Totally vertex-magic cordial labeling

P. Jeyanthi and N. Angel Benseera

(Received September 21, 2010; Revised May 26, 2013)

Abstract. In this paper, we introduce a new labeling called Totally Vertex-Magic Cordial(TVMC) labeling. A graph G(p,q) is said to be TVMC with a constant C if there is a mapping $f: V(G) \cup E(G) \rightarrow \{0,1\}$ such that

$$\left[f(a) + \sum_{b \in N(a)} f(ab) \right] \equiv C \pmod{2}$$

for all vertices $a \in V(G)$ and $|n_f(0) - n_f(1)| \le 1$, where N(a) is the set of vertices adjacent to the vertex a and $n_f(i)(i = 0, 1)$ is the sum of the number of vertices and edges with label i.

AMS 2010 Mathematics Subject Classification. 05C78.

 $Key\ words\ and\ phrases.$ Totally vertex-magic cordial, sun graph, friendship graph.

§1. Introduction

All graphs considered here are finite, simple and undirected. The set of vertices and edges of a graph G will be denoted by V(G) and E(G) respectively, and let p = |V(G)| and q = |E(G)|. A labeling of a graph G is a mapping that carries a set of graph elements usually the vertices and/or edges, into a set of numbers, usually integers, called labels. Many kinds of labelings have been studied and an excellent survey of graph labeling can be found in Gallian [3]. For all other terminology and notation we follow Harary [4]. The concept of cordial labeling was introduced by Cahit [1]. A binary vertex labeling $f:V(G)\to\{0,1\}$ induces an edge labeling $f^*:E(G)\to\{0,1\}$ defined by $f^*(uv)=|f(u)-f(v)|$. Such a labeling is called cordial if the conditions $|v_f(0)-v_f(1)|\leq 1$ and $|e_{f^*}(0)-e_{f^*}(1)|\leq 1$ are satisfied, where $v_f(i)$ and $e_{f^*}(i)(i=0,1)$ are the number of vertices and edges with label i respectively. A graph is called cordial if it admits cordial labeling.

Totally Magic Cordial(TMC) labeling was introduced by Cahit in [2] as a modification of total edge-magic labeling. A (p,q) graph G is said to have a totally magic cordial labeling with constant C if there exists a mapping $f: V(G) \cup E(G) \to \{0,1\}$ such that $f(a) + f(b) + f(ab) \equiv C \pmod{2}$ for all edges $ab \in E(G)$ provided the condition $|f(0) - f(1)| \leq 1$, where $f(0) = v_f(0) + e_f(0)$, $f(1) = v_f(1) + e_f(1)$ and $v_f(i)$, $e_f(i)(i = 0, 1)$ are the number of vertices and edges with label i, respectively. It is proved that the graphs $K_{m,n}(m,n > 1)$, trees and K_n for n = 2, 3, 5 or 6 have TMC labeling.

J. A. MacDougall et al. introduced the concept of vertex-magic total labeling in [6]. A one-to-one map λ from $V \cup E$ onto the integers $\{1,2,...,p+q\}$ is a vertex-magic total labeling if there is a constant k so that for every vertex x, $\lambda(x) + \sum \lambda(xy) = k$, where the sum is over all vertices y adjacent to x. The sum $\lambda(x) + \sum \lambda(xy)$ is called the weight of the vertex x and is denoted by wt(x). The constant k is called the magic constant for λ . In this paper, we modify the vertex-magic total labeling into a new labeling called totally vertex magic cordial labeling and we examine the totally vertex magic cordiality of some graphs.

§2. Totally vertex-magic cordial labeling

In this section, we define totally vertex-magic cordial labeling and we prove vertex-magic total graph is totally vertex-magic cordial.

Definition 2.1. A (p,q) graph G is said to have a totally vertex-magic cordial (TVMC) labeling with constant C if there is a mapping $f: V(G) \cup E(G) \rightarrow \{0,1\}$ such that

$$\left[f(a) + \sum_{b \in N(a)} f(ab) \right] \equiv C \pmod{2}$$

for all vertices $a \in V(G)$ provided the condition, $|n_f(0) - n_f(1)| \le 1$ is held, where N(a) is the set of vertices adjacent to a vertex a and $n_f(i)(i = 0, 1)$ is the sum of the number of vertices and edges with label i.

