Totally vertex-magic cordial labeling

P. Jeyanthi and N. Angel Benseera

(Received September 21, 2010; Revised May 26, 2013)

Abstract. In this paper, we introduce a new labeling called Totally Vertex-Magic Cordial(TVMC) labeling. A graph $G(p,q)$ is said to be TVMC with a constant *C* if there is a mapping $f: V(G) \cup E(G) \rightarrow \{0, 1\}$ such that

$$
\[f(a) + \sum_{b \in N(a)} f(ab) \] \equiv C \pmod{2}
$$

for all vertices $a \in V(G)$ and $|n_f(0) - n_f(1)| \leq 1$, where $N(a)$ is the set of vertices adjacent to the vertex *a* and $n_f(i)(i=0,1)$ is the sum of the number of vertices and edges with label *i*.

AMS 2010 *Mathematics Subject Classification.* 05C78.

Key words and phrases. Totally vertex-magic cordial, sun graph, friendship graph.

*§***1. Introduction**

All graphs considered here are finite, simple and undirected. The set of vertices and edges of a graph *G* will be denoted by $V(G)$ and $E(G)$ respectively, and let $p = |V(G)|$ and $q = |E(G)|$. A labeling of a graph *G* is a mapping that carries a set of graph elements usually the vertices and/or edges, into a set of numbers, usually integers, called labels. Many kinds of labelings have been studied and an excellent survey of graph labeling can be found in Gallian [3]. For all other terminology and notation we follow Harary [4]. The concept of cordial labeling was introduced by Cahit [1]. A binary vertex labeling $f: V(G) \to \{0,1\}$ induces an edge labeling $f^* : E(G) \to \{0,1\}$ defined by $f^*(uv) = |f(u) - f(v)|$. Such a labeling is called cordial if the conditions *|v*_{*f*}(0) − *v*_{*f*}(1)| ≤ 1 and $|e_{f*}(0) - e_{f*}(1)|$ ≤ 1 are satisfied, where *v*_{*f*}(*i*) and $e_{f^*}(i)(i=0,1)$ are the number of vertices and edges with label *i* respectively. A graph is called cordial if it admits cordial labeling.

Totally Magic Cordial(TMC) labeling was introduced by Cahit in [2] as a modification of total edge-magic labeling. A (p, q) graph *G* is said to have a totally magic cordial labeling with constant *C* if there exists a mapping $f: V(G) \cup E(G) \rightarrow \{0,1\}$ such that $f(a) + f(b) + f(ab) \equiv C \pmod{2}$ for all edges $ab \in E(G)$ provided the condition $|f(0) - f(1)| \leq 1$, where $f(0) =$ $v_f(0) + e_f(0)$, $f(1) = v_f(1) + e_f(1)$ and $v_f(i)$, $e_f(i)(i = 0, 1)$ are the number of vertices and edges with label *i*, respectively. It is proved that the graphs $K_{m,n}(m, n > 1)$, trees and K_n for $n = 2, 3, 5$ or 6 have TMC labeling.

J. A. MacDougall et al. introduced the concept of vertex-magic total labeling in [6]. A one-to-one map λ from $V \cup E$ onto the integers $\{1, 2, ..., p + q\}$ is a vertex-magic total labeling if there is a constant *k* so that for every vertex $x, \lambda(x) + \sum \lambda(xy) = k$, where the sum is over all vertices *y* adjacent to *x*. The sum $\lambda(x) + \sum \lambda(xy)$ is called the weight of the vertex *x* and is denoted by $wt(x)$. The constant *k* is called the magic constant for λ . In this paper, we modify the vertex-magic total labeling into a new labeling called totally vertex magic cordial labeling and we examine the totally vertex magic cordiality of some graphs.

*§***2. Totally vertex-magic cordial labeling**

In this section, we define totally vertex-magic cordial labeling and we prove vertex-magic total graph is totally vertex-magic cordial.

