A projective bimodule resolution and the Hochschild cohomology for a cluster-tilted algebra of type \mathbb{D}_4

Takahiko Furuya

(Received October 17, 2011; Revised October 2, 2012)

Abstract. In this paper we give explicit projective bimodule resolutions for algebras in a class of some special biserial algebras, which contains a cluster-tilted algebra of type \mathbb{D}_4 . As a main result we completely determine the dimensions of the Hochschild cohomology groups for these algebras.

AMS 2010 Mathematics Subject Classification. 16E05, 16E40.

 $Key\ words\ and\ phrases.$ Hochschild cohomology, cluster-tilted algebra, special biserial algebra.

§1. Introduction

Let Q be the following quiver with four vertices 0, 1, 2, 3 and five arrows:

For i = 0, 1, 2, let e_i be the trivial path at the vertex i, and f_1 the trivial path at the vertex 3. For our convenience, f_i also denotes the trivial path at the vertex i for i = 0, 2. (Hence we may write $e_j = f_j$ for j = 0, 2.) For i = 0, 1, let a_i be the arrow from i to i + 1, and a_2 the arrow from 2 to 0. Moreover let b_0 the arrow from 0 to 3, and b_1 the arrow from 3 to 2. For our convenience, b_2 also denotes the arrow from 2 to 0. (Thus we may write $a_2 = b_2$.)

Throughout this paper, all indices i of e_i , f_i , a_i and b_i are considered as modulo 3. Hence it follows that, for each $i \in \mathbb{Z}$, a_i starts at e_i and ends with e_{i+1} , whereas b_i starts at f_i and ends with f_{i+1} . We write paths from left to right.

The purpose of the paper is to describe the Hochschild cohomology groups for a class of algebras Λ_n which contains some cluster-tilted algebra of Dynkin type \mathbb{D}_4 . Let K be an algebraically closed field, and let n be a non-negative integer. Let I_n denote the ideal in the path algebra $K\mathcal{Q}$ generated by the following uniform elements:

$$(a_0a_1a_2)^n a_0a_1 - b_0b_1$$
, $(a_ia_{i+1}a_{i+2})^n a_ia_{i+1}$, b_ib_{i+1} for $i = 1, 2$.

Denote the algebra KQ/I_n by Λ_n . We immediately see that these algebras Λ_n are special biserial algebras of [SW], but are not self-injective algebras, since the indecomposable projective right Λ_n -modules corresponding to e_1 and f_1 have the isomorphic socles.

In [BHL], Bastian, Holm and Ladkani introduced specific quivers, called "standard forms" for derived equivalences, and proved that any cluster-tilted algebra of Dynkin type \mathbb{D} is derived equivalent to a cluster-tilted algebra whose quiver is a standard form. If n=0 then our algebra Λ_0 (= KQ/I_0) is a cluster-tilted algebra of type \mathbb{D}_4 and its quiver Q is precisely one of standard forms. Also, by [ABS, Example 3.6], Λ_0 is isomorphic to the trivial extension $B \ltimes \operatorname{Ext}_B^2(D(B), B)$ of the titled algebra B = KQ'/I' of type \mathbb{D}_4 , where $D(B) = \operatorname{Hom}_K(B, K)$ and Q' is the quiver

and I' is the ideal generated by $\alpha\beta - \gamma\delta$.

Recently, in the papers [ES, SS, ST], the Hochschild cohomology of certain self-injective special biserial algebras have been studied, where the authors constructed some sets \mathcal{G}^i ($i \geq 0$) found in [GSZ] to provide minimal projective bimodule resolutions. In this paper, following these approaches, we give sets \mathcal{G}^i for the right Λ_n -module Λ_n/\mathfrak{r}_n where \mathfrak{r}_n is the radical of Λ_n , and then use them to provide a projective bimodule resolution of Λ_n ; see Section 2. The sets \mathcal{G}^i also appear in the papers [A, GHMS, GS]. As a main consequence we give the dimension of the Hochschild cohomology group $\mathrm{HH}^i(\Lambda_n)$ ($i \geq 0$), completely, for all $n \geq 0$ (Theorem 4.10). In particular, we get the dimensions for the Hochschild cohomology groups $\mathrm{HH}^i(\Lambda_0)$ for the cluster-tilted algebra Λ_0 of type \mathbb{D}_4 (Corollary 4.12).

Throughout this paper, for any arrow c, we denote the trivial path corresponding to the origin of c by $\mathfrak{o}(c)$, and the trivial path corresponding to the terminus of c by $\mathfrak{t}(c)$. Therefore we have $\mathfrak{o}(a_i) = e_i$, $\mathfrak{o}(b_i) = f_i$, $\mathfrak{t}(a_i) = e_{i+1}$, and $\mathfrak{t}(b_i) = f_{i+1}$ for all $i \in \mathbb{Z}$. For our algebra Λ_n we denote its radical by \mathfrak{r}_n and its enveloping algebra $\Lambda_n^{\text{op}} \otimes_K \Lambda_n$ by Λ_n^{e} . Also we write \otimes_K as \otimes , for simplicity.

§2. A minimal projective resolution of Λ_n/\mathfrak{r}_n

In this section we construct sets \mathcal{G}^i $(i \geq 0)$ of [GSZ] for the right Λ_n -module Λ_n/\mathfrak{r}_n , from which we can get an explicit minimal projective resolution of Λ_n/\mathfrak{r}_n .

Let A = KQ/I be any finite-dimensional algebra with Q a finite quiver and I an admissible ideal. Denote the radical of A by \mathfrak{r} . Let \mathcal{G}^0 be the set of vertices of Q, \mathcal{G}^1 the set of arrows of Q, and \mathcal{G}^2 a minimal set of generators of I. In [GSZ], Green, Solberg and Zacharia showed that for each $i \geq 3$ there is a subset \mathcal{G}^i of KQ such that every $x \in \mathcal{G}^i$ is an uniform element and we have a minimal projective resolution of A/\mathfrak{r}

$$\cdots \xrightarrow{\delta^4} P^3 \xrightarrow{\delta^3} P^2 \xrightarrow{\delta^2} P^1 \xrightarrow{\delta^1} P^0 \xrightarrow{\delta^0} A/\mathfrak{r} \to 0$$

satisfying the following:

- (a) For $i \geq 0$, $P^i = \bigoplus_{x \in G^i} \mathfrak{t}(x)A$.
- (b) For $x \in \mathcal{G}^i$, there are unique elements $r_y, s_z \in KQ$, where $y \in \mathcal{G}^{i-1}$ and $z \in \mathcal{G}^{i-2}$, such that $x = \sum_{y \in \mathcal{G}^{i-1}} y r_y = \sum_{z \in \mathcal{G}^{i-2}} z s_z$.
- (c) For $i \geq 1$, the differential $\delta^i: P^i \to P^{i-1}$ is defined by

$$\mathfrak{t}(x)\lambda \longmapsto \sum_{y \in \mathcal{G}^{i-1}} r_y \mathfrak{t}(x)\lambda \quad \text{for } x \in \mathcal{G}^i \text{ and } \lambda \in A,$$

where r_y are elements in the expression (b).

Fix an integer $n \geq 0$. We now construct sets \mathcal{G}^i $(i \geq 0)$ for the right Λ_n -module Λ_n/\mathfrak{r}_n . First let

$$R^0 = e_0 = f_0$$
, $S^0 = e_1$, $T^0 = f_1$, and $U^0 = e_2 = f_2$,

and put $\mathcal{G}^0 = \{R^0, S^0, T^0, U^0\}$. To define further sets \mathcal{G}^i , we introduce the following elements in $K\mathcal{Q}$:

Definition 2.1. We inductively define the elements as follows:

(i) For $i \geq 0$

$$R^{6i+6} = R^{6i+5}(a_2a_0a_1)^n a_2, \qquad R^{6i+1}_j = \begin{cases} R^{6i}a_0 & \text{if } j = 0 \\ R^{6i}b_0 & \text{if } j = 1, \end{cases}$$

$$R^{6i+2} = R^{6i+1}_0(a_1a_2a_0)^n a_1 - R^{6i+1}_1b_1, \qquad R^{6i+3} = R^{6i+2}a_2 = R^{6i+2}b_2,$$

$$R^{6i+4}_j = \begin{cases} R^{6i+3}(a_0a_1a_2)^n a_0 & \text{if } j = 0 \\ R^{6i+3}b_0 & \text{if } j = 1, \end{cases}$$

$$R^{6i+5} = R^{6i+4}_0a_1 - R^{6i+4}_1b_1.$$

(ii) $S^1 = S^0 a_1 (= a_1)$ and for $i \ge 0$

$$\begin{split} S_j^{6i+6} &= \begin{cases} S^{6i+5}(a_0a_1a_2)^na_0 & \text{if } j=0 \\ S^{6i+5}b_0 & \text{if } j=1, \end{cases} \\ S^{6i+7} &= S_0^{6i+6}a_1 - S_1^{6i+6}b_1, \end{cases} \\ S^{6i+2} &= S^{6i+1}(a_2a_0a_1)^na_2, \\ S_j^{6i+2} &= \begin{cases} S^{6i+2}a_0 & \text{if } j=0 \\ S^{6i+2}b_0 & \text{if } j=1, \end{cases} \\ S^{6i+4} &= S_0^{6i+3}(a_1a_2a_0)^na_1 - S_1^{6i+3}b_1, \quad S^{6i+5} &= S^{6i+4}a_2 = S^{6i+4}b_2. \end{split}$$

(iii) $T^1 = T^0 b_1 (= b_1)$ and for $i \ge 0$

$$T_j^{6i+6} = \begin{cases} T^{6i+5}a_0 & \text{if } j = 0 \\ T^{6i+5}b_0 & \text{if } j = 1, \end{cases} \quad T_j^{6i+7} = T_0^{6i+6}(a_1a_2a_0)^n a_1 - T_1^{6i+6}b_1,$$

$$T^{6i+2} = T^{6i+1}a_2 = T^{6i+1}b_2, \quad T_j^{6i+3} = \begin{cases} T^{6i+2}(a_0a_1a_2)^n a_0 & \text{if } j = 0 \\ T^{6i+2}b_0 & \text{if } j = 1, \end{cases}$$

$$T^{6i+4} = T_0^{6i+3}a_1 - T_1^{6i+3}b_1, \quad T^{6i+5} = T^{6i+4}(a_2a_1a_0)^n a_2.$$

(iv) For $i \geq 0$

$$U^{6i+6} = U_0^{6i+5}(a_1a_2a_0)^n a_1 - U_1^{6i+5}b_1, U^{6i+1} = U^{6i}a_2 = U^{6i}b_2,$$

$$U_j^{6i+2} = \begin{cases} U^{6i+1}(a_0a_1a_2)^n a_0 & \text{if } j = 0 \\ U^{6i+1}b_0 & \text{if } j = 1, \end{cases} U^{6i+3} = U_0^{6i+2}a_1 - U_1^{6i+2}b_1,$$

$$U^{6i+4} = U^{6i+3}(a_2a_0a_1)^n a_2, U_j^{6i+5} = \begin{cases} U^{6i+4}a_0 & \text{if } j = 0 \\ U^{6i+4}b_0 & \text{if } j = 1. \end{cases}$$

Now, for $i \geq 1$, we define

$$\mathcal{G}^{i} = \begin{cases} \{R^{i}, S_{0}^{i}, S_{1}^{i}, T_{0}^{i}, T_{1}^{i}, U^{i}\} & \text{if } i \equiv 0 \pmod{3}, \\ \{R_{0}^{i}, R_{1}^{i}, S^{i}, T^{i}, U^{i}\} & \text{if } i \equiv 1 \pmod{3}, \\ \{R^{i}, S^{i}, T^{i}, U_{0}^{i}, U_{1}^{i}\} & \text{if } i \equiv 2 \pmod{3}. \end{cases}$$

Then it is straightforward to show that \mathcal{G}^i $(i \geq 0)$ satisfy the conditions (a), (b), and (c) above.