A graph is called totally vertex-magic cordial if it admits totally vertex-magic cordial labeling .

Theorem 2.2. If G is a vertex-magic total graph then G is totally vertex-magic cordial.

Proof. Let f be a vertex-magic total labeling of a graph G with p vertices and q edges and with weight k. Define $q: V(G) \cup E(G) \rightarrow \{0,1\}$ by $q(v) \equiv f(v)$

(mod 2) if $v \in V(G)$ and $g(e) \equiv f(e)$ (mod 2) if $e \in E(G)$. Then, C = 0 if k is even and C = 1 if k is odd. Since there are exactly $\left\lceil \frac{p+q}{2} \right\rceil$ odd integers and $\left\lfloor \frac{p+q}{2} \right\rfloor$ even integers in the set $\{1,2,3,...,p+q\}$ we have, $|n_f(0)-n_f(1)| \leq 1$. Hence, g is a totally vertex-magic cordial labeling of G.

§3. Totally vertex-magic cordial labeling of a complete graph K_n

H. K. Krishnappa et al. [5] proved that $K_n (n \geq 1)$ admits vertex-magic total labeling. In this section, we use another technique to prove $K_n (n \geq 1)$ is totally vertex-magic cordial. Let $V = \{v_i | 1 \leq i \leq n\}$ be the vertex set and $E = \{v_i v_j | i \neq j, 1 \leq i, j \leq n\}$ be the edge set of K_n . We use the following symmetric matrix to label the vertices and the edges of K_n , which is called the label matrix for K_n .

$$\begin{bmatrix} e_{11} & e_{21} & e_{31} & e_{41} & e_{51} & \dots & e_{n1} \\ e_{21} & e_{22} & e_{32} & e_{42} & e_{52} & \dots & e_{n2} \\ e_{31} & e_{32} & e_{33} & e_{43} & e_{53} & \dots & e_{n3} \\ e_{41} & e_{42} & e_{43} & e_{44} & e_{54} & \dots & e_{n4} \\ e_{51} & e_{52} & e_{53} & e_{54} & e_{55} & \dots & e_{n5} \\ \dots & \dots & \dots & \dots & \dots & \dots \\ \vdots & \vdots \\ e_{n1} & e_{n2} & e_{n3} & e_{n4} & e_{n5} & \dots & e_{nn} \end{bmatrix}$$

The entries in the main diagonal represent the vertex labels, $f(v_i) = e_{ii}$ and the other entries e_{ij} , $i \neq j$ represent the edge labels, $f(v_i v_j) = e_{ij}$. Thus the weight of a vertex v_i is the sum of the elements either in the i^{th} row or in the i^{th} column.

Theorem 3.1. The complete graph K_n is TVMC for all $n \ge 1$.

Proof. Let K_n be the complete graph with n vertices. We consider the following three cases:

Case i. $n \equiv 0 \pmod{4}$.

We construct the label matrix for K_n as follows:

$$e_{ij} = \begin{cases} 0 & \text{when} \quad i+j \equiv 0, 1 \pmod{4}, \\ 1 & \text{when} \quad i+j \equiv 2, 3 \pmod{4}. \end{cases}$$

Then for each vertex v_r , $1 \le r \le n$, the weight $\operatorname{wt}(v_r)$ is the sum of the elements in the r^{th} row or in the r^{th} column. Hence,

$$\operatorname{wt}(v_r) = \sum_{i=1}^r e_{rj} + \sum_{i=r+1}^n e_{ir} = \frac{n}{2} \equiv 0 \pmod{2}.$$

Also $n_f(0) = n_f(1) = \frac{n^2 + n}{4}$. Therefore, $|n_f(0) - n_f(1)| = 0$. Case ii. $n \equiv 2 \pmod{4}$.

