 0.$$

If ε is not a fundamental unit of $\mathbb{Q}(\theta)$, there exists a unit $\varepsilon_0(>1)$ of $\mathbb{Q}(\theta)$ such that $\varepsilon = \varepsilon_0^n$, with some $n \in \mathbb{Z}, n > 1$. Suppose that ε_0 satisfies

$$\varepsilon_0^3 - B\varepsilon_0^2 + A\varepsilon_0 - 1 = 0 \ (A, B \in \mathbb{Z}).$$

The case n=2 (i.e., $\varepsilon=\varepsilon_0^2$): We have relations

(2.11)
$$\begin{cases} A^2 - 2B = 3(b^2 + 1), \\ B^2 - 2A = 3(b^4 + b^2 + 1). \end{cases}$$

By Lemma 2.1, the diophantine system (2.11) has the integer solutions (A, B, b) = $(0, -3, \pm 1), (-1, -1, 0), (3, 3, 0)$ and $(8, 17, \pm 3)$. These solutions do not meet the condition of b.

The case n=3 (i.e., $\varepsilon=\varepsilon_0^3$): We have relations

(2.12)
$$\begin{cases} A^3 - 3AB + 3 = 3(b^2 + 1), \\ B^3 - 3AB + 3 = 3(b^4 + b^2 + 1). \end{cases}$$

By Lemma 2.2, the diophantine system (2.12) has the integer solutions (A, B, b) = (0,0,0),(3,3,0) and $(-3,6,\pm 3)$. These solutions do not meet the condition of b. Therefore we have shown that there exists no unit $\varepsilon_0(>1)$ such that $\varepsilon = \varepsilon_0^2, \varepsilon_0^3$ or ε_0^4 . The other parts of the proof are the same as those of [7, Theorem 3.2].

Remark. Lee and Spearman [8] pointed out that ε is the sixth power of the fundamental unit of $\mathbb{Q}(\theta)$ for the case $b = \pm 3$.

Corollary 2.4. Let $b(\neq 0, \pm 1, \pm 3) \in \mathbb{Z}$ and let $\theta^3 - 3\theta - b^3 = 0$. Then, if $b^3 - 2$ or $b^3 + 2$ is squarefree,

$$\varepsilon = \frac{1}{1 - b(\theta - b)} (> 1)$$

is the fundamental unit of $\mathbb{Q}(\theta)$. In particular, there exist infinitely many cubic fields $\mathbb{Q}(\theta)$ such that ε is the fundamental unit of $\mathbb{Q}(\theta)$.

Proof. The proof of Corollary 2.4 is the same as that of [7, Corollary 3.3] and [7, Corollary 3.4].

§3. A family of biquadratic fields

In this section, we shall construct a family of biquadratic fields using the family of cubic fields. We shall show that the length of 3-class field tower of the biquadratic field is greater than 1. As for class field tower, refer to Yoshida [12]. Here, we need two lemmas.

Let K be a non-Galois cubic extension of \mathbb{Q} ; let L be the normal closure of K and let k be the quadratic field containd in L. Note that no primes are totally ramified in the cubic field $K \Leftrightarrow L/k$ is an unramified extension. Assume that $3|D_k$ (D_k is the discriminant of k) and that L/k is an unramified extension. By $[2, \S 1, (1)]$ (or [9, Theorem 3]), there exists some $\mathfrak{f} \in \mathbb{Z}$ such that $D_K = D_k \mathfrak{f}^2$. From this and $3|D_k$, the decomposition of 3 in K is $3 = \mathfrak{p}_1 \mathfrak{p}_2^2$, where $\mathfrak{p}_1, \mathfrak{p}_2$ are distinct prime ideals lying above 3.

From Theorem 1 in [12], we obtain the following lemma.

Lemma 3.1 ([13, Lemma 8]). Let K, k be as above. If there exists a unit ε in K such that

1. ε is not a cube of any unit of K,

$$2. \ \varepsilon^2 \equiv 1 \ (\text{mod } \mathfrak{p}_1^2 \mathfrak{p}_2^3),$$

then the length of the 3-class field tower of $k(\sqrt{-3})$ is greater than 1.

The following lemma is shown in [12, Section 3].

Lemma 3.2. Let K, k be as Lemma 3.1. Let $X^3 + AX^2 + BX - 1$ be the minimal polynomial of a unit η in K. Then

$$\eta \equiv 1 \pmod{\mathfrak{p}_1^2 \mathfrak{p}_2^3} \Longleftrightarrow 27 \mid A+3, 3^5 \mid A+B.$$

Let $b(\neq 0, \pm 3) \in \mathbb{Z}$, 3|b and let θ be the real root of the irreducible cubic polynomial $f(X) = X^3 - 3X - b^3 \in \mathbb{Z}[X]$. The discriminant of f(X) is $D_f = -3^3(b^6 - 4) = -3^3(b^3 - 2)(b^3 + 2)$ and $D_f < 0$. Let $K := \mathbb{Q}(\theta)$, $k := \mathbb{Q}(\sqrt{D_f}) = \mathbb{Q}(\sqrt{-3(b^6 - 4)})$. We shall consider a family of biquadratic fields

$$F_b := \mathbb{Q}(\sqrt{-3(b^6-4)}, \sqrt{-3}) = \mathbb{Q}(\sqrt{b^6-4}, \sqrt{-3}).$$