Remark 2.2. As explained above, the set (2.1) provides a minimal projective resolution (P^{\bullet}, δ) of Λ_n/\mathfrak{r}_n defined by (a)–(c). We immediately see that (P^{\bullet}, δ) is not a periodic projective resolution, but Ker δ^1 has a periodic projective

resolution of period
$$\begin{cases} 3 & \text{if } n = 0 \\ 6 & \text{if } n > 0. \end{cases}$$

In particular, if n = 0, then (P^{\bullet}, δ) is a linear resolution, so that we get the following proposition.

Proposition 2.3. The algebra Λ_0 is a Koszul algebra.

§3. A projective bimodule resolution of Λ_n

In this section we give an explicit minimal projective bimodule resolution of Λ_n :

$$(Q^{\bullet}, \partial): \xrightarrow{\partial^4} Q^3 \xrightarrow{\partial^3} Q^2 \xrightarrow{\partial^2} Q^1 \xrightarrow{\partial^1} Q^0 \xrightarrow{\partial^0} \Lambda_n \to 0$$

for any $n \geq 0$. First we define the projective Λ_n - Λ_n -bimodule Q^i $(i \geq 0)$ by using the sets \mathcal{G}^i in (2.1) as follows:

$$Q^i = \bigoplus_{g \in \mathcal{G}^i} \Lambda_n \mathfrak{o}(g) \otimes \mathfrak{t}(g) \Lambda_n.$$

Then for $i \geq 0$ we easily see that $\mathfrak{o}(g_1) \otimes \mathfrak{t}(g_1) \neq \mathfrak{o}(g_2) \otimes \mathfrak{t}(g_2)$, that is, $\Lambda_n \mathfrak{o}(g_1) \otimes \mathfrak{t}(g_1) \Lambda_n \not\simeq \Lambda_n \mathfrak{o}(g_2) \otimes \mathfrak{t}(g_2) \Lambda_n$ as $\Lambda_n - \Lambda_n$ -bimodules for all $g_1, g_2 \in \mathcal{G}^i$ with $g_1 \neq g_2$. Actually Q^i can be written as follows:

$$Q^0 = (\Lambda_n e_0 \otimes e_0 \Lambda_n) \oplus (\Lambda_n e_1 \otimes e_1 \Lambda_n) \oplus (\Lambda_n f_1 \otimes f_1 \Lambda_n) \oplus (\Lambda_n e_2 \otimes e_2 \Lambda_n),$$
 and for $i \geq 0$

$$Q^{3i+3} = (\Lambda_n e_0 \otimes e_0 \Lambda_n) \oplus (\Lambda_n e_1 \otimes e_1 \Lambda_n) \oplus (\Lambda_n e_1 \otimes f_1 \Lambda_n)$$

$$\oplus (\Lambda_n f_1 \otimes e_1 \Lambda_n) \oplus (\Lambda_n f_1 \otimes f_1 \Lambda_n) \oplus (\Lambda_n e_2 \otimes e_2 \Lambda_n),$$

$$Q^{3i+1} = (\Lambda_n e_0 \otimes e_1 \Lambda_n) \oplus (\Lambda_n e_0 \otimes f_1 \Lambda_n) \oplus (\Lambda_n e_1 \otimes e_2 \Lambda_n)$$

$$\oplus (\Lambda_n f_1 \otimes e_2 \Lambda_n) \oplus (\Lambda_n e_2 \otimes e_0 \Lambda_n),$$

$$Q^{3i+2} = (\Lambda_n e_0 \otimes e_2 \Lambda_n) \oplus (\Lambda_n e_1 \otimes e_0 \Lambda_n) \oplus (\Lambda_n f_1 \otimes e_0 \Lambda_n)$$

$$\oplus (\Lambda_n e_2 \otimes e_1 \Lambda_n) \oplus (\Lambda_n e_2 \otimes f_1 \Lambda_n).$$

Now we need to give maps $\partial^i: Q^i \to Q^{i-1}$ of Λ_n - Λ_n -bimodules. Let $\partial^0: Q^0 \to \Lambda_n$ be the multiplication. For $i \geq 1$ we define ∂^i as follows:

Definition 3.1. For $i \geq 1$ we define the map $\partial^i : Q^i \to Q^{i-1}$ by the following: For $j \geq 0$

(a) For l = 0, 1, 2 and r = 0, 1

$$\partial^{1}: \begin{cases} e_{l} \otimes e_{l+1} & \mapsto e_{l} \otimes a_{l} - a_{l} \otimes e_{l+1}, \\ f_{r} \otimes f_{r+1} & \mapsto f_{r} \otimes b_{r} - b_{r} \otimes f_{r+1}. \end{cases}$$

(b) For l = 0, 1, 2

$$\partial^{6j+6}: \begin{cases} e_0 \otimes (a_2 a_0 a_1)^n a_2 \\ + \left(\sum_{k=0}^{3n-1} a_0 a_1 a_2 \cdots a_k \otimes a_k \cdots a_{3n-1}\right) \\ + (a_0 a_1 a_2)^n a_0 \otimes e_0 - b_0 \otimes e_0 & \text{if } l = 0, \end{cases}$$

$$e_l \otimes (a_0 a_1 a_2)^n a_0 \\ + \left(\sum_{k=1}^{3n} a_1 a_2 a_3 \cdots a_k \otimes a_k \cdots a_{3n}\right) \\ + (a_1 a_2 a_0)^n a_1 \otimes e_1 & \text{if } l = 1, \end{cases}$$

$$e_2 \otimes (a_1 a_2 a_0)^n a_1 \\ + \left(\sum_{k=2}^{3n+1} a_2 a_3 a_4 \cdots a_k \otimes a_k \cdots a_{3n+1}\right) \\ + (a_2 a_0 a_1)^n a_2 \otimes e_2 - e_2 \otimes b_1 & \text{if } l = 2, \end{cases}$$

$$e_1 \otimes f_1 \quad \mapsto e_1 \otimes b_0 + a_1 \otimes f_1,$$

$$f_1 \otimes e_1 \quad \mapsto f_1 \otimes a_0 + b_1 \otimes e_1,$$

$$f_1 \otimes f_1 \quad \mapsto f_1 \otimes b_0 + b_1 \otimes f_1.$$

(c) For l = 0, 1, 2 and r = 0, 1

$$\partial^{6j+7} : \begin{cases} e_{l} \otimes e_{l+1} & \mapsto \begin{cases} e_{0} \otimes a_{0} - a_{0} \otimes e_{1} + b_{0} \otimes e_{1} & \text{if } l = 0, \\ e_{1} \otimes a_{1} - a_{1} \otimes e_{2} - e_{1} \otimes b_{1} & \text{if } l = 1, \\ e_{2} \otimes a_{2} - a_{2} \otimes e_{0} & \text{if } l = 2, \end{cases}$$

$$f_{r} \otimes f_{r+1} & \mapsto \begin{cases} e_{0} \otimes b_{0} + b_{0} \otimes f_{1} - (a_{0}a_{1}a_{2})^{n}a_{0} \otimes f_{1} & \text{if } r = 0, \\ -f_{1} \otimes b_{1} - b_{1} \otimes e_{2} + f_{1} \otimes (a_{1}a_{2}a_{0})^{n}a_{1} & \text{if } r = 1. \end{cases}$$

(d) For l = 0, 1, 2 and r = 1, 2

$$\partial^{6j+2} : \begin{cases} e_0 \otimes (a_1 a_2 a_0)^n a_1 \\ + \left(\sum_{k=0}^{3n-1} a_0 a_1 a_2 \cdots a_k \otimes a_{k+2} \cdots a_{3n+1}\right) \\ + (a_0 a_1 a_2)^n a_0 \otimes e_2 \\ - (e_0 \otimes b_1 + b_0 \otimes e_2) \quad \text{if } l = 0, \end{cases}$$

$$\begin{cases} e_l \otimes (a_{l+1} a_{l+2} a_l)^n a_{l+1} \\ + \left(\sum_{k=l}^{3n+l-1} a_l a_{l+1} a_{l+2} \cdots a_k \otimes a_{k+2} \cdots a_{3n+l+1}\right) \\ + (a_l a_{l+1} a_{l+2})^n a_l \otimes e_{l+2} \quad \text{if } l = 1, 2, \end{cases}$$

$$\begin{cases} f_r \otimes f_{r+2} & \mapsto f_r \otimes b_{r+1} + b_r \otimes f_{r+2}. \end{cases}$$

(e) For l = 0, 1, 2

$$\partial^{6j+3}: \begin{cases} e_l \otimes e_l & \mapsto \begin{cases} e_0 \otimes a_2 - a_0 \otimes e_0 + b_0 \otimes e_0 & \text{if } l = 0, \\ e_1 \otimes a_0 - a_1 \otimes e_1 & \text{if } l = 1, \\ e_2 \otimes a_1 - a_2 \otimes e_2 - e_2 \otimes b_1 & \text{if } l = 2, \end{cases}$$

$$\begin{cases} e_1 \otimes f_1 & \mapsto e_1 \otimes b_0 - (a_1 a_2 a_0)^n a_1 \otimes f_1, \\ f_1 \otimes e_1 & \mapsto f_1 \otimes (a_0 a_1 a_2)^n a_0 - b_1 \otimes e_1, \\ f_1 \otimes f_1 & \mapsto f_1 \otimes b_0 - b_1 \otimes f_1. \end{cases}$$

(f) For l = 0, 1, 2 and r = 0, 1

$$\partial^{6j+4} : \begin{cases} e_0 \otimes (a_0 a_1 a_2)^n a_0 \\ + \left(\sum_{k=0}^{3n-1} a_0 a_1 a_2 \cdots a_k \otimes a_{k+1} \cdots a_{3n}\right) \\ + (a_0 a_1 a_2)^n a_0 \otimes e_1 - b_0 \otimes e_1 & \text{if } l = 0, \end{cases}$$

$$\begin{cases} e_1 \otimes (a_1 a_2 a_0)^n a_1 \\ + \left(\sum_{k=1}^{3n} a_1 a_2 a_3 \cdots a_k \otimes a_{k+1} \cdots a_{3n+1}\right) \\ + (a_1 a_2 a_0)^n a_1 \otimes e_2 - e_1 \otimes b_1 & \text{if } l = 1, \end{cases}$$

$$\begin{cases} e_2 \otimes (a_2 a_0 a_1)^n a_2 \\ + \left(\sum_{k=2}^{3n+1} a_2 a_3 a_4 \cdots a_k \otimes a_{k+1} \cdots a_{3n+2}\right) \\ + (a_2 a_0 a_1)^n a_2 \otimes e_0 & \text{if } l = 2, \end{cases}$$

$$\begin{cases} f_r \otimes f_{r+1} & \mapsto \begin{cases} e_0 \otimes b_0 - b_0 \otimes f_1 + a_0 \otimes f_1 & \text{if } r = 0, \\ -f_1 \otimes b_1 + b_1 \otimes e_2 + f_1 \otimes a_1 & \text{if } r = 1. \end{cases}$$

