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Abstract. In this paper we give explicit projective bimodule resolutions for al-
gebras in a class of some special biserial algebras, which contains a cluster-tilted
algebra of type D4. As a main result we completely determine the dimensions
of the Hochschild cohomology groups for these algebras.
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81. Introduction

Let Q be the following quiver with four vertices 0, 1, 2, 3 and five arrows:

N

For i = 0,1, 2, let e; be the trivial path at the vertex ¢, and f; the trivial path
at the vertex 3. For our convenience, f; also denotes the trivial path at the
vertex ¢ for i = 0,2. (Hence we may write e; = f; for j = 0,2.) For i = 0,1,
let a; be the arrow from 7 to 7+ 1, and ao the arrow from 2 to 0. Moreover let
bo the arrow from 0 to 3, and b; the arrow from 3 to 2. For our convenience,
by also denotes the arrow from 2 to 0. (Thus we may write ag = bs.)
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Throughout this paper, all indices i of e;, f;, a; and b; are considered as
modulo 3. Hence it follows that, for each i € Z, a; starts at e; and ends with
e;+1, whereas b; starts at f; and ends with f;11. We write paths from left to
right.

The purpose of the paper is to describe the Hochschild cohomology groups
for a class of algebras A,, which contains some cluster-tilted algebra of Dynkin
type D4. Let K be an algebraically closed field, and let n be a non-negative
integer. Let I,, denote the ideal in the path algebra KO generated by the
following uniform elements:

(aparaz)"apay — boby, (@iait1aiy2)"a;a;41, bibiy1 fori=1,2.

Denote the algebra KQ/I,, by A,,. We immediately see that these algebras A,
are special biserial algebras of [SW], but are not self-injective algebras, since
the indecomposable projective right A,-modules corresponding to e; and f;
have the isomorphic socles.

In [BHL], Bastian, Holm and Ladkani introduced specific quivers, called
“standard forms” for derived equivalences, and proved that any cluster-tilted
algebra of Dynkin type D is derived equivalent to a cluster-tilted algebra whose
quiver is a standard form. If n = 0 then our algebra Ay (= KQ/I) is a
cluster-tilted algebra of type D4 and its quiver Q is precisely one of standard
forms. Also, by [ABS, Example 3.6], Ay is isomorphic to the trivial extension
B x Ext%(D(B), B) of the titled algebra B = KQ'/I' of type D4, where
D(B) = Homg (B, K) and Q' is the quiver

4y2y1
Nz

and I’ is the ideal generated by a8 — ~9.

Recently, in the papers [ES, SS, ST], the Hochschild cohomology of certain
self-injective special biserial algebras have been studied, where the authors
constructed some sets G' (i > 0) found in [GSZ] to provide minimal projective
bimodule resolutions. In this paper, following these approaches, we give sets
G® for the right A,-module A, /v, where v, is the radical of A, and then use
them to provide a projective bimodule resolution of A,; see Section 2. The
sets G¢ also appear in the papers [A, GHMS, GS]. As a main consequence
we give the dimension of the Hochschild cohomology group HH'(A,,) (i > 0),
completely, for all n > 0 (Theorem 4.10). In particular, we get the dimensions
for the Hochschild cohomology groups HH!(Ag) for the cluster-tilted algebra
Ao of type Dy (Corollary 4.12).
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Throughout this paper, for any arrow ¢, we denote the trivial path corre-
sponding to the origin of ¢ by o(c), and the trivial path corresponding to the
terminus of ¢ by t(c). Therefore we have o(a;) = e;, 0(b;) = fi, t(a;) = €it1,
and t(b;) = fi41 for all ¢ € Z. For our algebra A, we denote its radical by
t, and its enveloping algebra Ay® @k A, by AS. Also we write ® as ®, for
simplicity.

§2. A minimal projective resolution of A, /v,

In this section we construct sets G¢ (i > 0) of [GSZ] for the right A,-module
Ay /ty, from which we can get an explicit minimal projective resolution of

Ap/ty.

Let A = KQ/I be any finite-dimensional algebra with @ a finite quiver
and [ an admissible ideal. Denote the radical of A by t. Let GY be the set of
vertices of @, G' the set of arrows of @, and G2 a minimal set of generators of
I. In [GSZ], Green, Solberg and Zacharia showed that for each ¢ > 3 there is
a subset G* of KQ such that every x € G' is an uniform element and we have
a minimal projective resolution of A/t

4 3 2 1 0
2 p3 S p2 O pt O p0 O A0
satisfying the following;:

(a) Fori >0, PP = t(x)A.

z€GL

(b) For z € G, there are unique elements ry, 5, € KQ, where y € G—1 and
S g2_27 SuCh that r = Zyegi*1 yTy = ZZGgi72 Z2S,.

(c) For i > 1, the differential §° : P* — P'~! is defined by

T)A —> Zry )A for x € G' and X € A,
yegzl

where 7, are elements in the expression (b).

Fix an integer n > 0. We now construct sets G¢ (i > 0) for the right
Ap-module A, /t,. First let

R = €0 = f07 Sozelu T0:f17 and UO:62:f27

and put G¥ = {R° S°, 70 U°}. To define further sets G’, we introduce the
following elements in K Q:

Definition 2.1. We inductively define the elements as follows:
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(i) For: >0

4 ’ Rbay ifj=0
ROH+6 = RS5(g0a0a1)"as, R61+1 { o 17

RSy ifj=1,
RSI+2 — R8i+1(a1a2a0)na1 _ Rilii+1b1’ R6i+3 = Rbi+2q, — R6i+2p,

RO+ — R (agaraz)"ag if j =0 ROi+5 — ROi+4, _ RBi+dp
RSi+3p, ifj=1, 0 !