Definition 2.1. *A* (*p, q*) *graph G is said to have a totally vertex-magic cordial (TVMC)* labeling with constant *C* if there is a mapping $f: V(G) \cup E(G) \rightarrow$ *{*0*,* 1*} such that*

$$
\[f(a) + \sum_{b \in N(a)} f(ab) \] \equiv C \pmod{2}
$$

for all vertices $a \in V(G)$ *provided the condition,* $|n_f(0) - n_f(1)| \leq 1$ *is held, where* $N(a)$ *is the set of vertices adjacent to a vertex a and* $n_f(i)(i = 0, 1)$ *is the sum of the number of vertices and edges with label i.*

A graph is called totally vertex-magic cordial if it admits totally vertexmagic cordial labeling .

Theorem 2.2. *If G is a vertex-magic total graph then G is totally vertexmagic cordial.*

Proof. Let *f* be a vertex-magic total labeling of a graph *G* with *p* vertices and *g* edges and with weight *k*. Define $q: V(G) \cup E(G) \rightarrow \{0, 1\}$ by $q(v) \equiv f(v)$

 $p(\text{mod } 2)$ if $v \in V(G)$ and $q(e) \equiv f(e) \pmod{2}$ if $e \in E(G)$. Then, $C = 0$ if k is even and $C = 1$ if *k* is odd. Since there are exactly $\lceil \frac{p+q}{2} \rceil$ $\frac{+q}{2}$ odd integers and ⌊ *p*+*q* $\frac{+q}{2}$ even integers in the set {1, 2, 3, ..., *p* + *q*} we have, $|n_f(0) - n_f(1)|$ ≤ 1. Hence, *g* is a totally vertex-magic cordial labeling of *G*. \Box

*§***3. Totally vertex-magic cordial labeling of a complete graph** *Kⁿ*

H. K. Krishnappa et al. [5] proved that $K_n(n \geq 1)$ admits vertex-magic total labeling. In this section, we use another technique to prove $K_n(n \geq 1)$ is totally vertex-magic cordial. Let $V = \{v_i | 1 \leq i \leq n\}$ be the vertex set and $E = \{v_i v_j | i \neq j, 1 \leq i, j \leq n\}$ be the edge set of K_n . We use the following symmetric matrix to label the vertices and the edges of K_n , which is called the label matrix for K_n .

The entries in the main diagonal represent the vertex labels, $f(v_i) = e_{ii}$ and the other entries e_{ij} , $i \neq j$ represent the edge labels, $f(v_i v_j) = e_{ij}$. Thus the weight of a vertex v_i is the sum of the elements either in the i^{th} row or in the i^{th} column.

Theorem 3.1. *The complete graph* K_n *is TVMC for all* $n \geq 1$ *.*

Proof. Let K_n be the complete graph with *n* vertices. We consider the following three cases:

Case i. $n \equiv 0 \pmod{4}$.

We construct the label matrix for K_n as follows:

$$
e_{ij} = \begin{cases} 0 & \text{when} \quad i+j \equiv 0,1 \pmod{4}, \\ 1 & \text{when} \quad i+j \equiv 2,3 \pmod{4}. \end{cases}
$$

Then for each vertex v_r , $1 \leq r \leq n$, the weight $wt(v_r)$ is the sum of the elements in the r^{th} row or in the r^{th} column. Hence,

$$
\text{wt}(v_r) = \sum_{j=1}^r e_{rj} + \sum_{i=r+1}^n e_{ir} = \frac{n}{2} \equiv 0 \pmod{2}.
$$

Also $n_f(0) = n_f(1) = \frac{n^2 + n}{4}$ $\frac{+n}{4}$. Therefore, $|n_f(0) - n_f(1)| = 0$. **Case ii.** $n \equiv 2 \pmod{4}$.

We construct the label matrix as follows: when $j \equiv 0, 1 \pmod{4}$,

$$
e_{ij} = \begin{cases} 1 & \text{if } i \text{ is odd,} \\ 0 & \text{if } i \text{ is even} \end{cases}
$$

and when $j \equiv 2, 3 \pmod{4}$,

$$
e_{ij} = \begin{cases} 0 & \text{if } i \text{ is odd,} \\ 1 & \text{if } i \text{ is even.} \end{cases}
$$

Then

$$
\text{wt}(v_r) = \sum_{j=1}^r e_{rj} + \sum_{i=r+1}^n e_{ir} = \frac{n}{2} \equiv 1 \pmod{2}.
$$

Also $n_f(0) = \frac{n^2 + n - 2}{4}$ and $n_f(1) = \frac{n^2 + n + 2}{4}$ $\frac{-n+2}{4}$. Hence, $|n_f(0) - n_f(1)| = 1$. **Case iii.** *n* is odd.