(g) For l = 0, 1, 2 and r = 1, 2

$$\partial^{6j+5} : \begin{cases} e_{l} \otimes e_{l+2} & \mapsto \begin{cases} e_{0} \otimes a_{1} - a_{0} \otimes e_{2} - e_{0} \otimes b_{1} + b_{0} \otimes e_{2} & \text{if } l = 0, \\ e_{1} \otimes a_{2} - a_{1} \otimes e_{0} & \text{if } l = 1, \\ e_{2} \otimes a_{0} - a_{2} \otimes e_{1} & \text{if } l = 2, \end{cases}$$

$$f_{r} \otimes f_{r+2} & \mapsto \begin{cases} f_{1} \otimes (a_{2}a_{0}a_{1})^{n}a_{2} - b_{1} \otimes e_{0} & \text{if } r = 1, \\ e_{2} \otimes b_{0} - (a_{2}a_{0}a_{1})^{n}a_{2} \otimes f_{1} & \text{if } r = 2. \end{cases}$$

Remark 3.2. As in Remark 2.2, we denote by (P^{\bullet}, δ) the minimal projective resolution of Λ_n/\mathfrak{r}_n given by the sets \mathcal{G}^i in (2.1). Then, it is easy to see that, for each $i \geq 0$, the map $h_i : \Lambda_n/\mathfrak{r}_n \otimes_{\Lambda_n} Q^i \to P^i$ determined by $h_i(\mathfrak{o}(g) \otimes_{\Lambda_n} \mathfrak{o}(g) \otimes_K \mathfrak{t}(g)) = \mathfrak{t}(g) \ (g \in \mathcal{G}^i)$ is an isomorphism of right Λ_n -modules such that the square

$$\Lambda_n/\mathfrak{r}_n \otimes_{\Lambda_n} Q^{i+1} \xrightarrow{\mathrm{id} \otimes_{\Lambda_n} \partial^{i+1}} \Lambda_n/\mathfrak{r}_n \otimes_{\Lambda_n} Q^i$$

$$h_{i+1} \downarrow \simeq \qquad \qquad \simeq \downarrow h_i$$

$$P^{i+1} \xrightarrow{\delta^{i+1}} P^i$$

is commutative. Since (P^{\bullet}, δ) is a minimal projective resolution of Λ_n/\mathfrak{r}_n , it follows that $(\Lambda_n/\mathfrak{r}_n \otimes_{\Lambda_n} Q^{\bullet}, \mathrm{id} \otimes_{\Lambda_n} \partial)$ is a minimal projective resolution of Λ_n/\mathfrak{r}_n .

Now we have the following theorem. The proof is same as that of [ES, Theorem 2.4] and that of [ST, Theorem 1.6]; see also [A, BE, GHMS, O, SS]. But we include a proof for the convenience of the reader.

Theorem 3.3. (Q^{\bullet}, ∂) is a minimal projective bimodule resolution of Λ_n .

Proof. By direct computations we have $\operatorname{Im} \partial^{i+1} \subseteq \operatorname{Ker} \partial^i$ for all $i \geq 0$, so that (Q^{\bullet}, ∂) is a complex.

We verify the converse inclusion $\operatorname{Ker} \partial^i \subseteq \operatorname{Im} \partial^{i+1}$ for all $i \geq 0$, which implies the exactness of (Q^{\bullet}, ∂) . Suppose for contradiction that $\operatorname{Ker} \partial^m \not\subseteq \operatorname{Im} \partial^{m+1}$ for some $m \geq 0$. Then for some simple Λ_n - Λ_n -bimodule $S \otimes T$ (where S is a simple left Λ_n -module, and T is a simple right Λ_n -module) we get the non-zero composite

$$f: \operatorname{Ker} \partial^m \longrightarrow \operatorname{Ker} \partial^m / \operatorname{Im} \partial^{m+1} \longrightarrow S \otimes T.$$

Also, since $(\Lambda_n/\mathfrak{r}_n \otimes_{\Lambda_n} Q^{\bullet}, \mathrm{id} \otimes_{\Lambda_n} \partial)$ is a minimal projective resolution of Λ_n/\mathfrak{r}_n by Remark 3.2, we get the isomorphism of right Λ_n -modules

$$F: \Lambda_n/\mathfrak{r}_n \otimes_{\Lambda_n} \operatorname{Im} \partial^{m+1} \xrightarrow{\simeq} \operatorname{Im} \left(\operatorname{id} \otimes_{\Lambda_n} \partial^{m+1} \right) = \operatorname{Ker} \left(\operatorname{id} \otimes_{\Lambda_n} \partial^m \right)$$
$$\xrightarrow{\simeq} \Lambda_n/\mathfrak{r}_n \otimes_{\Lambda_n} \operatorname{Ker} \partial^m$$

satisfying $F(x \otimes y) = x \otimes y$ for $x \in \Lambda_n/\mathfrak{r}_n$ and $y \in \text{Im } \partial^{m+1}$. We now consider the non-zero composite

$$G: \Lambda_n/\mathfrak{r}_n \otimes_{\Lambda_n} Q^{m+1} \xrightarrow{\mathrm{id} \otimes_{\Lambda_n} \partial^{m+1}} \Lambda_n/\mathfrak{r}_n \otimes_{\Lambda_n} \operatorname{Im} \partial^{m+1}$$

$$\xrightarrow{F} \Lambda_n/\mathfrak{r}_n \otimes_{\Lambda_n} \operatorname{Ker} \partial^m \xrightarrow{\mathrm{id} \otimes_{\Lambda_n} f} \Lambda_n/\mathfrak{r}_n \otimes_{\Lambda_n} S \otimes T.$$

Then we easily have $G = \mathrm{id} \otimes_{\Lambda_n} (f \partial^{m+1})$. But clearly $f \partial^{m+1} = 0$, so it follows that G = 0. This is a contradiction. Hence (Q^{\bullet}, ∂) is exact.

The minimality of (Q^{\bullet}, ∂) follows from the fact that $\partial^{i}(\mathfrak{o}(g) \otimes \mathfrak{t}(g))$ lies in the radical of Q^{i-1} for all $i \geq 1$ and $g \in \mathcal{G}^{i}$.

Remark 3.4. We immediately see that the projective resolution (Q^{\bullet}, ∂) is not periodic, but $\operatorname{Ker} \partial^1$ has a periodic minimal projective bimodule resolution of period $\begin{cases} 3 & \text{if } \operatorname{char} K = 2 \text{ and } n = 0 \\ 6 & \text{otherwise.} \end{cases}$

Remark 3.5. By Happel [H], the number of the indecomposable projective summand of Q^i which is isomorphic to $\Lambda_n u \otimes v \Lambda_n$ equals the dimension of $\operatorname{Ext}_{\Lambda_n}^i(S_u, S_v)$ for each $i \geq 0$, where $u, v \in \{e_0, e_1, e_2, f_1\}$, and S_u , S_v denote the simple Λ_n -modules corresponding to u and v, respectively. Therefore we have for $j \geq 0$ that

$$\begin{aligned} \dim_K & \operatorname{Ext}_{A_n}^{3j}(S_u, S_v) \\ &= \begin{cases} 1 & \text{if } (u, v) = (e_i, e_i) \text{ with } i = 0, 1, 2, \ (e_1, f_1), \ (f_1, e_1), \text{ or } (f_1, f_1), \\ 0 & \text{otherwise,} \end{cases} \\ \dim_K & \operatorname{Ext}_{A_n}^{3j+1}(S_u, S_v) \\ &= \begin{cases} 1 & \text{if } (u, v) = (e_i, e_{i+1}) \text{ with } i = 0, 1, 2, \ (e_0, f_1), \text{ or } (f_1, e_2), \\ 0 & \text{otherwise,} \end{cases} \\ \dim_K & \operatorname{Ext}_{A_n}^{3j+2}(S_u, S_v) \\ &= \begin{cases} 1 & \text{if } (u, v) = (e_i, e_{i+2}) \text{ with } i = 0, 1, 2, \ (f_1, e_0), \text{ or } (e_2, f_1), \\ 0 & \text{otherwise.} \end{cases} \end{aligned}$$

Moreover we see for $i \geq 0$ that the dimension of $\operatorname{Ext}_{\Lambda_n}^i(S_u, S_v)$ coincides with the number of the elements $g \in \mathcal{G}^i$ such that g = ugv.

Remark 3.6. In [GHMS], a minimal projective bimodule resolution for any finite-dimensional Koszul algebra is constructed by using the sets \mathcal{G}^i . Hence for n=0 we could have applied [GHMS, Theorem 2.1] to get a minimal projective bimodule resolution of Λ_0 .

§4. Hochschild cohomology group of Λ_n

In this section we find the dimensions the Hochschild cohomology groups of Λ_n by using the minimal projective bimodule resolution (Q^{\bullet}, ∂) of Theorem 3.3.

Applying the functor $\operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(-,\Lambda_n)$ to (Q^{\bullet},∂) , we have the complex

$$0 \longrightarrow \operatorname{Hom}_{A_n^{\mathrm{e}}}(Q^0, \Lambda_n) \xrightarrow{\operatorname{Hom}_{A_n^{\mathrm{e}}}(\partial^1, \Lambda_n)} \operatorname{Hom}_{A_n^{\mathrm{e}}}(Q^1, \Lambda_n) \xrightarrow{\operatorname{Hom}_{A_n^{\mathrm{e}}}(\partial^2, \Lambda_n)}$$

$$\operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(Q^2, \Lambda_n) \xrightarrow{\operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(\partial^3, \Lambda_n)} \operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(Q^3, \Lambda_n) \xrightarrow{\operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(\partial^4, \Lambda_n)} \cdots$$

Then, for $i \geq 0$, the *i*th Hochschild cohomology group $\mathrm{HH}^i(\Lambda_n)$ of Λ_n is given by the K-space

$$\mathrm{HH}^i(\Lambda_n) := \mathrm{Ext}^i_{\Lambda^{\mathrm{e}}_n}(\Lambda_n, \Lambda_n) = \mathrm{Ker}\, \mathrm{Hom}_{\Lambda^{\mathrm{e}}_n}(\partial^{i+1}, \Lambda_n) / \mathrm{Im}\, \mathrm{Hom}_{\Lambda^{\mathrm{e}}_n}(\partial^{i}, \Lambda_n).$$

Note that, for each $j=2,3,\ldots,7$ and $k\geq 0$, since $\partial^j=\partial^{6k+j}$ holds, it follows that $\mathrm{HH}^{6k+j}(\Lambda_n)\simeq \mathrm{HH}^j(\Lambda_n)$.