(ii) S* = S%;(=a1) and for i >0

ot — 595 (agayaz)™ag lfJ =0 geir7 _ SO0, — ity
562+5b0 lf] =1,

S6i+244 if j =0
§6i+2 — g6i+1 ((12(10@1) as, SGz+3 { 0 J

S6H2h if j =1,

SO = 573 (ayagag)ar — S7Tby,  SOHS = SOty = S+,
(iii) T = T by (= by) and for i > 0

T6i+5 0 if ] =0 ) ) )
r76Z+6 {T62+5b o . T761+7 _ T§Z+6(CL1€LQGO)”G1 . T16’L+6b17
o 1j=1,

6it2 n e
62 _ i1, _ 6+l Ti+3 _ T%**(aparaz)"ag if j =0
= az = 2 A T ) peit2 ey
T"bg if j =1,
T+ = T(?i”al - Tfi+3b1, TOH5 = T84 (gsa1a0)"as.

(iv) Fori >0
U62+6 U61+5(a1a2a0)na1 o U{iiJerl’ U6i+1 — Uﬁiag — U6ib2,
6341 e s
U62+2 {U " (a0a1a2)na0 if J=0 Ubi+3 — U61+2 Ufi+2b17

Ubitly, if j =1,

Usiti, ao ifj =0
U6z+4 U61+3 aoana )a 7 U62+5
(a20001)"az USi+ap, if j = 1.
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Now, for i > 1, we define
(R, S}, 81, T8, T8, U} ifi =0 (mod3),
(2.1) G'= < {R}, R}, S, T U} if i =1 (mod 3),
{RY,S", T, UL, Ui} if i = 2 (mod 3).
Then it is straightforward to show that G° (i > 0) satisfy the conditions (a),
(b), and (c) above.

Remark 2.2. As explained above, the set (2.1) provides a minimal projective
resolution (P*,d) of A, /¢, defined by (a)—(c). We immediately see that (P*, )
is not a periodic projective resolution, but Kerd! has a periodic projective
3 ifn=0
resolution of period .
if n> 0.

In particular, if n = 0, then (P*®,d) is a linear resolution, so that we get the
following proposition.

Proposition 2.3. The algebra Ag is a Koszul algebra.

83. A projective bimodule resolution of 4,
In this section we give an explicit minimal projective bimodule resolution of
Ay
4 3 2 1 0
@.0: LR L5 %" S 4,50
for any n > 0. First we define the projective A,-A,-bimodule Q* (i > 0) by
using the sets G¢ in (2.1) as follows:
Q" = P Ano(g) @ t(g) An.
geG?
Then for i > 0 we easily see that 0(g1)®t(g1) # 0(g2) ®t(g2), that is, A,0(g1)®
t(g1)An % Ano(g2) @ t(go)A, as Ap-A,-bimodules for all g1, go € G with
g1 # g2. Actually Q' can be written as follows:
QO = (Aneo X 60/1”) S (Anel ® elAn) S (Anfl & flAn) S (Ane? & 62/1”),
and for 7 >0
Q¥ = (Aneg ® eo/An) @ (Aner ® e14y) © (Aney ® f1ly)
© (Anf1 @ e1dy) © (Anf1 ® fidn) © (Apez2 ® e2dy),
Q3i+1 = (Ane(] ® elAn) S3) (Aneo X flAn) ) (Anel ® €2An)
@ (Anfl & 62/171) S (AnQZ ® eOAn)a
Q¥ = (Aney ® e24n) ® (Aner ® egAn) @ (Anf1 @ eg )
S (An€2 X elAn) ) (An€2 X flAn)



150 TAKAHIKO FURUYA

Now we need to give maps 0 : Q' — Q"' of A,-A,-bimodules. Let
2% : Q% — A, be the multiplication. For i > 1 we define 9 as follows:

Definition 3.1. For i > 1 we define the map 0’ : Q* — Q*~! by the following:
For 7 >0

(a) For {=0,1,2 and r = 0,1

ol - e = ear—a e,
fr®fr+1 = f7‘®b7“_b7"®f7‘+1‘

(b) For [ =0,1,2

(
€o ® (agaoal)”ag

3n—1
+< k=0 aoala2"'ak®ak"‘a3n—1>

+(aparaz)*ap @ eg —bop ®ey  if 1 =0,

e1 ® (apajaz)™agp
3
ee®e = + <Zk21 10203 a4 D ag - a3n>
_|_

' (ara2a9)"a; ® eq ifl=1,
9%+6 .

ea ® (arazap)™a;
3n+1
+ (D ohry a2a3a4 - A @ g - - A3p41

+(azapa1)"az ® ez — ez ® by if I =2,

e1®fi — eg®by+ a1 ® fi,
fi®ve f1®ag + by ® ey,
(1®fi = [i®b+b1® fi.