We construct the label matrix as follows: when $j \equiv 0, 1 \pmod{4}$,

$$e_{ij} = \begin{cases} 1 & \text{if} \quad i \text{ is odd,} \\ 0 & \text{if} \quad i \text{ is even} \end{cases}$$

and when $j \equiv 2, 3 \pmod{4}$,

$$e_{ij} = \begin{cases} 0 & \text{if} \quad i \text{ is odd,} \\ 1 & \text{if} \quad i \text{ is even.} \end{cases}$$

Then

$$\operatorname{wt}(v_r) = \sum_{j=1}^r e_{rj} + \sum_{i=r+1}^n e_{ir} = \frac{n}{2} \equiv 1 \pmod{2}.$$

Also $n_f(0) = \frac{n^2 + n - 2}{4}$ and $n_f(1) = \frac{n^2 + n + 2}{4}$. Hence, $|n_f(0) - n_f(1)| = 1$.

We construct the label matrix as follows: when $i + j \leq n$,

$$e_{ij} = \begin{cases} 1 & \text{if } i \text{ is odd,} \\ 0 & \text{if } i \text{ is even} \end{cases}$$

and when i + j > n,

$$e_{ij} = \begin{cases} 1 & \text{if } j \text{ is odd,} \\ 0 & \text{if } j \text{ is even.} \end{cases}$$

We have

$$\operatorname{wt}(v_r) = \sum_{j=1}^r e_{rj} + \sum_{i=r+1}^{n-r} e_{ir} + \sum_{i=n-r+1}^n e_{ir} \text{ if } 1 \le r < \frac{n+1}{2};$$

$$\operatorname{wt}(v_r) = \sum_{j=1}^{r-1} e_{rj} + \sum_{i=r}^n e_{ir} \text{ if } r = \frac{n+1}{2};$$

$$\operatorname{wt}(v_r) = \sum_{j=1}^{n-r} e_{rj} + \sum_{j=n-r+1}^{r-1} e_{rj} + \sum_{i=r}^n e_{ir} \text{ if } \frac{n+1}{2} < r < n;$$
and
$$\operatorname{wt}(v_r) = \sum_{j=1}^n e_{rj} \text{ if } r = n.$$

The weights of the vertices for n = 4k + 1 and n = 4k + 3 are summarized in the following tables:

When n = 4k + 1.

	$1 \le r < \frac{n+1}{2}$	$r = \frac{n+1}{2}$	$\frac{n+1}{2} < r < n$	r = n
r is odd	2k + r	$n \times (r \mod 2)$	6k - r + 2	$\frac{n+1}{2}$
	$\equiv 1 \pmod{2}$	$\equiv 1 \pmod{2}$	$\equiv 1 \pmod{2}$	$\equiv 1 \pmod{2}$
r is even	2k-r+1		r - 2k - 1	
	$\equiv 1 \pmod{2}$	-	$\equiv 1 \pmod{2}$	-

When n = 4k + 3,

	$1 \le r < \frac{n+1}{2}$	$r = \frac{n+1}{2}$	$\frac{n+1}{2} < r < n$	r = n
r is odd	2k+r+1		6k-r+5	$\frac{n+1}{2}$
	$\equiv 0 \pmod{2}$	-	$\equiv 0 \pmod{2}$	$\equiv 0 \pmod{2}$
r is even	2k-r+2	$n \times (r \mod 2)$	r-2k-2	
	$\equiv 0 \pmod{2}$	$\equiv 0 \pmod{2}$	$\equiv 0 \pmod{2}$	-

Also if n = 4k + 1, then $n_f(0) = \frac{n^2 + n - 2}{4}$, $n_f(1) = \frac{n^2 + n + 2}{4}$; if n = 4k + 3, then $n_f(0) = n_f(1) = \frac{n^2 + n}{4}$ and hence, $|n_f(0) - n_f(1)| \le 1$. Therefore, K_n is TVMC for all $n \ge 1$.

§4. Totally vertex-magic cordial labeling of a complete bipartite graph $K_{m,n}$

J. A. MacDougall et al. [6] proved that there is a vertex-magic total labeling for a complete bipartite graph $K_{m,m}$ for all m > 1. Also they conjectured that there is a vertex-magic total labeling for a complete bipartite graph $K_{m,m+1}$.