We can show that $\#\{F_b;\ b(\neq 0,\pm 3)\in\mathbb{Z},\ 3|b\}=\infty$. Indeed, let S be a finite set of primes. By Dirichlet's theorem on arithmetical progressions, we can find an odd prime p such that $p\notin S$ and $p\equiv 2\pmod 3$. For such p, we can find $c\in\mathbb{Z}$ such that $p||c^3-2$. Then, for $b\in\mathbb{Z}$ with $b\equiv 0\pmod 3$ and $b\equiv c\pmod p^2$, we have $p||b^3-2$ and 3|b. Since $\gcd(b^3-2,b^3+2)=1$ or 2, we have $p||D_f$. Hence, we obtain $p|D_k$. Therefore, p is ramified in F_b (see [11, Hilfssatz 1]).

Using Lemma 3.1 and Lemma 3.2 we get the following theorem about F_b .

Theorem 3.3. Assume that $b(\neq 0, \pm 3) \in \mathbb{Z}$, $3 \mid b$. Then the length of the 3-class field tower of $F_b = \mathbb{Q}(\sqrt{b^6 - 4}, \sqrt{-3})$ is greater than 1.

Proof. We consider the minimal splitting field Kk of f(X). By [9, Theorem 1], no primes are totally ramified in the cubic field K. Hence, Kk/k is an unramified cyclic cubic extension. Also, since $3 \nmid b^6 - 4$, we have $3|D_k$. Therefore, the decomposition of 3 in K is $3 = \mathfrak{p}_1\mathfrak{p}_2^2$, where $\mathfrak{p}_1,\mathfrak{p}_2$ are distinct prime ideals lying above 3. Now, let $F(X) = X^3 + AX^2 + BX - 1$ be the minimal polynomial of $\varepsilon = \frac{1}{1 - b(\theta - b)}$. Then $A = -3(b^4 + b^2 + 1)$ and $B = 3(b^2 + 1)$.

Hence, we have $27|(-3(b^4+b^2))=A+3$, $3^5|(-3b^4)=A+B$. Therefore, by Lemma 3.2, we have $\varepsilon \equiv 1 \pmod{\mathfrak{p}_1^2\mathfrak{p}_2^3}$. Also, by the proof of Theorem 2.3, ε is not a cube of any unit of K. Therefore, by Lemma 3.1, the length of the 3-class field tower of $k(\sqrt{-3})=F_b$ is greater than 1.

Remark. For the same reason as [12, p.334, example], the 3-rank of the ideal class group of F_b is greater than 1.

Acknowledgement

I thank the referee for his/her numerous remarks and suggestions for improvement.

24

References

- [1] P. Erdös, Arithmetical properties of polynomials, J. London Math. Soc. 28 (1953), 416–425.
- [2] H. Hasse, Arithmetische Theorie der kubischen Zahlkörper auf klassenkörpertheoretischer Grundlage, Math. Z. **31** (1930), 565–582.
- [3] M. Ishida, Existence of an unramified cyclic extension and congruence conditions, Acta Arith. **51** (1988), 75–84.
- [4] M. Ishida, The genus fields of algebraic number fields, Lecture Notes Math. 555 (1976), Springer Verlag.
- [5] M. Ishida, Fundamental Units of Certain Algebraic Number Field, Abh. Math. Sem. Univ. Hamburg **39** (1973), 245–250.
- [6] K. Kaneko, On the cubic fields $\mathbb{Q}(\theta)$ defined by $\theta^3 3\theta + b^3 = 0$, SUT J. Math. **32** (1996), 141–147.
- [7] K. Kaneko, Integral bases and fundamental units of certain cubic number fields, SUT J. Math. **39** (2003), 117–124.
- [8] Paul D. Lee and Blair K. Spearman, A Diophantine System and a Problem on Cubic Fields, Int. Math. Forum 6 (2011), 141–146.
- [9] P. Llorente and E. Nart, Effective determination of the decomposition of the rational primes in a cubic field, Proc. Amer. Math. Soc. 87 (1983), 579–585.
- [10] R. Morikawa, On Units of certain Cubic Number Fields, Abh. Math. Sem. Univ. Hamburg 42 (1974), 72–77.
- [11] H. Reichardt, Arithmetische Theorie der kubischen Körper als Radikalkörper, Monatsh. Math. Phys. 40 (1933), 323–350.
- [12] E. Yoshida, On the 3-class field tower of some biquadratic fields, Acta Arith. 107 (2003), 327–336.
- [13] E. Yoshida, On the unit groups and the ideal class groups of certain cubic number fields, SUT J. Math. **39** (2003), 125–136.

Kan Kaneko

Graduate School of Mathematics, University of Tsukuba 1-1-1 Tennohdai, Tsukuba, Ibaraki 305-8573, Japan