I

(¢c) Forl=0,1,2 and r =0,1

eo®ag—agRel +bgRer ifl =0,
eRe1 e1®al —aL®ey—er®by ifl =1,
§oi+T . es ®as —as ® e if [ = 2,

eo @by +by® f1 — (aparaz)"ap® f1  ifr=0,
—f1®b1 — b1 ®ez+ f1® (ara2a0)"a; if r=1.

fr@fr+1 — {
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(d) Forl=0,1,2and r =1,2

(e0 @ (araza0)"ar

t Zzz_ol apa1az - - Qg @ 42 - a3n+1)
+(aparaz)ap ® ez

e ®es —(eo®b1+by®e) ifl=0,

§0I+2 .

er ® (apy1ai42a1) ar11

3n+l—-1
+ < k=l A1a4+10742 Q) @ Gy - - a3n+l+1>

Haa1042)"a @ ey i 1 =1,2,

kfr®fr+2 — fr®br+1+br®fr+2-
(e) For1=0,1,2

eoRas —ag®eg+by®ey if 1 =0,
eRe = se1®ag— a1 ® ey ifl =1,
ois ea®a; —ar®exy —ea®by ifl =2,
oI
e1® fi = e1®by— (a1a2a0)"a1 @ fi,
fi®er = f1® (aparaz)"ag — b1 @ ey,
(1®fi = fi®b—b® fi.

(f) Forl=0,1,2and r = 0,1

( eo ® (apajaz)™agp

3n—1
+ Zk:o apai1ag - - - ag & Ak+1 " agn)

+(apaiaz)"ag ® ey — by ® €1 ifl =0,

e1 ® (arazap)"ay
3n
ey = + (Zkzl 10203+ A @ Afy 1+ a3n+1>
+

963 +4 . (ar1a2a0)"a; @ ea — €1 ® by ifi =1,

€2 X (agaoal)"ag

3n+1
+ ( ko 020304 A & Qg1 - a3n+2)
L —i—(agaoal)"ag X eg ifl =2,

eo®@by—byp® fr+ay® fi ifr=0,
- +h Qe+ fivwa ifr=1

fr®fr+1 = {

\
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(g) Forl=0,1,2and r = 1,2

ep®ar —agRes —egRby +byRey if I =0,

eg®era = Je1®ax —ap ey ifl =1,

PUREE eg ®ag—as ® e if [ =2,
Fr® forn — J1 ® (azapa1)"az — b1 ®eq if r =1,
" " e ® by — (agaoal)”ag X f1 if r=2.

Remark 3.2. As in Remark 2.2, we denote by (P*,J) the minimal projec-
tive resolution of A,/t, given by the sets G¢ in (2.1). Then, it is easy to
see that, for each ¢ > 0, the map h; : A,/t, @4, Q' — P’ determined by
hi (0(g9) @4, 0(9) ®k t(g9)) = t(g) (¢ € G') is an isomorphism of right A,-
modules such that the square

. id®An8i+1 .
An/tn ®An QH_I EE— An/tn ®An QZ

hprll’: ZJ(/'LZ

. i+1 .
PH—l s Pt

is commutative. Since (P°®,¢) is a minimal projective resolution of A, /¢y, it
follows that (A, /t, ®4, Q°,id ®,4, J) is a minimal projective resolution of
Ap/ty.

Now we have the following theorem. The proof is same as that of [ES,
Theorem 2.4] and that of [ST, Theorem 1.6]; see also [A, BE, GHMS, O, SS].
But we include a proof for the convenience of the reader.

Theorem 3.3. (Q°*,0) is a minimal projective bimodule resolution of A,,.
Proof. By direct computations we have Im 9*T! C Ker &' for all i > 0, so that
(Q*,0) is a complex.

We verify the converse inclusion Ker @ C Imd**! for all i > 0, which
implies the exactness of (Q°®,0). Suppose for contradiction that Ker 9™ ¢
Im o™+t for some m > 0. Then for some simple A,-A,-bimodule S ® T

(where S is a simple left A,-module, and T is a simple right A,-module) we
get the non-zero composite

f:Kerd™ — Ker0™/Im90"! — S®T.

Also, since (A, /t,®4, Q°,id® 4, 0) is a minimal projective resolution of A, /¢,
by Remark 3.2, we get the isomorphism of right A,-modules

F:Ay/ty @4, Imd™ ! =5 Im (id @4, 0™) = Ker (id @4, ™)

= Ay [ty ®4, Ker o™
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satisfying F(z ®y) = x ®y for x € A, /t, and y € Im ™!, We now consider
the non-zero composite

6m+1

id
G Apftn@p, QU CET A @ a0 Tm O™

id
e pftn@n, Ker 0™ 247 A 0, SOT.

Then we easily have G = id®4, (f0™1!). But clearly f0™*! = 0, so it follows
that G = 0. This is a contradiction. Hence (Q°®, 0) is exact.

The minimality of (Q®,d) follows from the fact that 9°(0(g) ® t(g)) lies in
the radical of Q*~! for all i > 1 and g e Gt. O

Remark 3.4. We immediately see that the projective resolution (Q*®, d) is not

periodic, but Ker 0! has a periodic minimal projective bimodule resolution of
, {3 if char K = 2 and n = 0

period

6 otherwise.
Remark 3.5. By Happel [H], the number of the indecomposable projective
summand of * which is isomorphic to A,u ® vA, equals the dimension of
Ext} (Su,Sy) for each i > 0, where u,v € {eg,e1,e2, f1}, and S, S, denote

the simple A,-modules corresponding to u and v, respectively. Therefore we
have for 7 > 0 that

dimp Ext%l (Su, Sy)
_ {1 if (u,0) = (es, ¢;) with i = 0,1,2, (e1, f1), (f1,e1), or (fi, /1),

0 otherwise,
dimp Exti]:l(su, Sy)
o 1 if (U,U) = (eiaei—‘rl) with 7::071727 (607f1)7 or (f1762)7
o otherwise,
dimg Ext% 7 (Sy, S)

. 1 if (u,v) = (61', ei_:,_g) with ¢ = 0, 1, 2, (fl, 60), or (62, fl),
|0 otherwise.