In this section, we prove the bipartite graph $K_{m,n}$ admits TVMC labeling whenever $|m-n| \leq 1$. We consider the complete bipartite graph $K_{m,n}$ with the vertex set $\{u_1, u_2, ..., u_m, v_1, v_2, ..., v_n\}$ and the edge set $\{e_{ij} = u_i v_j | 1 \leq i \leq m, 1 \leq j \leq n\}$. We use the following $(m+1) \times (n+1)$ matrix to label the vertices and the edges of $K_{m,n}$:

$$\begin{bmatrix} - & | & c_{01} & c_{02} & \dots & c_{0n} \\ -- & -- & -- & -- & -- & -- \\ c_{10} & | & c_{11} & c_{12} & \dots & c_{1n} \\ c_{20} & | & c_{21} & c_{22} & \dots & c_{2n} \\ \vdots & | & \vdots & \vdots & & \vdots \\ c_{m0} & | & c_{m1} & c_{m2} & \dots & c_{mn} \end{bmatrix}$$

The entries in the first row $c_{i0}(1 \leq i \leq m)$ represent the labels of the vertices $u_i(1 \leq i \leq m)$, the entries in the first column $c_{0j}(1 \leq j \leq n)$ represent the labels of the vertices $v_j(1 \leq j \leq n)$ and the other entries c_{ij} represent the labels of the edges $u_iv_j(1 \leq i \leq m, 1 \leq j \leq n)$. That is, $f(u_i) = c_{i0}$, $f(v_j) = c_{0j}$ and $f(u_iv_j) = c_{ij}$ for $1 \leq i \leq m, 1 \leq j \leq n$.

Lemma 4.1. $K_{m,m+1}$ is TVMC for all $m \ge 1$.

Proof. Define

$$c_{ij} = \begin{cases} 1 & \text{if} \quad i = 0 \text{ or } j = 0 & \text{and} \quad i + j \text{ is odd,} \\ 0 & \text{if} \quad i = 0 \text{ or } j = 0 & \text{and} \quad i + j \text{ is even,} \\ 1 & \text{if} \quad i \neq 0, j \neq 0 & \text{and} \quad i + j \leq m + 1, \\ 0 & \text{if} \quad i \neq 0, j \neq 0 & \text{and} \quad i + j > m + 1. \end{cases}$$

Then $n_f(0) = \frac{m^2 + 3m}{2}$, $n_f(1) = \frac{m^2 + 3m + 2}{2}$ and hence, $|n_f(0) - n_f(1)| = 1$. The weights of vertices u_i and v_j are summarized in the following table:

	i		j	
	Even	Odd	Even	Odd
m is even	m+1-i	m+2-i	m+1-j	m+2-j
	$\equiv 1 \pmod{2}$	$\equiv 1 \pmod{2}$	$\equiv 1 \pmod{2}$	$\equiv 1 \pmod{2}$
m is odd	m+1-i	m+2-i	m+1-j	m+2-j
	$\equiv 0 \pmod{2}$	$\equiv 0 \pmod{2}$	$\equiv 0 \pmod{2}$	$\equiv 0 \pmod{2}$

Therefore, $K_{m,m+1}$ is TVMC for all $m \ge 1$.

Lemma 4.2. $K_{m,m}$ is TVMC if m is odd.

Proof. Define

$$c_{ij} = \begin{cases} 1 & \text{if } i+j \text{ is odd,} \\ 0 & \text{if } i+j \text{ is even.} \end{cases}$$

Then $n_f(0) = \frac{m^2 + 2m - 1}{2}$, $n_f(1) = \frac{m^2 + 2m + 1}{2}$ and hence, $|n_f(0) - n_f(1)| = 1$. The weight of each vertex is

$$\frac{m+1}{2} \equiv \left\{ \begin{array}{ll} 1 \pmod 2 & \text{if} \quad m \equiv 1 \pmod 4, \\ 0 \pmod 2 & \text{if} \quad m \equiv 3 \pmod 4. \end{array} \right.$$

Therefore, $K_{m,m}$ is TVMC for odd values of m.

Lemma 4.3. $K_{m,m}$ is TVMC if $m \equiv 0 \pmod{4}$.