We construct the label matrix as follows: when $i + j \leq n$,

$$
e_{ij} = \begin{cases} 1 & \text{if } i \text{ is odd,} \\ 0 & \text{if } i \text{ is even} \end{cases}
$$

and when $i + j > n$,

$$
e_{ij} = \begin{cases} 1 & \text{if } j \text{ is odd,} \\ 0 & \text{if } j \text{ is even.} \end{cases}
$$

We have

$$
wt(v_r) = \sum_{j=1}^r e_{rj} + \sum_{i=r+1}^{n-r} e_{ir} + \sum_{i=n-r+1}^n e_{ir} \text{ if } 1 \le r < \frac{n+1}{2};
$$

$$
wt(v_r) = \sum_{j=1}^{r-1} e_{rj} + \sum_{i=r}^n e_{ir} \text{ if } r = \frac{n+1}{2};
$$

$$
wt(v_r) = \sum_{j=1}^{n-r} e_{rj} + \sum_{j=n-r+1}^{r-1} e_{rj} + \sum_{i=r}^n e_{ir} \text{ if } \frac{n+1}{2} < r < n;
$$

and
$$
wt(v_r) = \sum_{j=1}^n e_{rj} \text{ if } r = n.
$$

The weights of the vertices for $n = 4k + 1$ and $n = 4k + 3$ are summarized in the following tables:

When $n = 4k + 1$,

When $n = 4k + 3$,

$1 \leq r < \frac{n+1}{2}$ $r = \frac{n+1}{2}$		$\frac{n+1}{2}$ < r < n r = n	
r is odd $\mid 2k+r+1$		$6k - r + 5$ $\frac{n+1}{2}$	
$\equiv 0 \pmod{2}$.		$\equiv 0 \pmod{2}$ $\equiv 0 \pmod{2}$	
r is even $\lfloor 2k - r + 2 \rfloor$	$\mid n \times (r \mod 2) \mid r-2k-2$		
	$\equiv 0 \pmod{2}$ $\equiv 0 \pmod{2}$ $\equiv 0 \pmod{2}$ -		

Also if $n = 4k + 1$, then $n_f(0) = \frac{n^2 + n - 2}{4}$, $n_f(1) = \frac{n^2 + n + 2}{4}$ $\frac{-n+2}{4}$; if $n = 4k + 3$, then $n_f(0) = n_f(1) = \frac{n^2 + n}{4}$ $\frac{+n}{4}$ and hence, $|n_f(0) - n_f(1)| \leq 1$. Therefore, K_n is TVMC for all $n \geq 1$. \Box

*§***4. Totally vertex-magic cordial labeling of a complete bipartite graph** *Km,n*

J. A. MacDougall et al. [6] proved that there is a vertex-magic total labeling for a complete bipartite graph $K_{m,m}$ for all $m > 1$. Also they conjectured that there is a vertex-magic total labeling for a complete bipartite graph $K_{m,m+1}$.

In this section, we prove the bipartite graph $K_{m,n}$ admits TVMC labeling whenever $|m - n| \leq 1$. We consider the complete bipartite graph $K_{m,n}$ with the vertex set $\{u_1, u_2, ..., u_m, v_1, v_2, ..., v_n\}$ and the edge set ${e_{ij} = u_i v_j | 1 \leq i \leq m, 1 \leq j \leq n}.$ We use the following $(m + 1) \times (n + 1)$

matrix to label the vertices and the edges of *Km,n*:

The entries in the first row $c_{i0}(1 \leq i \leq m)$ represent the labels of the vertices $u_i(1 \leq i \leq m)$, the entries in the first column $c_{0j}(1 \leq j \leq n)$ represent the labels of the vertices $v_j(1 \leq j \leq n)$ and the other entries c_{ij} represent the labels of the edges $u_i v_j (1 \leq i \leq m, 1 \leq j \leq n)$. That is, $f(u_i) = c_{i0}$, *f*(*v*_{*j*}) = c_{0j} and $f(u_i v_j) = c_{ij}$ for $1 \le i \le m, 1 \le j \le n$.