Moreover we see for ¢ > 0 that the dimension of Ext§17L(Su, Sy) coincides with
the number of the elements g € G* such that g = ugv.

Remark 3.6. In [GHMS], a minimal projective bimodule resolution for any
finite-dimensional Koszul algebra is constructed by using the sets G*. Hence
for n = 0 we could have applied [GHMS, Theorem 2.1] to get a minimal
projective bimodule resolution of Ay.
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84. Hochschild cohomology group of A,

In this section we find the dimensions the Hochschild cohomology groups of A,
by using the minimal projective bimodule resolution (Q*®,d) of Theorem 3.3.
Applying the functor Hom g (—, 4,) to (Q°,0), we have the complex

Hom e (0,45) Hom ¢ (8%,A5)
e _—>

0 — Homye (Q°, A,,) Hom e (Q*, Ar)

Hom 4¢ (83,45) Hom s¢ (0%,45)
E—— —_—

Hom g, (Q°, 45) Hom g, (Q°, Ay)

Then, for i > 0, the ith Hochschild cohomology group HH!(A,,) of A, is given
by the K-space
HH'(A,) := Ext/ye (An, An) = Ker Hom e (9", A,,) /Im Hom g (8°, Ay).

Note that, for each j =2,3,...,7and k > 0, since 97 = 9%+ holds, it follows
that HHS*+7(A,,) ~ HH/ (4,,).

4.1. The basis for Hom e (Q", 4,,)

We start by giving a K-basis for Hom e (Q*, Ay,) for ¢ > 0. It is well-known
that for each ¢« > 0 the map

Hom e (Q', 4n) = €D o(9)Ant(9); [ D flo(g) @(9))
geG? geg?
is an isomorphism of K-spaces. Therefore, by a computation of a K-basis
for @ cgi 0(9)Ant(g), we have the following lemma. Here we recall that all

indices 7 of e;, f;, a; and b; are considered as modulo 3, and fo = ey, fo = €2
and as = by, by our convention.

Lemma 4.1. We have the following K -basis of Homy. (Q, Ay,) for i > 0:

(a) For k = 0,1,2 and m = 0,1,...,n, let o : Q° — A, be the map of
Ap-Ap-bimodules determined by: forl=0,1,2

o (aragyrap42)™ ifl =k
m . 0 if l £k
Oék .
hefi = 0
and let 5 : Q0 — A, be the map of A,-A,-bimodules determined by

Y ege®e +— 0 forl=0,1,2
| A®A — A
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Then
{8 k=0,1,2;, m=0,1,...,n}

defines a K-basis of Hom ge (Q° Ay).
For k =0,1,2 and m = 0,1,...,n, let ¢7* : Q¥ T3(= Q) — A, be the
map of Ap-An-bimodules defined by: for 1 =0,1,2

Qe (akapt1ap42)™ l:fl =k
0 ifl #k

o

FlfAiefi = 0
e1®fi — 0
\fl®61 — 07

and let v : Q313 (= Q3) — A, be the map of Ap-A,-bimodules determined
by

e®e +— 0 forl=0,1,2
" hiofi = f

e1®fi — 0

fiwer — 0.

Then
{on ¢ | k=0,1,2, m=0,1,...,n}

gives a K-basis of Home (Q%73, A,,).

For k=0,1,2 and m = 0,1,...,n, let uj’* : QY= Q) — A, be a map
of Ap-Ap-bimodules determined by: forl=0,1,2 andr =0,1

m ifl =k
e ey {(()akak+1ak+2) a i

ifl#£k
fr®fr+1 = 07

and, for s = 0,1, let vs : Q3T (= Q') — A, be a map of Ap-A,-bimodules
defined by: for 1 =0,1,2 and r =0,1

ege®eqrr — 0

Vs :

bs ifr=s

fr®f7’+1 = {0 z'fr;és.
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Then
{pitvs | k=0,1,2;, m=0,1,...,n; s=0,1}

defines a K-basis for Homge (Q3 11, A,).
(d) Letn: @Q%%2(= Q?) — A, be a map of A,-Ay,-bimodules defined by: for
[=0,1,2 andr =1,2

(aparaz)apa; if L =10

e e —
P {0 ifl=1,2

n:
fr ®f’r+2 — 0

Moreover, if n > 0, then for k = 0,1,2 and m = 0,1,...,n — 1, let
o7 - QYT (= Q%) — A, be a map of Ap-Ap-bimodules defined by: for
[=0,1,2 andr=1,2

(arari10r42)"agary1  if L=k

& —
e {0 i1+ k

0"
fr® fry2 = 0.
If n =0, then {n} is a K-basis of Hom ¢ (Q3%2, Ay), and if n > 0, then
{n,0* | k=0,1,2;, m=0,1,...,n—1}
defines a K-basis for Hom e (Q312, A,,).
As an immediate consequence, we have the following corollary:

Corollary 4.2. For i > 0, the dimension of HomA%(Qi,An) is given as fol-

lows:
3n+4 ifi=0 (mod3)

dimg Homue (@, A,) =< 3n+5 ifi=1 (mod3)
3n+1 ifi=2 (mod3).

4.2. The images of HomA%(ai,/ln)

Now we find the images of basis elements in Lemma 4.1 under the map
Hom se (9", Ay). By direct computations we have the following.