Proof. Let m = 4k. Define $c_{i0} = 0$, $c_{0j} = 0$ and for $i \neq 0$ and $j \neq 0$,

$$c_{ij} = \begin{cases} 1 & \text{if } |i-j| = 0, 1, 2, ..., \frac{m}{4} \text{ and } \frac{3m}{4}, ..., m-1, \\ 0 & \text{otherwise.} \end{cases}$$

Then, $\operatorname{wt}(v_j) = \operatorname{wt}(u_i) = \frac{m}{2} + 1 = 2k + 1 \equiv 1 \pmod{2}$ for all i and j. Also $n_f(0) = n_f(1) = \frac{m^2 + 2m}{2}$. Thus, $|n_f(0) - n_f(1)| = 0$. Hence, $K_{m,m}$ is TVMC for $m \equiv 0 \pmod{4}$.

Lemma 4.4. $K_{m,m}$ is TVMC if $m \equiv 2 \pmod{4}$.

Proof. Let m = 4k + 2. Define $c_{i0} = 0$, $c_{0j} = 1$ and for $i \neq 0$ and $j \neq 0$,

$$c_{ij} = \begin{cases} 1 & \text{if} \quad j \text{ is odd,} \\ 0 & \text{if} \quad j \text{ is even.} \end{cases}$$

Then, $\operatorname{wt}(v_j) = m+1 \equiv 1 \pmod{2}$ if j is odd, $\operatorname{wt}(v_j) = 1$ if j is even and $\operatorname{wt}(u_i) = \frac{m}{2} \equiv 1 \pmod{2}$. Also $n_f(0) = n_f(1) = \frac{m^2 + 2m}{2}$ and hence, $|n_f(0) - n_f(1)| = 0$. Thus, $K_{m,m}$ is TVMC for $m \equiv 2 \pmod{4}$.

Lemma 4.5. $K_{m,n}$ is TVMC if $|m-n| \le 1$.

Proof. The proof follows from Lemmas 4.1, 4.2, 4.3 and 4.4.

§5. Totally vertex-magic cordial(TVMC) labelings of some graphs

J. A. MacDougall et al. [6] proved that not all trees have a vertex-magic total labeling. Also J. A. MacDougall et al. [7] proved that the friendship graph T_n has no vertex-magic total labeling for n > 3. In the subsequent theorems we prove all trees are TVMC, the friendship graph T_n for $n \ge 1$ is TVMC and also we examine the totally vertex magic cordiality of flower graph, $P_n + P_2$ and $G + \overline{K}_{2m}$.

Theorem 5.1. If G is a (p,q) graph with $|p-q| \le 1$, then G is TVMC with C=1.

Proof. Assign 0 to all the edges and 1 to all the vertices of G. Then weight of each vertex is 1 and $|n_f(0) - n_f(1)| = |p - q| \le 1$. Hence, G is TVMC. \square

Corollary 5.2. All $cycles(n \ge 3)$, trees and unicycle graphs are TVMC with C = 1.

A flower graph Fl_n is constructed from a wheel W_n by attaching a pendant edge at each vertex of the *n*-cycle and by joining each pendant vertex to the central vertex. We prove that Fl_n admits TVMC labeling.

Theorem 5.3. The flower graph Fl_n for $n \geq 3$ is TVMC with C = 0.

Proof. Let $V = \{u, u_i, v_i | 1 \le i \le n\}$ be the vertex set and $E = \{uu_i, u_i v_i, uv_i | 1 \le i \le n\} \cup \{u_j u_{j+1} | 1 \le j \le n-1\} \cup \{u_n u_1\}$ be the edge set for $n \ge 3$. Clearly, |V| = 2n + 1 and |E| = 4n. Define $f: V \cup E \to \{0, 1\}$ as follows: For $1 \le i \le n$, $f(u_i) = 1$, $f(v_i) = 0$, $f(uu_i) = 1$, $f(u_i v_i) = 0$, $f(uv_i) = 0$ and for $1 \le j \le n - 1$, $f(u_j u_{j+1}) = 1$, $f(u_n u_1) = 1$ and

$$f(u) = \begin{cases} 0 & \text{if n is even,} \\ 1 & \text{if n is odd.} \end{cases}$$