4.1. The basis for $\operatorname{Hom}_{\Lambda_n^e}(Q^i, \Lambda_n)$

We start by giving a K-basis for $\operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(Q^i, \Lambda_n)$ for $i \geq 0$. It is well-known that for each $i \geq 0$ the map

$$\operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(Q^i, \Lambda_n) \to \bigoplus_{g \in \mathcal{G}^i} \mathfrak{o}(g) \Lambda_n \mathfrak{t}(g); \quad f \mapsto \sum_{g \in \mathcal{G}^i} f(\mathfrak{o}(g) \otimes \mathfrak{t}(g))$$

is an isomorphism of K-spaces. Therefore, by a computation of a K-basis for $\bigoplus_{g \in \mathcal{G}^i} \mathfrak{o}(g) \Lambda_n \mathfrak{t}(g)$, we have the following lemma. Here we recall that all indices i of e_i , f_i , a_i and b_i are considered as modulo 3, and $f_0 = e_0$, $f_2 = e_2$ and $a_2 = b_2$, by our convention.

Lemma 4.1. We have the following K-basis of $\operatorname{Hom}_{\Lambda_n^e}(Q^i, \Lambda_n)$ for $i \geq 0$:

(a) For k = 0, 1, 2 and m = 0, 1, ..., n, let $\alpha_k^m : Q^0 \to \Lambda_n$ be the map of Λ_n - Λ_n -bimodules determined by: for l = 0, 1, 2

$$\alpha_k^m : \begin{cases} e_l \otimes e_l & \mapsto \begin{cases} (a_k a_{k+1} a_{k+2})^m & \text{if } l = k \\ 0 & \text{if } l \neq k \end{cases} \\ f_1 \otimes f_1 & \mapsto 0 \end{cases}$$

and let $\beta: Q^0 \to \Lambda_n$ be the map of Λ_n - Λ_n -bimodules determined by

$$\beta: \begin{cases} e_l \otimes e_l & \mapsto & 0 \quad for \ l = 0, 1, 2 \\ f_1 \otimes f_1 & \mapsto & f_1. \end{cases}$$

Then

$$\{\alpha_k^m, \beta \mid k = 0, 1, 2; \ m = 0, 1, \dots, n\}$$

defines a K-basis of $\operatorname{Hom}_{\Lambda_n^e}(Q^0, \Lambda_n)$.

(b) For k=0,1,2 and $m=0,1,\ldots,n$, let $\phi_k^m:Q^{3j+3}(=Q^3)\to \Lambda_n$ be the map of Λ_n - Λ_n -bimodules defined by: for l=0,1,2

$$\phi_k^m : \begin{cases} e_l \otimes e_l & \mapsto & \begin{cases} (a_k a_{k+1} a_{k+2})^m & \text{if } l = k \\ 0 & \text{if } l \neq k \end{cases} \\ f_1 \otimes f_1 & \mapsto & 0 \\ e_1 \otimes f_1 & \mapsto & 0 \\ f_1 \otimes e_1 & \mapsto & 0, \end{cases}$$

and let $\psi: Q^{3j+3}(=Q^3) \to \Lambda_n$ be the map of Λ_n - Λ_n -bimodules determined by

$$\psi: \begin{cases} e_l \otimes e_l & \mapsto & 0 \quad for \ l = 0, 1, 2 \\ f_1 \otimes f_1 & \mapsto & f_1 \\ e_1 \otimes f_1 & \mapsto & 0 \\ f_1 \otimes e_1 & \mapsto & 0. \end{cases}$$

Then

$$\{\phi_k^m, \psi \mid k = 0, 1, 2; \ m = 0, 1, \dots, n\}$$

gives a K-basis of $\operatorname{Hom}_{\Lambda^{e}}(Q^{3j+3}, \Lambda_{n})$.

(c) For k = 0, 1, 2 and m = 0, 1, ..., n, let $\mu_k^m : Q^{3j+1}(=Q^1) \to \Lambda_n$ be a map of Λ_n - Λ_n -bimodules determined by: for l = 0, 1, 2 and r = 0, 1

$$\mu_k^m : \begin{cases} e_l \otimes e_{l+1} & \mapsto & \begin{cases} (a_k a_{k+1} a_{k+2})^m a_k & \text{if } l = k \\ 0 & \text{if } l \neq k \end{cases} \\ f_r \otimes f_{r+1} & \mapsto & 0, \end{cases}$$

and, for s=0,1, let $\nu_s:Q^{3j+1}(=Q^1)\to \Lambda_n$ be a map of Λ_n - Λ_n -bimodules defined by: for l=0,1,2 and r=0,1

$$\nu_s: \begin{cases} e_l \otimes e_{l+1} & \mapsto & 0 \\ f_r \otimes f_{r+1} & \mapsto & \begin{cases} b_s & \text{if } r = s \\ 0 & \text{if } r \neq s. \end{cases} \end{cases}$$

Then

$$\{\mu_k^m, \nu_s \mid k = 0, 1, 2; \ m = 0, 1, \dots, n; \ s = 0, 1\}$$

defines a K-basis for $\operatorname{Hom}_{\Lambda_n^e}(Q^{3j+1}, \Lambda_n)$.

(d) Let $\eta: Q^{3j+2}(=Q^2) \to \Lambda_n$ be a map of Λ_n - Λ_n -bimodules defined by: for l=0,1,2 and r=1,2

$$\eta: \begin{cases} e_l \otimes e_{l+2} & \mapsto & \begin{cases} (a_0 a_1 a_2)^n a_0 a_1 & \text{if } l = 0\\ 0 & \text{if } l = 1, 2 \end{cases} \\ f_r \otimes f_{r+2} & \mapsto & 0. \end{cases}$$

Moreover, if n > 0, then for k = 0, 1, 2 and m = 0, 1, ..., n - 1, let $\theta_k^m : Q^{3j+2}(=Q^2) \to \Lambda_n$ be a map of Λ_n - Λ_n -bimodules defined by: for l = 0, 1, 2 and r = 1, 2

$$\theta_k^m : \begin{cases} e_l \otimes e_{l+2} & \mapsto & \begin{cases} (a_k a_{k+1} a_{k+2})^m a_k a_{k+1} & \text{if } l = k \\ 0 & \text{if } l \neq k \end{cases} \\ f_r \otimes f_{r+2} & \mapsto & 0. \end{cases}$$

If n = 0, then $\{\eta\}$ is a K-basis of $\operatorname{Hom}_{\Lambda_0^e}(Q^{3j+2}, \Lambda_0)$, and if n > 0, then

$$\{\eta, \theta_k^m \mid k = 0, 1, 2; \ m = 0, 1, \dots, n - 1\}$$

defines a K-basis for $\operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(Q^{3j+2}, \Lambda_n)$.

As an immediate consequence, we have the following corollary:

Corollary 4.2. For $i \geq 0$, the dimension of $\operatorname{Hom}_{\Lambda_n^e}(Q^i, \Lambda_n)$ is given as follows:

$$\dim_K \operatorname{Hom}_{A_n^{\mathbf{e}}}(Q^i, \Lambda_n) = \begin{cases} 3n+4 & \text{if } i \equiv 0 \pmod{3} \\ 3n+5 & \text{if } i \equiv 1 \pmod{3} \\ 3n+1 & \text{if } i \equiv 2 \pmod{3}. \end{cases}$$

4.2. The images of $\operatorname{Hom}_{\Lambda_n^e}(\partial^i, \Lambda_n)$

Now we find the images of basis elements in Lemma 4.1 under the map $\operatorname{Hom}_{\Lambda_n^e}(\partial^i, \Lambda_n)$. By direct computations we have the following.

Lemma 4.3. For $j \geq 0$ we have the following:

(a) For k = 0, 1, 2 and m = 0, 1, ..., n we have $\alpha_k^m \partial^1 = \phi_k^m \partial^{6j+7}$, and for l = 0, 1, 2, and r = 0, 1,

$$\phi_k^m \partial^{6j+7} : \begin{cases} e_l \otimes e_{l+1} & \mapsto \begin{cases} (a_k a_{k+1} a_{k+2})^m a_k & \text{if } l \equiv k \pmod{3} \\ 0 & \text{if } l \equiv k+1 \pmod{3} \\ -(a_{k+2} a_k a_{k+1})^m a_{k+2} & \text{if } l \equiv k+2 \pmod{3} \end{cases}$$

$$f_r \otimes f_{r+1} & \mapsto \begin{cases} b_0 & \text{if } r = k = m = 0 \\ -b_1 & \text{if } r = 1, \ k = 2 \ and \ m = 0 \\ 0 & \text{otherwise.} \end{cases}$$

Furthermore, for l = 0, 1, 2, and r = 0, 1, we get

$$\beta \partial^{1} : \begin{cases} e_{l} \otimes e_{l+1} & \mapsto & 0 \\ f_{r} \otimes f_{r+1} & \mapsto & \begin{cases} -b_{0} & \text{if } r = 0 \\ b_{1} & \text{if } r = 1 \end{cases} \end{cases}$$

and

$$\psi \partial^{6j+7} : \begin{cases} e_l \otimes e_{l+1} & \mapsto 0 \\ f_r \otimes f_{r+1} & \mapsto \begin{cases} b_0 & \text{if } r = 0 \\ -b_1 & \text{if } r = 1. \end{cases}$$

(b) For k = 0, 1, 2 and m = 0, 1, ..., n, we have: for l = 0, 1, 2, and r = 1, 2,

$$\mu_k^m \partial^{6j+2} : \begin{cases} e_l \otimes e_{l+2} & \mapsto \\ \left\{ (n+1)(a_0 a_1 a_2)^n a_0 a_1 & \text{if } l = k = m = 0, \text{ or} \\ & \text{if } m = l = 0 \text{ and } k = 1 \\ n(a_0 a_1 a_2)^n a_0 a_1 & \text{if } k = 2 \text{ and } m = l = 0 \\ 0 & \text{if } 0 < m \le n, \text{ or if } l = 1, 2 \end{cases}$$

$$f_r \otimes f_{r+2} & \mapsto 0.$$

Also, for s = 0, 1, we have: for l = 0, 1, 2, and r = 1, 2

$$\nu_s \partial^{6j+2} : \begin{cases} e_l \otimes e_{l+2} & \mapsto \begin{cases} -(a_0 a_1 a_2)^n a_0 a_1 & \text{if } l = 0\\ 0 & \text{if } l = 1, 2 \end{cases} \\ f_r \otimes f_{r+2} & \mapsto 0. \end{cases}$$