Lemma 4.3. For j > 0 we have the following:
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a) For k =0,1,2 and m = 0,1,...,n we have o*0' = ¢0%+7, and for
k k
[1=0,1,2, and r =0,1,

65+7
o

N

(apags1ak12)"ag if | =k (mod 3)
ey 0 ifl=k+1 (mod 3)
—(ags2apags1)"akre  if L =k +2 (mod 3)

bo ifr=k=m=0
r®fry1 = (=b1 ifr=1,k=2andm=0

0 otherwise.

Furthermore, for 1 =0,1,2, and r = 0,1, we get

and

eg®e4r — 0

Bt -

—bo if’l” =0
T® T ’_>
Jr® fr {b1 ifr=1
ee®eqy — 0
65+7 .
wa ) f ®f N bo z'fr:O
" T —b1 if?" =1.

(b) For k=0,1,2 and m =0,1,...,n, we have: for 1 =0,1,2, and r = 1,2,

m 065+2 .
g 07

egea
(n+1)(aparaz)"apar ifl=k=m =0, or
fm=1l=0and k=1
n(apaiaz) apa; ifk=2andm=101=0
0 if0<m<mn, orifl=1,2

fr®fr+2 = 0.

Also, for s = 0,1, we have: forl =0,1,2, andr = 1,2,

v 08912

—(aoalag)”aoal Zfl =0

e e —
L {0 ifl=1,2

fr ® fr+2 — 0.
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(c) For g € GYF3 we have n0%73(0(g9) ® t(g)) = 0. Also, if n > 0, then for
k=0,1,2 and m=0,1,...,n— 1 we have: for =0,1,2

( (apapyiagio)™ ! if | = k (mod 3)

ee®e — <0 if l=k+1 (mod3)
—(apq2arars1)™t  if =k + 2 (mod3)

oot
e1®fi — 0
fivwer — 0
hefi = 0

(d) For k=0,1,2 and m=0,1,...,n, we get: forl =0,1,2 andr =0,1

.
e X ej+1 —>

(n+1)(agag+1ak+2)"ak if l =k (mod3) and m =0

n(ap1akr20k) " agt1 ifl=k+1 (mod3) and m =0
- (n+ 1)(agsoakag+1) " akre  if L=k +2 (mod3) and m =0
Pprov T 0 if0<m<n

by ifr=k=m=0
rfrxr = by ifr=1,k=2andm=0

0 otherwise

and
ee®err — 0
65+4 .
YouT by ifr=0

fr@fr-i—l — {—bl ifT‘Zl.

(e) For k=0,1,2, and m =0,1,...,n, we have: for | =0,1,2 and r = 1,2

P osIts

(el ® ey

(agagi1ak12)"akak11 ifl=kand0<m<n-1,
orifl=k=0and m=n

—(ag2akak4+1) " aps2ar  if l=k+2 (mod3) and 0 <m <n-—1,
orifl=0,k=1and m=n

0 otherwise

\fr ® f7»+2 — 0.
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Moreover, for s = 0,1, we have that: for | =0,1,2 and r = 1,2,

,

—(apaiaz)"apa; ifs=1=0
erR ey > (apaiaz)"apay ifs=1andl=0
65+5
V0T 0 otherwise

fr®fr+2 = 0.

(f) For g € G%%% we have nd%75(o(g)®t(g)) = 0. Furthermore, ifn > 0, then
for g € G976 |k =0,1,2, and m = 0,1,...,n — 1 we get 705 %5(0(g) ®
t(g)) = 0.

In the rest of the paper, we consider the lower indices k of uj*, ¢i* and 0} as
modulo 3. From the lemma above, we immediately have the following:

Corollary 4.4. (a) Fork=0,1,2 and m=0,1,...,n

pd—pd+vy ifk=0andm=0
Aol = ¢St = = = ifk=2andm=0
Bt — Hto otherwise.
Also, BOY = v1 — vy and Y517 = vy — 1.

(b) For k=0,1,2 and m=0,1,...,n

(n+1)n ifk=m=0,o0rifk=1andm=0

Pttt = oy ifm=0and k=2
0 if 0 <m <n,
and vs0%12 = —y for s =0, 1.

(c) n9%+3 =0, and if n > 0 then 9% +3 = ¢t — ¢Zf21 fork=0,1,2 and
m=0,1,...,n—1.

(d) Fork=0,1,2 and m=0,1,...,n

(n4+Dui +nuf +n+1uf+vy ifk=m=0

gt _ (n 4+ D)pf +npl + (n+ 1)ug z:szlandmzo
(n+Dps +npi+n+ 1Dl +v1 ifk=2andm=0
0 if0<m<n

and ’l/)86j+4 = —lVy— 1.
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(e) For k=0,1,2 and m=20,1,...,n

O — 0"y f0<m<n-1

oIt — n ifk=0and m=n
‘ -n ifk=1andm=n
0 if k=2 and m=n
and for s =0,1

7/586j+5 — _77 Zf 5= 0
n if s =1.

(f) nd%*6 =0, and if n > 0 then 6720%*¢ = 0 for k = 0,1,2 and m =
0,1,....m—1.

4.3. A basis of ImHom e (9', A,,)

We now find a K-basis of Im Hom ze (0%, Ay,) for i > 0. Keeping the notations
from the previous subsections we have the following lemma.

Lemma 4.5. For i > 1 we have the following K-basis of Im Hom se (0%, Ay):
Forj >0

(a) (1) Ifn =0, then {ud — 19 + vo, 8 — 8, 1§ — 1 — 11} is a K-basis of
Im Hom e (0%, A,,).
(2) Ifn >0, then {1 —p5+vo, p} — 1, 19—} —v1, pgt — 5", pi* —pug' | m =
1,...,n} is a K-basis of ImHom e (9%, Ay,).