We prove that the weight of each vertex is constant modulo 2.

$$\operatorname{wt}(u) = f(u) + \sum_{i=1}^{n} f(uv_i) + \sum_{i=1}^{n} f(uu_i) = \begin{cases} n & \text{if } n \text{ is even,} \\ n+1 & \text{if } n \text{ is odd.} \end{cases}$$

Hence, $\operatorname{wt}(u) \equiv 0 \pmod{2}$. Further, for $1 \leq i \leq n$, $\operatorname{wt}(u_i) = 4 \equiv 0 \pmod{2}$ and $\operatorname{wt}(v_i) = 0$. Also $|n_f(0) - n_f(1)| \leq 1$. Therefore, Fl_n is TVMC for $n \geq 3$.

The friendship graph $T_n(n \geq 1)$ consists of n triangles with a common vertex.

Theorem 5.4. The friendship graph T_n for $n \ge 1$ is TVMC with C = 0.

Proof. Let $V = \{u, u_i, v_i | 1 \le i \le n\}$ and $E = \{uu_i, u_i v_i, uv_i | 1 \le i \le n\}$ be the vertex set and the edge set, respectively. Define $f: V \cup E \to \{0, 1\}$ as follows: $f(u_i) = 0$, $f(v_i) = 1$ and $f(u) = \begin{cases} 0 & \text{if } n \text{ is even,} \\ 1 & \text{if } n \text{ is odd.} \end{cases}$ For $1 \le i \le \left\lceil \frac{n}{2} \right\rceil$, $f(uu_i) = 0$, $f(u_iv_i) = 0$, $f(v_iu) = 1$, and for $\left\lceil \frac{n}{2} \right\rceil < i \le n$, $f(uu_i) = 1$, $f(u_iv_i) = 1$ and $f(v_iu) = 0$. It can easily be verified that $\text{wt}(u_i) \equiv \text{wt}(v_i) \equiv \text{wt}(u) \equiv 0 \pmod{2}$. Also $n_f(0) = \left\lceil \frac{5n+1}{2} \right\rceil$ and $n_f(1) = \left\lfloor \frac{5n+1}{2} \right\rfloor$. Hence, $|n_f(0) - n_f(1)| \le 1$. Therefore, T_n for $n \ge 1$ is TVMC with C = 0.

Let G and H be any two graphs. Let u be any vertex of G and v be any vertex of H. Then G@H is a graph obtained by identifying the vertices u and v.

Theorem 5.5. If G is TVMC with C = 1, then G@T is also TVMC with C = 1 for any tree T.

Proof. Let f be the TVMC labeling of G with C=1. Assign 0 to all the edges and 1 to all the vertices of T. Identify a vertex $u \in V(G)$ with a vertex $v \in V(T)$ and take this new vertex as w. Define a labeling g for G@T as follows:

$$g(a) = \begin{cases} f(a) & \text{if} \quad a \in V(G), \\ 1 & \text{if} \quad a \in V(T) \text{ and } a \neq w, \end{cases}$$

and

$$g(e) = \begin{cases} f(e) & \text{if } e \in E(G), \\ 0 & \text{if } e \in E(T). \end{cases}$$

Then the weight of the identified vertex w is,

$$\operatorname{wt}_{G@T}(w) = g(w) + \sum_{x \in N(w)} g(xw)$$

$$= f(u) + \sum_{\substack{x \in N(u) \\ inG}} f(xu) + \sum_{\substack{y \in N(u) \\ inT}} f(yu)$$

$$= f(u) + \sum_{\substack{x \in N(u) \\ inG}} f(xu)$$

$$= \operatorname{wt}_{G}(u) \equiv 1 \pmod{2}.$$

For each $a \in V(G@T)$ with $a \neq w$, $\operatorname{wt}_{G@T}(a) = \operatorname{wt}_{G}(a) \equiv 1 \pmod{2}$ if $a \in V(G)$ and $\operatorname{wt}_{G@T}(a) = 1$ if $a \in V(T)$. Also $|n_g(0) - n_g(1)| = |n_f(0) - n_f(1)| \leq 1$. Hence, G@T is also TVMC with C = 1.