(c) For $g \in \mathcal{G}^{6j+3}$ we have $\eta \partial^{6j+3}(\mathfrak{o}(g) \otimes \mathfrak{t}(g)) = 0$. Also, if n > 0, then for k = 0, 1, 2 and $m = 0, 1, \ldots, n-1$ we have: for l = 0, 1, 2

$$\theta_k^m \partial^{6j+3} : \begin{cases} e_l \otimes e_l & \mapsto \begin{cases} (a_k a_{k+1} a_{k+2})^{m+1} & \text{if } l \equiv k \pmod{3} \\ 0 & \text{if } l \equiv k+1 \pmod{3} \\ -(a_{k+2} a_k a_{k+1})^{m+1} & \text{if } l \equiv k+2 \pmod{3} \end{cases}$$

$$\begin{cases} e_l \otimes f_1 & \mapsto 0 \\ f_1 \otimes e_1 & \mapsto 0 \\ f_1 \otimes f_1 & \mapsto 0. \end{cases}$$

(d) For k = 0, 1, 2 and m = 0, 1, ..., n, we get: for l = 0, 1, 2 and r = 0, 1

$$\phi_k^m \partial^{6j+4} : \begin{cases} e_l \otimes e_{l+1} & \mapsto \\ \left((n+1)(a_k a_{k+1} a_{k+2})^n a_k & \text{if } l \equiv k \pmod{3} \text{ and } m = 0 \\ n(a_{k+1} a_{k+2} a_k)^n a_{k+1} & \text{if } l \equiv k+1 \pmod{3} \text{ and } m = 0 \\ (n+1)(a_{k+2} a_k a_{k+1})^n a_{k+2} & \text{if } l \equiv k+2 \pmod{3} \text{ and } m = 0 \\ 0 & \text{if } 0 < m \le n \end{cases}$$

$$\begin{cases} b_0 & \text{if } r = k = m = 0 \\ b_1 & \text{if } r = 1, \ k = 2 \text{ and } m = 0 \\ 0 & \text{otherwise} \end{cases}$$

and

$$\psi \partial^{6j+4} : \begin{cases} e_l \otimes e_{l+1} & \mapsto 0 \\ f_r \otimes f_{r+1} & \mapsto \begin{cases} -b_0 & \text{if } r = 0 \\ -b_1 & \text{if } r = 1. \end{cases} \end{cases}$$

(e) For k = 0, 1, 2, and m = 0, 1, ..., n, we have: for l = 0, 1, 2 and r = 1, 2

$$\begin{cases} e_l \otimes e_{l+2} & \mapsto \\ \left\{ \begin{aligned} &e_l \otimes e_{l+2} & \mapsto \\ &\left\{ \begin{aligned} &(a_k a_{k+1} a_{k+2})^m a_k a_{k+1} & \text{ if } l = k \text{ and } 0 \leq m \leq n-1, \\ & \text{ or if } l = k = 0 \text{ and } m = n \end{aligned} \right. \\ &\left\{ \begin{aligned} &-(a_{k+2} a_k a_{k+1})^m a_{k+2} a_k & \text{ if } l \equiv k+2 \pmod{3} \text{ and } 0 \leq m \leq n-1, \\ & \text{ or if } l = 0, \ k = 1 \text{ and } m = n \end{aligned} \right. \\ &\left\{ \begin{aligned} &f_r \otimes f_{r+2} & \mapsto & 0. \end{aligned} \end{aligned} \end{cases}$$

Moreover, for s = 0, 1, we have that: for l = 0, 1, 2 and r = 1, 2,

$$\nu_s \partial^{6j+5} : \begin{cases} e_l \otimes e_{l+2} & \mapsto & \begin{cases} -(a_0 a_1 a_2)^n a_0 a_1 & \text{if } s = l = 0\\ (a_0 a_1 a_2)^n a_0 a_1 & \text{if } s = 1 \text{ and } l = 0\\ 0 & \text{otherwise} \end{cases}$$
$$f_r \otimes f_{r+2} & \mapsto & 0.$$

(f) For $g \in \mathcal{G}^{6j+6}$ we have $\eta \partial^{6j+6}(\mathfrak{o}(g) \otimes \mathfrak{t}(g)) = 0$. Furthermore, if n > 0, then for $g \in \mathcal{G}^{6j+6}$, k = 0, 1, 2, and $m = 0, 1, \ldots, n-1$ we get $\theta_k^m \partial^{6j+6}(\mathfrak{o}(g) \otimes \mathfrak{t}(g)) = 0$.

In the rest of the paper, we consider the lower indices k of μ_k^m , ϕ_k^m and θ_k^m as modulo 3. From the lemma above, we immediately have the following:

Corollary 4.4. (a) For k = 0, 1, 2 and m = 0, 1, ..., n

$$\alpha_k^m \partial^1 = \phi_k^m \partial^{6j+7} = \begin{cases} \mu_0^0 - \mu_2^0 + \nu_0 & \text{if } k = 0 \text{ and } m = 0\\ \mu_2^0 - \mu_1^0 - \nu_1 & \text{if } k = 2 \text{ and } m = 0\\ \mu_k^m - \mu_{k+2}^m & \text{otherwise.} \end{cases}$$

Also, $\beta \partial^1 = \nu_1 - \nu_0$ and $\psi \partial^{6j+7} = \nu_0 - \nu_1$.

(b) For k = 0, 1, 2 and m = 0, 1, ..., n

$$\mu_k^m \partial^{6j+2} = \begin{cases} (n+1)\eta & \text{if } k = m = 0, \text{ or if } k = 1 \text{ and } m = 0 \\ n\eta & \text{if } m = 0 \text{ and } k = 2 \\ 0 & \text{if } 0 < m \le n, \end{cases}$$

and $\nu_s \partial^{6j+2} = -\eta$ for s = 0, 1.

- (c) $\eta \partial^{6j+3} = 0$, and if n > 0 then $\theta_k^m \partial^{6j+3} = \phi_k^{m+1} \phi_{k+2}^{m+1}$ for k = 0, 1, 2 and $m = 0, 1, \ldots, n-1$.
- (d) For k = 0, 1, 2 and m = 0, 1, ..., n

$$\phi_k^m \partial^{6j+4} = \begin{cases} (n+1)\mu_0^n + n\mu_1^n + (n+1)\mu_2^n + \nu_0 & \text{if } k = m = 0\\ (n+1)\mu_1^n + n\mu_2^n + (n+1)\mu_0^n & \text{if } k = 1 \text{ and } m = 0\\ (n+1)\mu_2^n + n\mu_0^n + (n+1)\mu_1^n + \nu_1 & \text{if } k = 2 \text{ and } m = 0\\ 0 & \text{if } 0 < m \le n \end{cases}$$

and $\psi \partial^{6j+4} = -\nu_0 - \nu_1$.

(e) For k = 0, 1, 2 and m = 0, 1, ..., n

$$\mu_k^m \partial^{6j+5} = \begin{cases} \theta_k^m - \theta_{k+2}^m & \text{if } 0 \le m \le n-1 \\ \eta & \text{if } k = 0 \text{ and } m = n \\ -\eta & \text{if } k = 1 \text{ and } m = n \\ 0 & \text{if } k = 2 \text{ and } m = n \end{cases}$$

and for s = 0, 1

$$\nu_s \partial^{6j+5} = \begin{cases} -\eta & \text{if } s = 0\\ \eta & \text{if } s = 1. \end{cases}$$

(f) $\eta \partial^{6j+6} = 0$, and if n > 0 then $\theta_k^m \partial^{6j+6} = 0$ for k = 0, 1, 2 and $m = 0, 1, \ldots, n-1$.

4.3. A basis of Im $\operatorname{Hom}_{\Lambda_n^e}(\partial^i, \Lambda_n)$

We now find a K-basis of $\operatorname{Im} \operatorname{Hom}_{\Lambda_n^e}(\partial^i, \Lambda_n)$ for $i \geq 0$. Keeping the notations from the previous subsections we have the following lemma.

Lemma 4.5. For $i \geq 1$ we have the following K-basis of $\operatorname{Im} \operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(\partial^i, \Lambda_n)$: For $j \geq 0$

- (a) (1) If n = 0, then $\{\mu_0^0 \mu_2^0 + \nu_0, \mu_1^0 \mu_0^0, \mu_2^0 \mu_1^0 \nu_1\}$ is a K-basis of $\operatorname{Im} \operatorname{Hom}_{A_n^0}(\partial^{6j+1}, A_n)$.
 - (2) If n > 0, then $\{\mu_0^0 \mu_2^0 + \nu_0, \mu_1^0 \mu_0^0, \mu_2^0 \mu_1^0 \nu_1, \mu_0^m \mu_2^m, \mu_1^m \mu_0^m \mid m = 1, \dots, n\}$ is a K-basis of $\operatorname{Im} \operatorname{Hom}_{\Lambda_n^e}(\partial^{6j+1}, \Lambda_n)$.
- (b) $\{\eta\}$ is a K-basis of Im $\operatorname{Hom}_{\Lambda_n^e}(\partial^{6j+2}, \Lambda_n)$.
- (c) (1) If n = 0, then $\text{Im Hom}_{\Lambda_n^e}(\partial^{6j+3}, \Lambda_n) = 0$.
 - (2) If n > 0, then $\{\phi_0^m \phi_2^m, \phi_1^m \phi_0^m \mid m = 1, \dots, n\}$ is a K-basis of $\operatorname{Im} \operatorname{Hom}_{A_n^s}(\partial^{6j+3}, \Lambda_n)$.
- (d) (1) If char $K \mid 3n+2$, then $\{-\mu_1^n + \mu_2^n + \nu_0, \mu_2^n \mu_0^n + \nu_1, \nu_0 + \nu_1\}$ is a K-basis of $\operatorname{Im} \operatorname{Hom}_{A_n^e}(\partial^{6j+4}, \Lambda_n)$.
 - (2) If char $K \nmid 3n+2$, then $\{\mu_2^n, -\mu_1^n + \mu_2^n + \nu_0, \mu_2^n \mu_0^n + \nu_1, \nu_0 + \nu_1\}$ is a K-basis of Im $\operatorname{Hom}_{A_n^c}(\partial^{6j+4}, \Lambda_n)$.
- (e) (1) If n = 0, then $\{\eta\}$ is a K-basis of $\operatorname{Im} \operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(\partial^{6j+5}, \Lambda_n)$.
 - (2) If n > 0, then $\{\theta_0^m \theta_2^m, \theta_1^m \theta_0^m, \eta \mid m = 0, 1, \dots, n-1\}$ is a K-basis of $\text{Im Hom}_{\Lambda_n^e}(\partial^{6j+5}, \Lambda_n)$.