(b) {n} is a K-basis of ImHom e (0%12, Ay,).

(¢) (1) If n=0, then ImHom e (0913, A,,) = 0.
(2) If n > 0, then {¢g" — o5, ¢ — o | m = 1,...,n} is a K-basis of
Im Hom . (09773, A,,).
(d) (1) If char K | 3n + 2, then {—pf + py + vo, py — pg +v1,v0 + 11} is a
K -basis of Im Hom e (8%74, A,,).
(2) If char K {3n + 2, then {py, —pf + p3 + vo, py — pg + v, v0 +vi} is
a K-basis of Im Hom ¢ (0574, A,,).
(e) (1) If n=0, then {n} is a K-basis of Im Hom se (8%7°, A,,).

(2) If n >0, then {63* — 05", 67" — 03", n | m=0,1,...,n—1} is a K-basis
of Im Hom ge (8915, A,).
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(f) ImHom e (9%76, A,,) = 0.

Proof. (a) We first consider a K-basis of Im Homye (8, 4,). Let z be any
element in Hom e (Q°, A,). Then, by Lemma 4.1 (a),  can be written in the

form
2 n
T = <Z ZWQ?) +qp3

k=0 m=0

where pi*,q € K for k =0,1,2 and m = 0,1,...,n. By Corollary 4.4 (a) we
get

HOInAe ((9 Ayp) (Z Z i ( ) + Q(ﬁa )

k=0 m=0
(PY(1d — 13 + vo) + p(ud — ud)
+p9(1d — pd — 1) + q(v1 — o) ifn=20

PY(1d — 19 + o) + Y (18 — 1) + p3 (1 — p — 1)
2 n

+avi =)+ Y PR — i) >0

k=0m=1
(4.1)

(S — @) (ud — 1§ + 10) + (P9 — ) (19 — 1)
+(p§ — @) (4 — pf — 1) if n=0
=L ) — @) () — S +vo) + () — @) (1§ — 1)
+(PY — @) (1§ — pf — v1)
n

#3008 5 — ) + 7 —PE)ef* — ) i >0

Therefore Hom ge (9, Ay )(x) = z0' belongs to

K(pg — pd+10) DK (1) — 1) @ K (13 — pf —11) ifn=0
K (g — 13+ 10) @ K (1§ — 1) @ K (1 — pf — 1)

@<é<K(M — pg') D K (uy" —uo))> if n > 0.

Conversely it is obvious by Corollary 4.4 (a) that, for m = 1,...,n, the el-
ements pf — p9 + vo, pf — pd, py — pd — vi, pgt — ps', and pit — pgt are in
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Im Hom 4 (01, A,,). Hence we get
Im Hom g (0%, Ay)

K(pg — 1§+ v0) D K (1 — 1g) @ K (19 — pf — 1) if n=0
— { K (pd — pd +v0) D K (1) — 1) D K (1§ — p§ — v1)

D (@(K(N?—M?)@K(MT—%’L») if n>0.

m=1

\
This shows the desired results in this case.

A similar computation gives the desired basis of Im Hom 4e (059+7  A,,) for
j > 0. Therefore the statement (a) is proved.

(b) Let € Homye (Q%*1, Ay,). Then, by Lemma 4.1 (c), z can be written

in the form
2 n
o (z 5 pm) 4 ot an

k=0 m=0
where pi*,qo,q1 € K for k = 0,1,2 and m = 0,1,...,n. Then we have by
Corollary 4.4 (b) that

2 n
Hom g5(6%7*%, Au)(2) = (Z > p?<u2”86j*2>> a0 ) + (0
k=0m=0

= (tn+ 1p§n + (0 + D)pln + npdn) + (—gom) + (=q17)

(4.2) = ((n+ 1p§ + (n+ 1pf + np§ — a0 — a1 )
€ Kn.
Conversely, we get Hom e (0972 A,)(—1p) = 1 by Corollary 4.4 (b). So it

follows that Im Hom e (0912, A,,) = K7. Hence the statement (b) is proved.
Similar observations show the remaining cases (c¢)—(f). O

As an immediate consequence we have the dimension of Im Hom s (0%, A,,) for
i>1.

Corollary 4.6. For i > 1 the dimension of Im Hom e (0%, Ay) is as follows:

0 if i =0 (mod 6)
2n+3 ifi=1 (mod6)
1 if i =2 (mod 6)

dimg Im Hom ze (9, 4,) = < 2n if i = 3 (mod 6)
3 if i =4 (mod 6) and char K | 3n + 2
4 if i =4 (mod 6) and char K {3n + 2
2n+1 ifi=>5 (mod6).
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4.4.

A basis of Ker Hom e (9", 45,)

Now we find a K-basis of Ker Hom e (9", Ay,) for each i > 0. In the following
we note that if char K | 3n + 2, then char K # 3.

Lemma 4.7. For j > 0 we have the following K-basis:

(a) (1)
(2)

Ifn =0, then {af+ o + a3 + B} is a K-basis of Ker Hom e (01, A,,).
Ifn >0, then {a +af +ad+ B, ol + o'+ af | m=1,...,n} is a
K -basis of Ker Hom e (01, Ay,).

Ifn =0, then {#3+ @) +¢3—1} is a K -basis of Ker HomA%(86j+7, Ay).
If n > 0, then {¢8+¢?+.¢8—¢,¢6”+¢T+¢’2n |lm=1,...,n} isa
K -basis of Ker Hom e (9%17, A,).