The join of two graphs G_1 and G_2 is denoted by $G_1 + G_2$ and it consists of $G_1 \cup G_2$ and all the lines joining $V(G_1)$ with $V(G_2)$.

Theorem 5.6. $P_n + P_2$ is TVMC for $n \ge 1$.

Proof. Let $G = P_n + P_2$. We denote the vertices of P_n in G by u_1, u_2, \ldots, u_n and the vertices of P_2 in G by u, v. Then $V(G) = V(P_n) \cup V(P_2)$ and $E(G) = \{uv, u_i u_{i+1} | 1 \le i \le n-1\} \cup \{uu_i, vu_i | 1 \le i \le n\}$. Clearly |V(G)| = n+2 and |E(G)| = 3n. Define $f: V(G) \cup E(G) \to \{0,1\}$ as follows:

Case i. n is odd.

Let f(u) = f(v) = 0, $f(u_i) = 0$, f(uv) = 1, $f(uu_i) = f(vu_i) = 1$ for $1 \le i \le n$ and $f(u_iu_{i+1}) = 0$ for $1 \le i \le n - 1$. Then

$$\operatorname{wt}(u) = f(u) + f(uv) + \sum_{i=1}^{n} f(uu_i) = 1 + n \equiv 0 \pmod{2},$$

$$wt(v) = f(v) + f(uv) + \sum_{i=1}^{n} f(vu_i) = 1 + n \equiv 0 \pmod{2}$$

and for $1 \le i \le n$, wt $(u_i) = 2 \equiv 0 \pmod{2}$. Also $n_f(0) = n_f(1) = 2n + 1$. Thus, $|n_f(0) - n_f(1)| = 0$.

Case ii. n = 2k and k is odd.

Let f(u) = f(v) = 0, $f(u_i) = 1$, f(uv) = 1 for $1 \le i \le n$; $f(uu_i) = f(vu_{k+i}) = 1$, $f(uu_{k+i}) = f(vu_i) = 0$ for $1 \le i \le k$ and $f(u_iu_{i+1}) = 0$ for $1 \le i < n$. Hence $\operatorname{wt}(u) = \operatorname{wt}(v) = k + 1 \equiv 0 \pmod{2}$ and $\operatorname{wt}(u_i) = 2 \equiv 0 \pmod{2}$ for $1 \le i \le n$. Also $n_f(0) = n_f(1) = 2n + 1$. Thus, $|n_f(0) - n_f(1)| = 0$

Case iii. n = 2k and k is even.

Let f(u) = f(v) = 0, $f(u_i) = 1$, f(uv) = 1, for $1 \le i \le n$; $f(uu_i) = f(vu_i) = 1$, $f(uu_{k+i}) = f(vu_{k+i}) = 0$ for $1 \le i \le k$ and $f(u_iu_{i+1}) = 0$ for $1 \le i \le n$. Hence, wt $(u) = \text{wt}(v) = k+1 \equiv 1 \pmod{2}$, wt $(u_i) = 3 \equiv 1 \pmod{2}$ for $1 \le i \le k$ and wt $(u_i) = 1$ for $k+1 \le i \le n$. Also $n_f(0) = n_f(1) = 2n + 1$. Thus, $|n_f(0) - n_f(1)| = 0$.

Theorem 5.7. Let G(p,q) be a TVMC graph with constant C=0 where p is odd. Then $G + \overline{K}_{2m}$ is TVMC with C=1 if m is odd and with C=0 if m is even.

Proof. Let $V(G) = \{u_1, u_2, \ldots, u_p\}$, $V(\overline{K}_{2m}) = \{v_1, v_2, \ldots, v_m, \ldots, v_{2m}\}$ and $E(G + \overline{K}_{2m}) = E(G) \cup \{u_i v_j | 1 \le i \le p, 1 \le j \le 2m\}$. Let f be the TVMC labeling of G with C = 0. Define TVMC labeling g of $G + \overline{K}_{2m}$ as follows: g(x) = f(x) if $x \in V(G) \cup E(G)$, for $1 \le j \le p$,

$$g(u_j v_i) = \begin{cases} 0 & \text{if } 1 \le i \le m, \\ 1 & \text{if } m < i \le 2m. \end{cases}$$

When m is odd,

$$g(v_i) = \begin{cases} 1 & \text{if} \quad 1 \le i \le m, \\ 0 & \text{if} \quad m < i \le 2m \end{cases}$$

and when m is even,

$$g(v_i) = \begin{cases} 0 & \text{if } 1 \le i \le m, \\ 1 & \text{if } m < i \le 2m. \end{cases}$$

Now we find the weight of the vertices by considering the following two cases:

Case i. m is odd.