Lemma 4.1. $K_{m,m+1}$ *is TVMC for all* $m \geq 1$ *.*

Proof. Define

$$
c_{ij} = \begin{cases} 1 & \text{if } i = 0 \text{ or } j = 0 \text{ and } i + j \text{ is odd,} \\ 0 & \text{if } i = 0 \text{ or } j = 0 \text{ and } i + j \text{ is even,} \\ 1 & \text{if } i \neq 0, j \neq 0 \text{ and } i + j \leq m + 1, \\ 0 & \text{if } i \neq 0, j \neq 0 \text{ and } i + j > m + 1. \end{cases}
$$

Then $n_f(0) = \frac{m^2+3m}{2}$, $n_f(1) = \frac{m^2+3m+2}{2}$ and hence, $|n_f(0) - n_f(1)| = 1$. The weights of vertices u_i and v_j are summarized in the following table:

	Even	Odd	Even	Odd		
	m is even $\mid m+1-i \mid$	$m+2-i$	$m+1-j$ $\mid m+2-j$			
		$\equiv 1 \pmod{2}$ $\equiv 1 \pmod{2}$ $\equiv 1 \pmod{2}$ $\equiv 1 \pmod{2}$				
	m is odd $\mid m+1-i$	$m+2-i$	$m+1-j$	$m+2-j$		
		$\equiv 0 \pmod{2}$ $\equiv 0 \pmod{2}$ $\equiv 0 \pmod{2}$ $\equiv 0 \pmod{2}$				
Therefore, $K_{m,m+1}$ is TVMC for all $m \geq 1$.						

Therefore, $K_{m,m+1}$ is TVMC for all $m \geq 1$.

Lemma 4.2. $K_{m,m}$ *is TVMC if* m *is odd.*

Proof. Define

$$
c_{ij} = \begin{cases} 1 & \text{if } i+j \text{ is odd,} \\ 0 & \text{if } i+j \text{ is even.} \end{cases}
$$

Then $n_f(0) = \frac{m^2 + 2m - 1}{2}$, $n_f(1) = \frac{m^2 + 2m + 1}{2}$ and hence, $|n_f(0) - n_f(1)| = 1$. The weight of each vertex is

$$
\frac{m+1}{2} \equiv \begin{cases} 1 \pmod{2} & \text{if } m \equiv 1 \pmod{4}, \\ 0 \pmod{2} & \text{if } m \equiv 3 \pmod{4}. \end{cases}
$$

Therefore, *Km,m* is TVMC for odd values of *m*.

Lemma 4.3. $K_{m,m}$ *is TVMC if* $m \equiv 0 \pmod{4}$ *.*

Proof. Let $m = 4k$. Define $c_{i0} = 0$, $c_{0j} = 0$ and for $i \neq 0$ and $j \neq 0$,

$$
c_{ij} = \begin{cases} 1 & \text{if } |i - j| = 0, 1, 2, ..., \frac{m}{4} \text{ and } \frac{3m}{4}, ..., m - 1, \\ 0 & \text{otherwise.} \end{cases}
$$

Then, $wt(v_j) = wt(u_i) = \frac{m}{2} + 1 = 2k + 1 \equiv 1 \pmod{2}$ for all *i* and *j*. Also $n_f(0) = n_f(1) = \frac{m^2 + 2m}{2}$. Thus, $|n_f(0) - n_f(1)| = 0$. Hence, $K_{m,m}$ is TVMC for $m \equiv 0 \pmod{4}$. \Box