(f) Im $\operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(\partial^{6j+6}, \Lambda_n) = 0.$

Proof. (a) We first consider a K-basis of $\operatorname{Im} \operatorname{Hom}_{\Lambda_n^e}(\partial^1, \Lambda_n)$. Let x be any element in $\operatorname{Hom}_{\Lambda_n^e}(Q^0, \Lambda_n)$. Then, by Lemma 4.1 (a), x can be written in the form

$$x = \left(\sum_{k=0}^{2} \sum_{m=0}^{n} p_k^m \alpha_k^m\right) + q\beta$$

where $p_k^m, q \in K$ for k = 0, 1, 2 and m = 0, 1, ..., n. By Corollary 4.4 (a) we get

$$\operatorname{Hom}_{A_{n}^{e}}(\partial^{1}, \Lambda_{n})(x) = \left(\sum_{k=0}^{2} \sum_{m=0}^{n} p_{k}^{m} (\alpha_{k}^{m} \partial^{1})\right) + q(\beta \partial^{1})$$

$$= \begin{cases} p_{0}^{0}(\mu_{0}^{0} - \mu_{2}^{0} + \nu_{0}) + p_{1}^{0}(\mu_{1}^{0} - \mu_{0}^{0}) \\ + p_{2}^{0}(\mu_{2}^{0} - \mu_{1}^{0} - \nu_{1}) + q(\nu_{1} - \nu_{0}) & \text{if } n = 0 \end{cases}$$

$$= \begin{cases} p_{0}^{0}(\mu_{0}^{0} - \mu_{2}^{0} + \nu_{0}) + p_{1}^{0}(\mu_{1}^{0} - \mu_{0}^{0}) + p_{2}^{0}(\mu_{2}^{0} - \mu_{1}^{0} - \nu_{1}) \\ + q(\nu_{1} - \nu_{0}) + \sum_{k=0}^{2} \sum_{m=1}^{n} p_{k}^{m}(\mu_{k}^{m} - \mu_{k+2}^{m}) & \text{if } n > 0 \end{cases}$$

$$(4.1)$$

$$= \begin{cases} (p_{0}^{0} - q)(\mu_{0}^{0} - \mu_{2}^{0} + \nu_{0}) + (p_{1}^{0} - q)(\mu_{1}^{0} - \mu_{0}^{0}) \\ + (p_{2}^{0} - q)(\mu_{2}^{0} - \mu_{1}^{0} - \nu_{1}) & \text{if } n = 0 \end{cases}$$

$$= \begin{cases} (p_{0}^{0} - q)(\mu_{0}^{0} - \mu_{2}^{0} + \nu_{0}) + (p_{1}^{0} - q)(\mu_{1}^{0} - \mu_{0}^{0}) \\ + (p_{2}^{0} - q)(\mu_{2}^{0} - \mu_{1}^{0} - \nu_{1}) & \text{if } n = 0 \end{cases}$$

$$+ \sum_{m=1}^{n} \left((p_{0}^{m} - p_{2}^{m})(\mu_{0}^{m} - \mu_{2}^{m}) + (p_{1}^{m} - p_{2}^{m})(\mu_{1}^{m} - \mu_{0}^{m}) \right) \quad \text{if } n > 0.$$

Therefore $\operatorname{Hom}_{\Lambda_n^e}(\partial^1, \Lambda_n)(x) = x\partial^1$ belongs to

$$\begin{cases} K(\mu_0^0 - \mu_2^0 + \nu_0) \bigoplus K(\mu_1^0 - \mu_0^0) \bigoplus K(\mu_2^0 - \mu_1^0 - \nu_1) & \text{if } n = 0 \\ K(\mu_0^0 - \mu_2^0 + \nu_0) \bigoplus K(\mu_1^0 - \mu_0^0) \bigoplus K(\mu_2^0 - \mu_1^0 - \nu_1) & \\ \bigoplus \left(\bigoplus_{m=1}^n \left(K(\mu_0^m - \mu_2^m) \bigoplus K(\mu_1^m - \mu_0^m) \right) \right) & \text{if } n > 0. \end{cases}$$

Conversely it is obvious by Corollary 4.4 (a) that, for m = 1, ..., n, the elements $\mu_0^0 - \mu_2^0 + \nu_0$, $\mu_1^0 - \mu_0^0$, $\mu_2^0 - \mu_1^0 - \nu_1$, $\mu_0^m - \mu_2^m$, and $\mu_1^m - \mu_0^m$ are in

Im $\operatorname{Hom}_{\Lambda_n^e}(\partial^1, \Lambda_n)$. Hence we get

 $\operatorname{Im} \operatorname{Hom}_{\Lambda^{\underline{e}}}(\partial^1, \Lambda_n)$

$$= \begin{cases} K(\mu_0^0 - \mu_2^0 + \nu_0) \bigoplus K(\mu_1^0 - \mu_0^0) \bigoplus K(\mu_2^0 - \mu_1^0 - \nu_1) & \text{if } n = 0 \\ K(\mu_0^0 - \mu_2^0 + \nu_0) \bigoplus K(\mu_1^0 - \mu_0^0) \bigoplus K(\mu_2^0 - \mu_1^0 - \nu_1) & \\ \bigoplus \left(\bigoplus_{m=1}^n \left(K(\mu_0^m - \mu_2^m) \bigoplus K(\mu_1^m - \mu_0^m) \right) \right) & \text{if } n > 0. \end{cases}$$

This shows the desired results in this case.

A similar computation gives the desired basis of $\operatorname{Im} \operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(\partial^{6j+7}, \Lambda_n)$ for $j \geq 0$. Therefore the statement (a) is proved.

(b) Let $x \in \operatorname{Hom}_{\Lambda_n^e}(Q^{6j+1}, \Lambda_n)$. Then, by Lemma 4.1 (c), x can be written in the form

$$x = \left(\sum_{k=0}^{2} \sum_{m=0}^{n} p_k^m \mu_k^m\right) + q_0 \nu_0 + q_1 \nu_1$$

where $p_k^m, q_0, q_1 \in K$ for k = 0, 1, 2 and m = 0, 1, ..., n. Then we have by Corollary 4.4 (b) that

$$\operatorname{Hom}_{A_{n}^{e}}(\partial^{6j+2}, A_{n})(x) = \left(\sum_{k=0}^{2} \sum_{m=0}^{n} p_{k}^{m} (\mu_{k}^{m} \partial^{6j+2})\right) + q_{0}(\nu_{0} \partial^{6j+2}) + q_{1}(\nu_{1} \partial^{6j+2})$$

$$= \left((n+1)p_{0}^{0} \eta + (n+1)p_{1}^{0} \eta + np_{2}^{0} \eta\right) + (-q_{0} \eta) + (-q_{1} \eta)$$

$$= \left((n+1)p_{0}^{0} + (n+1)p_{1}^{0} + np_{2}^{0} - q_{0} - q_{1}\right) \eta$$

$$\in K\eta.$$

Conversely, we get $\operatorname{Hom}_{\Lambda_n^{\operatorname{e}}}(\partial^{6j+2}, \Lambda_n)(-\nu_0) = \eta$ by Corollary 4.4 (b). So it follows that $\operatorname{Im} \operatorname{Hom}_{\Lambda_n^{\operatorname{e}}}(\partial^{6j+2}, \Lambda_n) = K\eta$. Hence the statement (b) is proved. Similar observations show the remaining cases (c)–(f).

As an immediate consequence we have the dimension of Im $\operatorname{Hom}_{\Lambda_n^e}(\partial^i, \Lambda_n)$ for $i \geq 1$.

Corollary 4.6. For $i \geq 1$ the dimension of Im $\operatorname{Hom}_{A_n^e}(\partial^i, \Lambda_n)$ is as follows:

$$\dim_{K} \operatorname{Im} \operatorname{Hom}_{A_{n}^{e}}(\partial^{i}, A_{n}) = \begin{cases} 0 & \text{if } i \equiv 0 \pmod{6} \\ 2n+3 & \text{if } i \equiv 1 \pmod{6} \\ 1 & \text{if } i \equiv 2 \pmod{6} \\ 2n & \text{if } i \equiv 3 \pmod{6} \\ 3 & \text{if } i \equiv 4 \pmod{6} \text{ and } \operatorname{char} K \mid 3n+2 \\ 4 & \text{if } i \equiv 4 \pmod{6} \text{ and } \operatorname{char} K \nmid 3n+2 \\ 2n+1 & \text{if } i \equiv 5 \pmod{6}. \end{cases}$$

4.4. A basis of Ker $\operatorname{Hom}_{\Lambda_n^e}(\partial^i, \Lambda_n)$

Now we find a K-basis of Ker $\operatorname{Hom}_{\Lambda_n^e}(\partial^i, \Lambda_n)$ for each $i \geq 0$. In the following we note that if $\operatorname{char} K \mid 3n+2$, then $\operatorname{char} K \neq 3$.

Lemma 4.7. For $j \geq 0$ we have the following K-basis:

- (a) (1) If n = 0, then $\{\alpha_0^0 + \alpha_1^0 + \alpha_2^0 + \beta\}$ is a K-basis of Ker $\text{Hom}_{\Lambda_n^0}(\partial^1, \Lambda_n)$.
 - (2) If n > 0, then $\{\alpha_0^0 + \alpha_1^0 + \alpha_2^0 + \beta, \alpha_0^m + \alpha_1^m + \alpha_2^m \mid m = 1, ..., n\}$ is a K-basis of Ker $\text{Hom}_{\Lambda_n^e}(\partial^1, \Lambda_n)$.
- (b) (1) If n = 0, then $\{\phi_0^0 + \phi_1^0 + \phi_2^0 \psi\}$ is a K-basis of Ker $\text{Hom}_{\Lambda_n^e}(\partial^{6j+7}, \Lambda_n)$.
 - (2) If n > 0, then $\{\phi_0^0 + \phi_1^0 + \phi_2^0 \psi, \phi_0^m + \phi_1^m + \phi_2^m \mid m = 1, \dots, n\}$ is a K-basis of Ker $\text{Hom}_{\Lambda_n^e}(\partial^{6j+7}, \Lambda_n)$.
- (c) (1) If n = 0, then $\{\mu_0^0 + \nu_0, \mu_0^0 \mu_2^0 + \nu_0, \mu_1^0 \mu_0^0, \mu_2^0 \mu_1^0 \nu_1\}$ is a K-basis of $\operatorname{Ker} \operatorname{Hom}_{A_n^0}(\partial^{6j+2}, \Lambda_n)$.
 - (2) If n > 0, then $\{\mu_0^0 + (n+1)\nu_0, \mu_0^0 \mu_2^0 + \nu_0, \mu_1^0 \mu_0^0, \mu_2^0 \mu_1^0 \nu_1, \mu_0^m, \mu_0^m \mu_2^m, \mu_1^m \mu_0^m \mid m = 1, \dots, n\}$ is a K-basis of Ker $\text{Hom}_{\Lambda_n^e}(\partial^{6j+2}, \Lambda_n)$.
- (d) (1) If n = 0, then $\{\eta\}$ is a K-basis of Ker $\operatorname{Hom}_{\Lambda_n^e}(\partial^{6j+3}, \Lambda_n)$.
 - (2) If n > 0, then $\{\theta_0^m + \theta_1^m + \theta_2^m, \eta \mid m = 0, 1, \dots, n-1\}$ is a K-basis of $\operatorname{Ker} \operatorname{Hom}_{\Lambda_n^e}(\partial^{6j+3}, \Lambda_n)$.
- (e) (1) If char $K \mid 3n+2$ and n=0 (so char K=2), then $\{\phi_0^0 + \phi_1^0 + \phi_2^0 + \psi\}$ is a K-basis of Ker $\text{Hom}_{\Lambda_2^n}(\partial^{6j+4}, \Lambda_n)$.
 - (2) If char $K \mid 3n+2$ and n > 0 (so char $K \neq 3$), then $\{\phi_0^0 + \phi_1^0 + \phi_2^0 + \psi, \phi_0^m + \phi_1^m + \phi_2^m, \phi_0^m \phi_2^m, \phi_1^m \phi_0^m \mid m = 1, \dots, n\}$ is a K-basis of $\operatorname{Ker} \operatorname{Hom}_{A_n^e}(\partial^{6j+4}, \Lambda_n)$.
 - (3) If char $K \nmid 3n+2$ and n=0, then $\operatorname{Ker} \operatorname{Hom}_{\Lambda_n^e}(\partial^{6j+4}, \Lambda_n) = 0$.
 - (4) If char $K \nmid 3n + 2$ and n > 0, then $\{\phi_0^m, \phi_0^m \phi_2^m, \phi_1^m \phi_0^m \mid m = 1, \ldots, n\}$ is a K-basis of Ker $\text{Hom}_{A_n^e}(\partial^{6j+4}, \Lambda_n)$.
- (f) (1) If char $K \mid 3n+2$ and n=0 (so char K=2), then $\{\mu_0^0 + \mu_1^0 + \mu_2^0, -\mu_1^0 + \mu_2^0 + \nu_0, \mu_2^0 \mu_0^0 + \nu_1, \nu_0 + \nu_1\}$ is a K-basis of Ker $\text{Hom}_{\Lambda_n^0}(\partial^{6j+5}, \Lambda_n)$.
 - (2) If char $K \mid 3n+2$ and n > 0 (so char $K \neq 3$), then $\{\mu_0^m + \mu_1^m + \mu_2^m, -\mu_1^n + \mu_2^n + \nu_0, \mu_2^n \mu_0^n + \nu_1, \nu_0 + \nu_1 \mid m = 0, 1, \dots, n\}$ is a K-basis of Ker $\text{Hom}_{A_n^n}(\partial^{6j+5}, A_n)$.
 - (3) If char $K \nmid 3n+2$ and n=0, then $\{\mu_2^0, -\mu_1^0 + \mu_2^0 + \nu_0, \mu_2^0 \mu_0^0 + \nu_1, \nu_0 + \nu_1\}$ is a K-basis of Ker $\text{Hom}_{\Lambda_n^e}(\partial^{6j+5}, \Lambda_n)$.
 - (4) If char $K \nmid 3n + 2$ and n > 0, then $\{\mu_0^m + \mu_1^m + \mu_2^m, \mu_2^n, -\mu_1^n + \mu_2^n + \nu_0, \mu_2^n \mu_0^n + \nu_1, \nu_0 + \nu_1 \mid m = 0, 1, \dots, n-1\}$ is a K-basis of Ker $\text{Hom}_{\Lambda_n^n}(\partial^{6j+5}, \Lambda_n)$.