Ifn =0, then {ud+ v, pd — p3 +vo, u§ — 8, u9 — ud — 11} is a K-basis
of Ker Hom e (0912 A,,).

Ifn >0, then {pg+(n+1)vo, ug—pu3-+vo, p —pg, u3—pf —vi, ug's ug' —
P wt = pd |m=1,...,n} is a K-basis of Ker Homge (0%12, Ay,).
Ifn =0, then {n} is a K-basis of Ker Hom e (0973, A,,).

If n >0, then {96”—1—9’{”4—93",17 |m=0,1,...,n—1} is a K-basis of
Ker Hom ge (9%73, Ay,).

Ifchar K | 3n+2 andn =0 (so char K = 2), then {¢8 + ¢ + ¢3 + 1}
is a K-basis of Ker Homge (9%, A,,).

If char K | 3n +2 and n > 0 (so char K # 3), then {¢J + &) + ¢3 +

w,¢6n+¢?l+¢gl,¢81—¢gn,¢gn—¢gl |m=1,...,n} is a K-basis of
Ker Hom ge (9%74, A,,).

If char K t 3n +2 and n = 0, then Ker Hom e (0974, A4,,) = 0.

If char K t 3n+2 and n > 0, then {¢g", o' — 05, 67" — o' | m =
1,...,n} is a K-basis of Ker Hom e (99714, A,,).

Ifchar K | 3n+2 andn = 0 (so char K = 2), then {ud+pd+pu3, —pl +
13+ vo, 1 — pud 4+ vi, v + 11} is a K-basis of KerHomA%(86j+5, Ay).
If char K | 3n 4+ 2 and n > 0 (so char K # 3), then {pg" + pi* +
ph', — Y+ pS Vo, B — pig v, v+ v |m=0,1,...,n} is a K-basis
of Ker Hom e (0%7F° A,,).

Ifchar K { 3n+2 and n = 0, then {p3, —u + 9 +vo, p9 — pud +v1, vo+
v} is a K-basis of Ker Homye (0975, A,,).

If char K t 3n+ 2 and n > 0, then {pg" + pi* + pi', pwy, —pf +
wy + vo,py — pg +vi,vg+vi | mo=0,1,...,n — 1} is a K-basis
of Ker Homy. (0972, A,,).
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(g) (1) If n=0, then {n} is a K-basis of Ker Hom e (8%76, A,,).

(2) If n > 0, then {67, 65" — 05,07 — 63",n | m = 0,1,...,n— 1} is a
K -basis of Ker Hom e (0915, A,,).

Proof. (a) Let x = (Zi:o Z:hbzop’,;”ag‘) +qB € HomA%(QO,An), where p}”,
g€ K for k=0,1,2 and m = 0,1,...,n. Suppose that HomA%((‘)l,/ln)(x) =
0. Then, by (4.1), we have p§ — ¢ = p) —q¢ = pJ — ¢ = 0 if n = 0; and
W—qg=p)—q=p)—q=p —p =pP —p =0form=1,...,nifn > 0.
Hencepgzp?:pgzqifn:();andpgzp(f:pg:qandp()”:pgn:pg"”for

m=1,...,n if n > 0. Therefore we get
pY(ad +af +af + B) ifn=0

T = -
p8(a8+a?+a8+5)+(Zpgh”(oag"”—i-a?l—i-ag”)) if n > 0.

m=1

Accordingly it follows that

K(ad+af + a3+ B) ifn=0

T € n
K(a8+0‘(1)+048+5)€9(@K(a()”+o/1”+ozgl)> if n > 0.

m=1

Conversely, it is easy to check that the elements af + of + af + 3 and o +
of* + af' are in KerHomA%(o“?l,/ln) form=1,...,n. Thus

Ker Hom e (0%, 4,,)
K(ad+ ol +ad + ) ifn=0

K(ag"‘a?"‘ag‘f‘ﬁ)@<@K(a6n+a§”+ag”‘)> if n > 0.

m=1

This gives the required K-basis in (a).
A similar argument provides the required K-basis in (b).
(c) Let x = (Zi:o Zzl:opzl,uzn) + qovo + 11 € HomA%(Q6j+1,An),

where pi*,q0,q1 € K for k = 0,1,2 and m = 0,1,...,n. Suppose that
Hom e (09%2, A, )(z) = 0. Then (4.2) yields (n+1)p)+ (n+1)p} +npd —qo —
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q1 = 0, so that go = (n + 1)p) + (n + 1)p{ + npd — ¢1. Thus we have that

(pdud + Pl + p3pd + (P + P9 — a1) vo + i ifn=0

pYug + piud + poud
+ ((n+ 1)pd + (n+ 1)p? + np) — q1) vo + @i

2 n
s (z Zpi”u?) Lt g —

\ k=0 m=1

(0 + Y + P9) (1§ + v0) + (—p% — q1) (1 — 13 + o)

+(07 — @) (u) — 1) — 1 (3 — p§ — 1) ifn=0
(3 + 1Y + p9) (1§ + (n+ 1))

+(=p8 — @) () — 13 + o) + (B — @) (1 — pf)

n
—q (3 — ) =)+ ) ((pB” +pi" + i g’

m=1
{ =5 (ko' — K5') + P (pf — u6”)> if n > 0.
This implies that = belongs to
K (ud + 10) B K (1§ — 1 + 10) D K (11 — 1)
DK (3~} —n) if n=0

K (ud+ (n+ 1)vo) @ K (1) — 1 + o) D K (1 — 1)
D K (uy — pf — 1)