 \Box

Lemma 4.4. $K_{m,m}$ *is TVMC if* $m \equiv 2 \pmod{4}$ *.*

Proof. Let $m = 4k + 2$. Define $c_{i0} = 0$, $c_{0j} = 1$ and for $i \neq 0$ and $j \neq 0$,

$$
c_{ij} = \begin{cases} 1 & \text{if } j \text{ is odd,} \\ 0 & \text{if } j \text{ is even.} \end{cases}
$$

Then, $wt(v_j) = m + 1 \equiv 1 \pmod{2}$ if *j* is odd, $wt(v_j) = 1$ if *j* is even and $wt(u_i) = \frac{m}{2} \equiv 1 \pmod{2}$. Also $n_f(0) = n_f(1) = \frac{m^2 + 2m}{2}$ and hence, $|n_f(0) - n_f(1)| = 0$. Thus, $K_{m,m}$ is TVMC for $m \equiv 2 \pmod{4}$. \Box

Lemma 4.5. $K_{m,n}$ *is TVMC if* $|m - n| \leq 1$ *.*

Proof. The proof follows from Lemmas 4.1, 4.2, 4.3 and 4.4. \Box

*§***5. Totally vertex-magic cordial(TVMC) labelings of some graphs**

J. A. MacDougall et al. [6] proved that not all trees have a vertex-magic total labeling. Also J. A. MacDougall et al. [7] proved that the friendship graph *Tⁿ* has no vertex-magic total labeling for $n > 3$. In the subsequent theorems we prove all trees are TVMC, the friendship graph T_n for $n \geq 1$ is TVMC and also we examine the totally vertex magic cordiality of flower graph, $P_n + P_2$ and $G + \overline{K}_{2m}$.

Theorem 5.1. *If G is a* (p,q) *graph with* $|p-q| \leq 1$ *, then G is TVMC with* $C = 1$.

Proof. Assign 0 to all the edges and 1 to all the vertices of *G*. Then weight of each vertex is 1 and $|n_f(0) - n_f(1)| = |p - q| \le 1$. Hence, *G* is TVMC. \Box

Corollary 5.2. All cycles $(n \geq 3)$, trees and unicycle graphs are TVMC with $C = 1$.

A flower graph Fl_n is constructed from a wheel W_n by attaching a pendant edge at each vertex of the *n*-cycle and by joining each pendant vertex to the central vertex. We prove that Fl_n admits TVMC labeling.

Theorem 5.3. *The flower graph* Fl_n *for* $n \geq 3$ *is TVMC with* $C = 0$ *.*

Proof. Let $V = \{u, u_i, v_i | 1 \leq i \leq n\}$ be the vertex set and $E = \{uu_i, u_iv_i, uv_i|1 \leq i \leq n\} \cup \{u_ju_{j+1}|1 \leq j \leq n-1\} \cup \{u_nu_1\}$ be the edge set for $n \geq 3$. Clearly, $|V| = 2n + 1$ and $|E| = 4n$. Define $f: V \cup E \rightarrow$ $\{0,1\}$ as follows: For $1 \leq i \leq n$, $f(u_i) = 1$, $f(v_i) = 0$, $f(uu_i) = 1$, $f(u_i v_i) = 0$, $f(uv_i) = 0$ and for $1 \leq j \leq n-1$, $f(u_iu_{i+1}) = 1$, $f(u_nu_1) = 1$ and

$$
f(u) = \begin{cases} 0 & \text{if } n \text{ is even,} \\ 1 & \text{if } n \text{ is odd.} \end{cases}
$$

We prove that the weight of each vertex is constant modulo 2.

$$
\operatorname{wt}(u) = f(u) + \sum_{i=1}^{n} f(uv_i) + \sum_{i=1}^{n} f(uu_i) = \begin{cases} n & \text{if } n \text{ is even,} \\ n+1 & \text{if } n \text{ is odd.} \end{cases}
$$

Hence, $wt(u) \equiv 0 \pmod{2}$. Further, for $1 \leq i \leq n$, $wt(u_i) = 4 \equiv 0 \pmod{2}$ and $\text{wt}(v_i) = 0$. Also $|n_f(0) - n_f(1)| \leq 1$. Therefore, Fl_n is TVMC for *n ≥* 3. \Box

The friendship graph $T_n(n \geq 1)$ consists of *n* triangles with a common vertex.