- (g) (1) If n = 0, then $\{\eta\}$ is a K-basis of Ker $\operatorname{Hom}_{\Lambda_n^e}(\partial^{6j+6}, \Lambda_n)$.
 - (2) If n > 0, then $\{\theta_0^m, \theta_0^m \theta_2^m, \theta_1^m \theta_0^m, \eta \mid m = 0, 1, \dots, n-1\}$ is a K-basis of Ker $\operatorname{Hom}_{A_n^c}(\partial^{6j+6}, \Lambda_n)$.

Proof. (a) Let $x = \left(\sum_{k=0}^{2} \sum_{m=0}^{n} p_{k}^{m} \alpha_{k}^{m}\right) + q\beta \in \operatorname{Hom}_{A_{n}^{e}}(Q^{0}, \Lambda_{n})$, where p_{k}^{m} , $q \in K$ for k = 0, 1, 2 and $m = 0, 1, \ldots, n$. Suppose that $\operatorname{Hom}_{A_{n}^{e}}(\partial^{1}, \Lambda_{n})(x) = 0$. Then, by (4.1), we have $p_{0}^{0} - q = p_{1}^{0} - q = p_{2}^{0} - q = 0$ if n = 0; and $p_{0}^{0} - q = p_{1}^{0} - q = p_{2}^{0} - q = p_{0}^{m} - p_{2}^{m} = p_{1}^{m} - p_{2}^{m} = 0$ for $m = 1, \ldots, n$ if n > 0. Hence $p_{0}^{0} = p_{1}^{0} = p_{2}^{0} = q$ if n = 0; and $p_{0}^{0} = p_{1}^{0} = p_{2}^{0} = q$ and $p_{0}^{m} = p_{1}^{m} = p_{2}^{m}$ for $m = 1, \ldots, n$ if n > 0. Therefore we get

$$x = \begin{cases} p_0^0(\alpha_0^0 + \alpha_1^0 + \alpha_2^0 + \beta) & \text{if } n = 0\\ p_0^0(\alpha_0^0 + \alpha_1^0 + \alpha_2^0 + \beta) + \left(\sum_{m=1}^n p_0^m(\alpha_0^m + \alpha_1^m + \alpha_2^m)\right) & \text{if } n > 0. \end{cases}$$

Accordingly it follows that

$$x \in \begin{cases} K(\alpha_0^0 + \alpha_1^0 + \alpha_2^0 + \beta) & \text{if } n = 0 \\ K(\alpha_0^0 + \alpha_1^0 + \alpha_2^0 + \beta) \bigoplus \left(\bigoplus_{m=1}^n K(\alpha_0^m + \alpha_1^m + \alpha_2^m) \right) & \text{if } n > 0. \end{cases}$$

Conversely, it is easy to check that the elements $\alpha_0^0 + \alpha_1^0 + \alpha_2^0 + \beta$ and $\alpha_0^m + \alpha_1^m + \alpha_2^m$ are in Ker $\text{Hom}_{\Lambda_n^e}(\partial^1, \Lambda_n)$ for $m = 1, \dots, n$. Thus

$$\operatorname{Ker} \operatorname{Hom}_{\Lambda_{n}^{e}}(\partial^{1}, \Lambda_{n}) = \begin{cases}
K(\alpha_{0}^{0} + \alpha_{1}^{0} + \alpha_{2}^{0} + \beta) & \text{if } n = 0 \\
K(\alpha_{0}^{0} + \alpha_{1}^{0} + \alpha_{2}^{0} + \beta) \bigoplus \left(\bigoplus_{m=1}^{n} K(\alpha_{0}^{m} + \alpha_{1}^{m} + \alpha_{2}^{m}) \right) & \text{if } n > 0.
\end{cases}$$

This gives the required K-basis in (a).

A similar argument provides the required K-basis in (b).

(c) Let $x = \left(\sum_{k=0}^{2} \sum_{m=0}^{n} p_{k}^{m} \mu_{k}^{m}\right) + q_{0}\nu_{0} + q_{1}\nu_{1} \in \operatorname{Hom}_{A_{n}^{e}}(Q^{6j+1}, \Lambda_{n}),$ where $p_{k}^{m}, q_{0}, q_{1} \in K$ for k = 0, 1, 2 and $m = 0, 1, \dots, n$. Suppose that $\operatorname{Hom}_{A_{n}^{e}}(\partial^{6j+2}, \Lambda_{n})(x) = 0$. Then (4.2) yields $(n+1)p_{0}^{0} + (n+1)p_{1}^{0} + np_{2}^{0} - q_{0} - q_{0}$

 $q_1 = 0$, so that $q_0 = (n+1)p_0^0 + (n+1)p_1^0 + np_2^0 - q_1$. Thus we have that

$$x = \begin{cases} p_0^0 \mu_0^0 + p_1^0 \mu_1^0 + p_2^0 \mu_2^0 + \left(p_0^0 + p_1^0 - q_1\right) \nu_0 + q_1 \nu_1 & \text{if } n = 0 \\ p_0^0 \mu_0^0 + p_1^0 \mu_1^0 + p_2^0 \mu_2^0 \\ + \left((n+1)p_0^0 + (n+1)p_1^0 + np_2^0 - q_1\right) \nu_0 + q_1 \nu_1 \\ + \left(\sum_{k=0}^2 \sum_{m=1}^n p_k^m \mu_k^m\right) + q_0 \nu_0 + q_1 \nu_1 & \text{if } n > 0 \end{cases}$$

$$= \begin{cases} (p_0^0 + p_1^0 + p_2^0)(\mu_0^0 + \nu_0) + (-p_2^0 - q_1)(\mu_0^0 - \mu_2^0 + \nu_0) \\ + (p_1^0 - q_1)(\mu_1^0 - \mu_0^0) - q_1(\mu_2^0 - \mu_1^0 - \nu_1) & \text{if } n = 0 \end{cases}$$

$$= \begin{cases} (p_0^0 + p_1^0 + p_2^0)\left(\mu_0^0 + (n+1)\nu_0\right) \\ + (-p_2^0 - q_1)(\mu_0^0 - \mu_2^0 + \nu_0) + (p_1^0 - q_1)(\mu_1^0 - \mu_0^0) \\ - q_1(\mu_2^0 - \mu_1^0 - \nu_1) + \sum_{m=1}^n \left((p_0^m + p_1^m + p_2^m)\mu_0^m - p_2^m(\mu_0^m - \mu_2^m) + p_1^m(\mu_1^m - \mu_0^m)\right) & \text{if } n > 0. \end{cases}$$

This implies that x belongs to

$$\begin{cases} K(\mu_0^0 + \nu_0) \bigoplus K(\mu_0^0 - \mu_2^0 + \nu_0) \bigoplus K(\mu_1^0 - \mu_0^0) \\ \bigoplus K(\mu_2^0 - \mu_1^0 - \nu_1) & \text{if } n = 0 \end{cases}$$

$$K(\mu_0^0 + (n+1)\nu_0) \bigoplus K(\mu_0^0 - \mu_2^0 + \nu_0) \bigoplus K(\mu_1^0 - \mu_0^0) \\ \bigoplus K(\mu_2^0 - \mu_1^0 - \nu_1) \\ \bigoplus \left(\bigoplus_{m=1}^n \left(K\mu_0^m \bigoplus K(\mu_0^m - \mu_2^m) \bigoplus K(\mu_1^m - \mu_0^m) \right) \right) & \text{if } n > 0.$$

Conversely it is easy to check by Corollary 4.4 (b) that, for $m=1,\ldots,n$, the elements $\mu_0^0 + \nu_0$, $\mu_0^0 - \mu_2^0 + \nu_0$, $\mu_1^0 - \mu_0^0$, $\mu_2^0 - \mu_1^0 - \nu_1$, $\mu_2^0 - \mu_1^0 - \nu_1$, μ_0^m , $\mu_0^m - \mu_2^m$, and $\mu_1^m - \mu_0^m$ lie in the kernel of $\operatorname{Hom}_{A_n^e}(\partial^{6j+2}, \Lambda_n)$. This shows that

$$\operatorname{Ker} \operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(\partial^{6j+2}, \Lambda_n)$$

$$= \begin{cases} K(\mu_0^0 + \nu_0) \bigoplus K(\mu_0^0 - \mu_2^0 + \nu_0) \bigoplus K(\mu_1^0 - \mu_0^0) \\ \bigoplus K(\mu_2^0 - \mu_1^0 - \nu_1) & \text{if } n = 0 \end{cases}$$

$$= \begin{cases} K(\mu_0^0 + (n+1)\nu_0) \bigoplus K(\mu_0^0 - \mu_2^0 + \nu_0) \bigoplus K(\mu_1^0 - \mu_0^0) \\ \bigoplus K(\mu_2^0 - \mu_1^0 - \nu_1) \\ \bigoplus \left(\bigoplus_{m=1}^n \left(K\mu_0^m \bigoplus K(\mu_0^m - \mu_2^m) \bigoplus K(\mu_1^m - \mu_0^m) \right) \right) & \text{if } n > 0. \end{cases}$$

So we have got the desired K-basis in this case.