For $v_i \in V(\overline{K}_{2m})$,

$$\operatorname{wt}_{G+\overline{K}_{2m}}(v_i) = g(v_i) + \sum_{j=1}^p g(u_j v_i) = 1 \text{ if } 1 \le i \le m,$$

$$\operatorname{wt}_{G+\overline{K}_{2m}}(v_i) = p \equiv 1 \pmod{2} \text{ if } m < i \le 2m$$

and for $u_j \in V(G)$,

$$\operatorname{wt}_{G+\overline{K}_{2m}}(u_j) = \operatorname{wt}_{G}(u_j) + \sum_{i=1}^{m} g(u_j v_i) + \sum_{i=m+1}^{2m} g(u_j v_i)$$

= $\operatorname{wt}_{G}(u_j) + m \equiv 1 \pmod{2}$.

Case ii. m is even.

For
$$v_i \in V(\overline{K}_{2m})$$
,

$$\begin{split} \operatorname{wt}_{G+\overline{K}_{2m}}(v_i) &= 0 \text{ if } 1 \leq i \leq m, \\ \operatorname{wt}_{G+\overline{K}_{2m}}(v_i) &= 1 + p \equiv 0 \pmod{2} \quad \text{ if } m < i \leq 2m \end{split}$$

and for $u_i \in V(G)$,

$$\operatorname{wt}_{G+\overline{K}_{2m}}(u_j) = \operatorname{wt}_{G}(u_j) + \sum_{i=1}^{m} g(u_j v_i) + \sum_{i=m+1}^{2m} g(u_j v_i)$$
$$= \operatorname{wt}_{G}(u_j) + m \equiv 0 \pmod{2}.$$

Also
$$n_g(0) = n_f(0) + m(p+1)$$
, $n_g(1) = n_f(1) + m(p+1)$ and hence $|n_g(0) - n_g(1)| = |n_f(0) - n_f(1)| \le 1$. Therefore, $G + \overline{K}_{2m}$ is TVMC.

Acknowledgement: The authors sincerely thank the referee for the valuable comments and suggestions for a better presentation of the paper.

References

- [1] I. Cahit, Cordial graphs: A weaker version of graceful and harmonious graphs, *Ars Combin.*, **23** (1987), 201–207.
- [2] I. Cahit, Some totally modular cordial graphs, Discuss. Math. Graph Theory, 22 (2002), 247–258.
- [3] J. A. Gallian, A dynamic survey of graph labeling, *Electron. J. Combin.*, 17 (2010)# **DS6**.
- [4] F. Harary, Graph Theory, Addison-Wesley Publishing Co., 1969.
- [5] H. K. Krishnappa, Kishore Kothapalli and V. Ch. Venkaiah, Vertex-magic total labelings of complete graphs, $AKCE\ J.\ Graphs.\ Combin.$, 6 (2009), 143–154.
- [6] J. A. MacDougall, M. Miller, Slamin and W. D. Wallis, Vertex-magic total labelings of graphs, *Util. Math.*, **61** (2002), 3–21.
- [7] J. A. MacDougall, M. Miller, and W. D. Wallis, Vertex-magic total labelings of wheels and related graphs, *Util. Math.*, **62** (2002), 175–183.

P. Jeyanthi

Research Centre

Department of Mathematics

Govindammal Aditanar College for Women

Tiruchendur - 628 215

India

E-mail: jeyajeyanthi@rediffmail.com

N. Angel Benseera Department of Mathematics Sri Meenakshi Government College for Women Madurai - 625 002 India.

 $E\text{-}mail\colon \texttt{angelbenseera@yahoo.com}$