Theorem 5.4. *The friendship graph* T_n *for* $n \geq 1$ *is TVMC with* $C = 0$ *.*

Proof. Let $V = \{u, u_i, v_i | 1 \leq i \leq n\}$ and $E = \{uu_i, u_i v_i, uv_i | 1 \leq i \leq n\}$ be the vertex set and the edge set, respectively. Define $f: V \cup E \rightarrow \{0,1\}$ as follows: $f(u_i) = 0, f(v_i) = 1$ and $f(u) = \begin{cases} 0 & \text{if } n \text{ is even,} \\ 1 & \text{if } n \text{ is odd} \end{cases}$ $\begin{array}{ll} 0 & \text{if } n \text{ is even,} \\ 1 & \text{if } n \text{ is odd.} \end{array}$ For $1 \leq i \leq \lceil \frac{n}{2} \rceil$ $\frac{n}{2}$, $f(uu_i) = 0, f(u_iv_i) = 0, f(v_iu) = 1, \text{ and for } \left[\frac{n}{2}\right]$ $\left[\frac{n}{2}\right] < i \leq n, \ f(uu_i) = 1,$ $f(u_i v_i) = 1$ and $f(v_i u) = 0$. It can easily be verified that $wt(u_i) \equiv wt(v_i) \equiv$ $wt(u) \equiv 0 \pmod{2}$. Also $n_f(0) = \left\lceil \frac{5n+1}{2} \right\rceil$ $\left[\frac{n+1}{2}\right]$ and $n_f(1) = \left[\frac{5n+1}{2}\right]$ $\left[\frac{a+1}{2}\right]$. Hence, $|n_f(0) - n_f(1)|$ ≤ 1. Therefore, T_n for $n \ge 1$ is TVMC with $C = 0$.

Let G and H be any two graphs. Let u be any vertex of G and v be any vertex of H . Then $G \mathcal{Q} H$ is a graph obtained by identifying the vertices u and *v*.

Theorem 5.5. If G is TVMC with $C = 1$, then $G@T$ is also TVMC with $C = 1$ *for any tree T.*

Proof. Let f be the TVMC labeling of *G* with $C = 1$. Assign 0 to all the edges and 1 to all the vertices of *T*. Identify a vertex $u \in V(G)$ with a vertex $v \in V(T)$ and take this new vertex as *w*. Define a labeling *g* for $G \circ T$ as follows:

$$
g(a) = \begin{cases} f(a) & \text{if } a \in V(G), \\ 1 & \text{if } a \in V(T) \text{ and } a \neq w, \end{cases}
$$

and

$$
g(e) = \begin{cases} f(e) & \text{if } e \in E(G), \\ 0 & \text{if } e \in E(T). \end{cases}
$$

Then the weight of the identified vertex *w* is,

$$
wt_{G@T}(w) = g(w) + \sum_{x \in N(w)} g(xw)
$$

= $f(u) + \sum_{\substack{x \in N(u) \\ inG}} f(xu) + \sum_{\substack{y \in N(u) \\ inT}} f(yu)$
= $f(u) + \sum_{\substack{x \in N(u) \\ inG}} f(xu)$
= $wt_G(u) \equiv 1 \pmod{2}.$

For each $a \in V(G \tQ T)$ with $a \neq w$, $wt_{G \tQ T}(a) = wt_G(a) \equiv 1 \pmod{2}$ if $a \in$ $V(G)$ and $\text{wt}_{G@T}(a) = 1$ if $a \in V(T)$. Also $|n_q(0) - n_q(1)| = |n_f(0) - n_f(1)| \le$ 1. Hence, $G@T$ is also TVMC with $C = 1$. \Box

The join of two graphs G_1 and G_2 is denoted by $G_1 + G_2$ and it consists of $G_1 \cup G_2$ and all the lines joining $V(G_1)$ with $V(G_2)$.