D (@(KMB“GBK(W—ué”)@ﬂui”—u?))) if n > 0.

m=1

Conversely it is easy to check by Corollary 4.4 (b) that, for m =1,...,n, the
elements 110+ vo, pg — p9 +v0, 8 — pg, pd — pf —vi, pd —pl —v1, pfts pl— ps?,

and pf" — pf* lie in the kernel of Hom e (0912, A,,). This shows that
Ker Hom ge (0%%2 A,,)

K (pg +v0) @ K (ug — 13 + o) @ K (1) — pf)
D K (1 — 1 —n) if n=0

= (K (pg+ (n+ Do) @ K (g — 13 + v0) B K (1§ — f)
DK (3 —pn} —n)

D (@(KW@K(#H‘—ué”)@ﬂui”—u?))) if n > 0.

m=1
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So we have got the desired K-basis in this case.
Similar arguments provide the required K-basis in the remaining cases. [

As a direct consequence we have the dimensions of Ker Hom e (0°, Ay,).

Corollary 4.8. Fori > 1, the dimension of Ker HomA%(é)i, Ayp) is as follows:

dimg Ker Hom ge (8i, Ap) =

3n+1
n+1
3n+4
n+1
3n+1
3n
n—+4

ifi=0 ( )
if i =1 (mod6)
if i =2 (mod6)
if i =3 (mod6)
if i =4 (mod6) and char K | 3n + 2
if t =4 (mod 6) and char K 1 3n + 2
if i =5 (mod6).

4.5. The Hochschild cohomology groups of A,

Now, by Lemmas 4.5 and 4.7, we have a K-basis of HH*(A,,) for all i > 0.

Proposition 4.9. For j > 0 we have the following:

(a) (1) If n =0, then {af + a4+ a3 + B} is a K-basis of HH?(A,,).
(2) If n >0, then {a +a + a9+ B, 0l + o'+ o | m=1,...,n} is a

K -basis of HH(A,,).

(b) (1) If n =0, then {¢3 + ¢9 + ¢9 — ¥} is a K-basis of HHYT(A,,).

(2) Ifn >0, then {0 + &9 + &9 — ¥, ¢f" + " + ¢35 | m=1,...,n} is a
K -basis of HH%76(A,,).

(¢) (1) Ifn =0, then {ud + v} is a K-basis of HHYT1(A,).

(2) If n > 0, then {u) + (n + Do, " | m =

HH%*1(A,,).

(d) (1) Ifn =0, then HH%*2(A,,) = 0.
(2) If n > 0, then {07 + 67" + 05" | m =0,1,...

HH%*2(A,,).

1,...,n} is a K-basis of

,n— 1} is a K-basis of

(e) (1) Ifchar K [ 3n+2 andn =0 (hence char K = 2), then {0+ +@3+v}
is a K -basis of HHYT3(A,,).

(2) If char K | 3n+2 and n > 0, then {¢) + 69 + 69 + 1, 65" + ¢ + ¢5" |
m=1,...,n} is a K-basis of HH%3(A,,).
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(3) Ifchar K { 3n+2 and n = 0, then HH%3(A,,) = 0.
(4) If char K t 3n+2 and n > 0, then {¢7' | m =1,...,n} is a K-basis

of HHY13(A,,).

(f) (1) Ifchar K | 3n+2, then {ug"+p"+p5' | m=0,1,..

of HH%+4(A,,).

(2) If char K { 3n+2 and n = 0, then HH% 4 (A,,) = 0.

167

.,n} is a K-basis

(3) Ifchar K { 3n+2 andn > 0, then {ug' +pi"+up5' | m=0,1,...,n—1}
is a K-basis of HH®T(A,,).

(g) (1) If n =0, then HH%*2(A,) = 0.
(2) If n >0, then {0 | m =0,1,...,n—1} is a K-basis of HHY15(A,,).

This proposition provides us with the main result in this paper:

Theorem 4.10. For n > 0 and i > 0 the dimension of HH'(A,) is given as

follows:

dimg HHY(A,,) =

(n+1
n+1
n
n+1
n
n+1

if i =0 (mod6)
if i=1 (mod6)
if i =2 (mod 6)
if i =3 (mod 6) and char K | 3n + 2
if i =3 (mod 6) and char K {3n + 2
if i =4 (mod 6) and char K | 3n + 2
if i =4 (mod 6) and char K {3n + 2
if i =5 (mod6).

Remark 4.11. Recall that, for any algebra C, the 0th Hochschild cohomol-
ogy group HH?(C) is isomorphic to the centre Z(C) of C. Hence, by Propo-
sition 4.9 (a), the set {eg + €1 +ea + f1} is a K-basis of Z(Ap), and if n > 0
the set {eg + e1 + e2 + f1, Z?ZO(GiGiJrl(liJrQ)m | m=1,...,n}is a K-basis of

Z(Ayp).

We end this paper by giving the dimension of the Hochschild cohomology
group of the cluster-tilted algebra Ay. By setting n = 0 in Theorem 4.10, we
have the following corollary:
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Corollary 4.12. For i > 0 the dimension of HH'(Ag) is as follows:

if i =4 (mod6) and char K =2
ifi =4 (mod6) and char K # 2
if i =5 (mod6).

1 4fi=0 (mod6

1 ifi=1 (mod6

0 ifi1=2 (mod6
dimKHHi(AO): 1 ifi=3 (mod6) and char K = 2

0 ifi=3 (mod6) and char K # 2

1

0

0

( )
( )
( )
( )
( )
( )
( )
( )
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