Similar arguments provide the required K-basis in the remaining cases.

As a direct consequence we have the dimensions of Ker $\operatorname{Hom}_{\Lambda_n^{\mathbf{e}}}(\partial^i, \Lambda_n)$.

Corollary 4.8. For $i \geq 1$, the dimension of Ker $\operatorname{Hom}_{\Lambda_n^e}(\partial^i, \Lambda_n)$ is as follows:

$$\dim_K \operatorname{Ker} \operatorname{Hom}_{A_n^e}(\partial^i, A_n) = \begin{cases} 3n+1 & \text{if } i \equiv 0 \pmod 6 \\ n+1 & \text{if } i \equiv 1 \pmod 6 \\ 3n+4 & \text{if } i \equiv 2 \pmod 6 \\ n+1 & \text{if } i \equiv 3 \pmod 6 \\ 3n+1 & \text{if } i \equiv 4 \pmod 6 \text{ and } \operatorname{char} K \mid 3n+2 \\ 3n & \text{if } i \equiv 4 \pmod 6 \text{ and } \operatorname{char} K \nmid 3n+2 \\ n+4 & \text{if } i \equiv 5 \pmod 6 . \end{cases}$$

4.5. The Hochschild cohomology groups of Λ_n

Now, by Lemmas 4.5 and 4.7, we have a K-basis of $\mathrm{HH}^i(\Lambda_n)$ for all $i \geq 0$.

Proposition 4.9. For $j \geq 0$ we have the following:

- (a) (1) If n = 0, then $\{\alpha_0^0 + \alpha_1^0 + \alpha_2^0 + \beta\}$ is a K-basis of $HH^0(\Lambda_n)$.
 - (2) If n > 0, then $\{\alpha_0^0 + \alpha_1^0 + \alpha_2^0 + \beta, \alpha_0^m + \alpha_1^m + \alpha_2^m \mid m = 1, \dots, n\}$ is a K-basis of $HH^0(\Lambda_n)$.
- (b) (1) If n = 0, then $\{\phi_0^0 + \phi_1^0 + \phi_2^0 \psi\}$ is a K-basis of $HH^{6j+6}(\Lambda_n)$.
 - (2) If n > 0, then $\{\phi_0^0 + \phi_1^0 + \phi_2^0 \psi, \phi_0^m + \phi_1^m + \phi_2^m \mid m = 1, \dots, n\}$ is a K-basis of $HH^{6j+6}(\Lambda_n)$.
- (c) (1) If n = 0, then $\{\mu_0^0 + \nu_0\}$ is a K-basis of $\mathrm{HH}^{6j+1}(\Lambda_n)$.
 - (2) If n > 0, then $\{\mu_0^0 + (n+1)\nu_0, \mu_0^m \mid m = 1, ..., n\}$ is a K-basis of $HH^{6j+1}(\Lambda_n)$.
- (d) (1) If n = 0, then $HH^{6j+2}(\Lambda_n) = 0$.
 - (2) If n > 0, then $\{\theta_0^m + \theta_1^m + \theta_2^m \mid m = 0, 1, ..., n 1\}$ is a K-basis of $HH^{6j+2}(\Lambda_n)$.
- (e) (1) If char $K \mid 3n+2 \text{ and } n = 0 \text{ (hence char } K = 2), \text{ then } \{\phi_0^0 + \phi_1^0 + \phi_2^0 + \psi\}$ is a K-basis of $\mathrm{HH}^{6j+3}(\Lambda_n)$.
 - (2) If char $K \mid 3n+2$ and n > 0, then $\{\phi_0^0 + \phi_1^0 + \phi_2^0 + \psi, \phi_0^m + \phi_1^m + \phi_2^m \mid m = 1, ..., n\}$ is a K-basis of $HH^{6j+3}(\Lambda_n)$.

- (3) If char $K \nmid 3n + 2$ and n = 0, then $HH^{6j+3}(\Lambda_n) = 0$.
- (4) If char $K \nmid 3n + 2$ and n > 0, then $\{\phi_0^m \mid m = 1, ..., n\}$ is a K-basis of $HH^{6j+3}(\Lambda_n)$.
- (f) (1) If char $K \mid 3n+2$, then $\{\mu_0^m + \mu_1^m + \mu_2^m \mid m = 0, 1, ..., n\}$ is a K-basis of $HH^{6j+4}(\Lambda_n)$.
 - (2) If char $K \nmid 3n+2$ and n=0, then $HH^{6j+4}(\Lambda_n)=0$.
 - (3) If char $K \nmid 3n+2$ and n > 0, then $\{\mu_0^m + \mu_1^m + \mu_2^m \mid m = 0, 1, \dots, n-1\}$ is a K-basis of $HH^{6j+4}(\Lambda_n)$.
- (g) (1) If n = 0, then $HH^{6j+5}(\Lambda_n) = 0$.
 - (2) If n > 0, then $\{\theta_0^m \mid m = 0, 1, \dots, n-1\}$ is a K-basis of $HH^{6j+5}(\Lambda_n)$.

This proposition provides us with the main result in this paper:

Theorem 4.10. For $n \geq 0$ and $i \geq 0$ the dimension of $HH^i(\Lambda_n)$ is given as follows:

$$\dim_{K} \mathrm{HH}^{i}(\Lambda_{n}) = \begin{cases} n+1 & \text{if } i \equiv 0 \pmod{6} \\ n+1 & \text{if } i \equiv 1 \pmod{6} \\ n & \text{if } i \equiv 2 \pmod{6} \\ n+1 & \text{if } i \equiv 3 \pmod{6} \text{ and } \mathrm{char} \ K \mid 3n+2 \\ n & \text{if } i \equiv 3 \pmod{6} \text{ and } \mathrm{char} \ K \nmid 3n+2 \\ n+1 & \text{if } i \equiv 4 \pmod{6} \text{ and } \mathrm{char} \ K \nmid 3n+2 \\ n & \text{if } i \equiv 4 \pmod{6} \text{ and } \mathrm{char} \ K \nmid 3n+2 \\ n & \text{if } i \equiv 5 \pmod{6}. \end{cases}$$

Remark 4.11. Recall that, for any algebra C, the 0th Hochschild cohomology group $\mathrm{HH}^0(C)$ is isomorphic to the centre Z(C) of C. Hence, by Proposition 4.9 (a), the set $\{e_0+e_1+e_2+f_1\}$ is a K-basis of $Z(\Lambda_0)$, and if n>0 the set $\{e_0+e_1+e_2+f_1,\sum_{i=0}^2(a_ia_{i+1}a_{i+2})^m\mid m=1,\ldots,n\}$ is a K-basis of $Z(\Lambda_n)$.

We end this paper by giving the dimension of the Hochschild cohomology group of the cluster-tilted algebra Λ_0 . By setting n=0 in Theorem 4.10, we have the following corollary:

Corollary 4.12. For $i \geq 0$ the dimension of $HH^i(\Lambda_0)$ is as follows:

$$\dim_K \mathrm{HH}^i(\varLambda_0) = \begin{cases} 1 & \text{if } i \equiv 0 \pmod{6} \\ 1 & \text{if } i \equiv 1 \pmod{6} \\ 0 & \text{if } i \equiv 2 \pmod{6} \\ 1 & \text{if } i \equiv 3 \pmod{6} \text{ and } \mathrm{char} \, K = 2 \\ 0 & \text{if } i \equiv 3 \pmod{6} \text{ and } \mathrm{char} \, K \neq 2 \\ 1 & \text{if } i \equiv 4 \pmod{6} \text{ and } \mathrm{char} \, K \neq 2 \\ 0 & \text{if } i \equiv 4 \pmod{6} \text{ and } \mathrm{char} \, K \neq 2 \\ 0 & \text{if } i \equiv 4 \pmod{6} \text{ and } \mathrm{char} \, K \neq 2 \end{cases}$$

Acknowledgements. The author would like to thank Professor Takao Hayami and the referee for their valuable comments and helpful suggestions.

References

- [A] D. Al-Kadi, Self-injective algebras and the second Hochschild cohomology group, J. Algebra **321** (2009), 1049–1078.
- [ABS] I. Assem, T. Brüstle and R. Schiffler, Cluster-tilted algebras as trivial extensions, Bull. Lond. Math. Soc. 40 (2008), 151–162.
- [BE] P. A. Bergh and K. Erdmann, *Homology and cohomology of quantum complete intersections*, Algebra Number Theory **2** (2008), 501–522.
- [BHL] J. Bastian, T. Holm and S. Ladkani, Derived equivalences for cluster-tilted algebras of Dynkin type D, arXiv: 1012.4661.
- [ES] K. Erdmann and S. Schroll, On the Hochschild cohomology of tame Hecke algebras, Arch. Math. (Basel) **94** (2010), 117–127.
- [GHMS] E. L. Green, G. Hartmann, E. N. Marcos, Ø. Solberg, Resolutions over Koszul algebras, Arch. Math. (Basel) 85 (2005), 118–127.
- [GS] E. L. Green and N. Snashall, Projective bimodule resolutions of an algebra and vanishing of the second Hochschild cohomology group, Forum Math. 16 (2004), 17–36.
- [GSZ] E. L. Green, Ø. Solberg and D. Zacharia, Minimal projective resolutions, Trans. Amer. Math. Soc. **353** (2001), 2915–2939.
- [H] D. Happel, *Hochschild cohomology of finite-dimensional algebras*, Springer Lecture Notes in Mathematics **1404** (1989), 108–126.
- [O] D. Obara, Hochschild cohomology of quiver algebras defined by two cycles and a quantum-like relation, Comm. Algebra **40** (2012), 1724–1761.

- [SS] S. Schroll and N. Snashall, *Hochschild cohomology and support varieties for tame Hecke algebras*, Q. J. Math. **62** (2011), 1017–1029.
- [ST] N. Snashall and R. Taillefer, The Hochschild cohomology ring of a class of special biserial algebras, J. Algebra Appl. 9 (2010), 73–122.
- [SW] A. Skowroński and J. Waschbüsch, Representation-finite biserial algebras, J. Reine und Angew. Math. **345** (1983), 172–181.

Takahiko Furuya
Department of Mathematics
Tokyo University of Science
1–3 Kagurazaka, Shinjuku-ku, Tokyo, Japan
E-mail: furuya@ma.kagu.tus.ac.jp