Theorem 5.6. $P_n + P_2$ *is TVMC for* $n \geq 1$ *.*

Proof. Let $G = P_n + P_2$. We denote the vertices of P_n in G by u_1, u_2, \ldots, u_n and the vertices of P_2 in *G* by *u*, *v*. Then $V(G) = V(P_n) \cup V(P_2)$ and $E(G) =$ $\{uv, u_iu_{i+1}|1 \leq i \leq n-1\} \cup \{uu_i, vu_i|1 \leq i \leq n\}.$ Clearly $|V(G)| = n+2$ and $|E(G)| = 3n$. Define $f: V(G) \cup E(G) \rightarrow \{0, 1\}$ as follows: **Case i.** *n* is odd.

Let $f(u) = f(v) = 0$, $f(u_i) = 0$, $f(uv) = 1$, $f(uu_i) = f(vu_i) = 1$ for 1 ≤ *i* ≤ *n* and $f(u_iu_{i+1}) = 0$ for $1 \le i \le n-1$. Then

$$
wt(u) = f(u) + f(uv) + \sum_{i=1}^{n} f(uu_i) = 1 + n \equiv 0 \pmod{2},
$$

$$
wt(v) = f(v) + f(uv) + \sum_{i=1}^{n} f(vu_i) = 1 + n \equiv 0 \pmod{2}
$$

and for $1 \leq i \leq n$, wt $(u_i) = 2 \equiv 0 \pmod{2}$. Also $n_f(0) = n_f(1) = 2n + 1$. $\text{Thus, } |n_f(0) - n_f(1)| = 0.$

Case ii. $n = 2k$ and *k* is odd.

Let $f(u) = f(v) = 0$, $f(u_i) = 1$, $f(uv) = 1$ for $1 \le i \le n$; $f(uu_i) =$ $f(vu_{k+i}) = 1$, $f(uu_{k+i}) = f(vu_i) = 0$ for $1 \leq i \leq k$ and $f(u_iu_{i+1}) = 0$ for $1 \leq i < n$. Hence wt $(u) = \text{wt}(v) = k + 1 \equiv 0 \pmod{2}$ and $\text{wt}(u_i) = 2 \equiv 0$ $p_{\text{max}}(n) = \frac{1}{2} \leq i \leq n$. Also $n_f(0) = n_f(1) = 2n + 1$. Thus, $|n_f(0) - n_f(1)| = 1$. 0.

Case iii. $n = 2k$ and *k* is even.

Let $f(u) = f(v) = 0$, $f(u_i) = 1$, $f(uv) = 1$, for $1 \leq i \leq n$; $f(uu_i) =$ $f(vu_i) = 1$, $f(uu_{k+i}) = f(vu_{k+i}) = 0$ for $1 \le i \le k$ and $f(u_iu_{i+1}) = 0$ for $1 \le i \le k$ $i < n$. Hence, wt $(u) = \text{wt}(v) = k + 1 \equiv 1 \pmod{2}$, wt $(u_i) = 3 \equiv 1 \pmod{2}$ for $1 \leq i \leq k$ and $wt(u_i) = 1$ for $k + 1 \leq i \leq n$. Also $n_f(0) = n_f(1) = 2n + 1$. $\text{Thus, } |n_f(0) - n_f(1)| = 0.$ \Box

Theorem 5.7. Let $G(p,q)$ be a TVMC graph with constant $C = 0$ where p is *odd.* Then $G + \overline{K}_{2m}$ *is TVMC with* $C = 1$ *if* m *is odd and with* $C = 0$ *if* m *is even.*

Proof. Let $V(G) = \{u_1, u_2, \ldots, u_p\}$, $V(\overline{K}_{2m}) = \{v_1, v_2, \ldots, v_m, \ldots, v_{2m}\}$ and *E*(*G* + \overline{K}_{2m}) = *E*(*G*) *∪* {*u_iv*_{*j*}|1 ≤ *i* ≤ *p*, 1 ≤ *j* ≤ 2*m*}. Let *f* be the TVMC labeling of *G* with $C = 0$. Define TVMC labeling *g* of $G + \overline{K}_{2m}$ as follows: *g*(*x*) = *f*(*x*) if *x* ∈ *V*(*G*) ∪ *E*(*G*), for $1 ≤ j ≤ p$,

$$
g(u_jv_i) = \begin{cases} 0 & \text{if } 1 \le i \le m, \\ 1 & \text{if } m < i \le 2m. \end{cases}
$$

When *m* is odd,

$$
g(v_i) = \begin{cases} 1 & \text{if } 1 \le i \le m, \\ 0 & \text{if } m < i \le 2m \end{cases}
$$

and when *m* is even,

$$
g(v_i) = \begin{cases} 0 & \text{if } 1 \le i \le m, \\ 1 & \text{if } m < i \le 2m. \end{cases}
$$

Now we find the weight of the vertices by considering the following two cases:

Case i. *m* is odd. For $v_i \in V(\overline{K}_{2m}),$

$$
\begin{aligned} \n\text{wt}_{G+\overline{K}_{2m}}(v_i) &= g(v_i) + \sum_{j=1}^p g(u_j v_i) = 1 \text{ if } 1 \le i \le m, \\ \n\text{wt}_{G+\overline{K}_{2m}}(v_i) &= p \equiv 1 \pmod{2} \text{ if } m < i \le 2m \end{aligned}
$$

and for $u_j \in V(G)$,

$$
\operatorname{wt}_{G+\overline{K}_{2m}}(u_j) = \operatorname{wt}_G(u_j) + \sum_{i=1}^m g(u_j v_i) + \sum_{i=m+1}^{2m} g(u_j v_i)
$$

$$
= \operatorname{wt}_G(u_j) + m \equiv 1 \pmod{2}.
$$

Case ii. *m* is even.

For $v_i \in V(\overline{K}_{2m})$,

$$
wt_{G+\overline{K}_{2m}}(v_i) = 0 \text{ if } 1 \le i \le m,
$$

$$
wt_{G+\overline{K}_{2m}}(v_i) = 1 + p \equiv 0 \pmod{2} \text{ if } m < i \le 2m
$$

and for $u_j \in V(G)$,

$$
wt_{G+\overline{K}_{2m}}(u_j) = wt_G(u_j) + \sum_{i=1}^m g(u_jv_i) + \sum_{i=m+1}^{2m} g(u_jv_i)
$$

= $wt_G(u_j) + m \equiv 0 \pmod{2}.$

Also $n_q(0) = n_f(0) + m(p+1), n_q(1) = n_f(1) + m(p+1)$ and hence *|n_g*(0) − *n_g*(1)*|* = *|n_f*(0) − *n_f*(1)*|* ≤ 1. Therefore, *G* + \overline{K}_{2m} is TVMC. \Box

Acknowledgement: The authors sincerely thank the referee for the valuable comments and suggestions for a better presentation of the paper.

References

- [1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, *Ars Combin.*, **23** (1987), 201–207.
- [2] I. Cahit, Some totally modular cordial graphs, *Discuss. Math. Graph Theory*, **22** (2002), 247–258.
- [3] J. A. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.*, **17** (2010) $#$ **DS6**.
- [4] F. Harary, *Graph Theory*, Addison-Wesley Publishing Co., 1969.
- [5] H. K. Krishnappa, Kishore Kothapalli and V. Ch. Venkaiah, Vertex-magic total labelings of complete graphs, *AKCE J. Graphs. Combin.* , **6** (2009), 143–154.
- [6] J. A. MacDougall, M. Miller, Slamin and W. D. Wallis, Vertex-magic total labelings of graphs, *Util. Math.*, **61** (2002), 3–21.
- [7] J. A. MacDougall, M. Miller, and W. D. Wallis, Vertex-magic total labelings of wheels and related graphs, *Util. Math.*, **62** (2002), 175–183.

P. Jeyanthi Research Centre Department of Mathematics Govindammal Aditanar College for Women Tiruchendur - 628 215 India. *E-mail*: jeyajeyanthi@rediffmail.com

N. Angel Benseera Department of Mathematics Sri Meenakshi Government College for Women Madurai - 625 002 India. *E-mail*: angelbenseera@yahoo.com