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Abstract. We consider the problem of testing for multivariate mean vector
when the data have two-step monotone pattern missing observations. We obtain
two test statistics for this problem: a test statistic similar to Hotelling’s T 2 test
statistic and the likelihood ratio test statistic. We propose the approximate
upper percentiles of these statistics. The accuracy of the approximation is
investigated by Monte Carlo simulation. A test statistic for the components
of mean vector is outlined. Approximate simultaneous confidence intervals are
obtained and the proposed method is illustrated using an example.
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§1. Introduction

In statistical data analyses, missing data is an inevitable problem in many
practical situations. For example, in clinical trials that are conducted over
several years, missing data often occurs when patients drop out mid-study.
Many statistical methods have been developed to analyze data with missing
values (see, e.g., Anderson (1957), Bhargava (1962), Little and Rubin (2002),
McLachlan and Krishnan (1997)). For a general missing pattern, Srivastava
(1985) discussed the likelihood ratio test (LRT) for mean vector in one-sample
problem and the LRT for mean vectors in two-sample problem. Srivastava
and Carter (1986) and Shutoh et al. (2010) obtained the maximum likeli-
hood estimators (MLEs) of the mean vector and the covariance matrix by the
Newton-Raphson method and provided the LRT for the same. Seo and Srivas-
tava (2000) derived a test of equality of means and simultaneous confidence
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intervals for monotone missing data in one-sample problem under a covari-
ance matrix with intraclass correlation. As an extension of Seo and Srivastava
(2000), Koizumi and Seo (2009a, 2009b) considered testing the equality of
means and simultaneous confidence intervals in l-sample problem for k-step
monotone missing data. They gave the exact distribution of test statistics
under the null hypothesis.

On the other hand, Anderson (1957) developed an approach to derive the
MLEs of the mean and the covariance vector by solving the likelihood equa-
tions for monotone missing data with several missing patterns. Anderson and
Olkin (1985) derived the MLEs for two-step monotone missing data in one-
sample problem. Kanda and Fujikoshi (1998) discussed the distribution of
the MLEs in the cases of two-step, three-step, and general k-step monotone
missing data.

In this paper, we consider two-step monotone missing data drawn from a
multivariate normal population that is of the form




x11 x12 . . . x1p1 x1p1+1 . . . x1p

x21 x22 . . . x2p1 x2p1+1 . . . x2p
...

...
...

...
...

xN11 xN12 . . . xN1p1 xN1p1+1 . . . xN1p

xN1+11 xN1+12 . . . xN1+1p1 ∗ . . . ∗
...

...
...

...
...

xN1 xN2 . . . xNp1 ∗ . . . ∗




,

where N = N1 + N2 and p = p1 + p2. “∗” indicates a missing observation.
That is, we have complete data for N1 observations with p dimensions and
incomplete data for N2 observations with p1 dimensions.

Let x1,. . . ,xN1 be distributed as the multivariate normal Np(µ,Σ) and
x1N1+1, . . . , x1N be distributed as the multivariate normal Np1(µ1,Σ11), where
each xj , j = 1, . . . , N1 is p× 1 and each x1j , j = N1 + 1, . . . , N is p1 × 1, and

µ =
(

µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
.

We partition xj into a p1 × 1 random vector and a p2 × 1 random vector as
xj = (x′1j , x

′
2j)

′, where xij : pi × 1, i = 1, 2, j = 1, . . . , N1. The two-step
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monotone missing data can be written in a vector expression as below:



x′11 x′21

x′12 x′22
...

...
x′1N1

x′2N1

x′1N1+1 ∗
...

...
x′1N ∗




.

Therefore, the joint density function of the observed data set x1, . . . , xN1 ,
x1N1+1, . . . , x1N can be written as

N1∏

j=1

f(xj ; µ,Σ)×
N∏

j=N1+1

f(x1j ;µ1,Σ11),

where f(xj ; µ,Σ) are the density functions of Np(µ,Σ), f(x1j ; µ1,Σ11) are
the density functions of Np1(µ1,Σ11).

We define the sample means:

xT =
1
N

N∑

j=1

x1j , x
(1)
1 =

1
N1

N1∑

j=1

x1j ,

x
(1)
2 =

1
N1

N1∑

j=1

x2j , x(2) =
1

N2

N∑

j=N1+1

x1j ,

and the sample covariance matrices:

S(1) =
1

N1 − 1

N1∑

j=1

(
xj − x(1)

)(
xj − x(1)

)′
=

(
S

(1)
11 S

(1)
12

S
(1)
21 S

(1)
22

)
,

S(2) =
1

N2 − 1

N∑

j=N1+1

(
x1j − x(2)

)(
x1j − x(2)

)′
.

We consider the problem of testing H0 : µ = µ0 against H1 : µ 6= µ0 when
the data have two-step monotone pattern missing observations. Krishnamoor-
thy and Pannala (1999) gave a statistic similar to Hotelling’s T 2 test statistic.
They derived F-approximations of the T 2 type statistic by the method of mo-
ments and using simulations illustrated that the T 2 type statistic is as powerful
as the LRT. Chang and Richards (2009) also studied the asymptotic distri-
bution of the T 2 type statistic. Romer and Richards (2010) obtained a new



16 N. SEKO, A. YAMAZAKI AND T. SEO

derivation of a stochastic representation for the MLE of mean vector estab-
lished by Chang and Richards (2009). Krishnamoorthy and Pannala (1999)
and Chang and Richards (2009) assumed that the data are missing completely
at random (MCAR). They derived the covariance matrix of the MLE of mean
vector that is valid only under the assumption of MCAR. Kanda and Fujikoshi
(1998) derived the covariance matrix of the MLE of mean vector without the
assumption of MCAR. In this paper, we give the T 2 type statistic using Kanda
and Fujikoshi (1998). We propose the approximate upper percentile of the T 2

type statistic using the upper percentile of Hotelling’s T 2 statistic for non-
missing data. The T 2 type statistic is asymptotically distributed as χ2 when
the sample size is large. The proposed method gives a good approximation
even when the sample size is not large. We also obtain the LRT statistic and
its approximate upper percentile. In the following section, we introduce the
MLEs of µ and Σ in general. We derive the MLE of Σ under H0 : µ = µ0(= 0)
following Kanda and Fujikoshi (1998). In Section 3, we obtain the T 2 type
statistic and the LRT statistic for the null hypothesis and their approximate
upper percentiles. In Section 4, the test statistic for the components of mean
vector is outlined. Section 5 gives simultaneous confidence intervals for µ.
The accuracy of the approximate upper percentiles of the test statistics is in-
vestigated by Monte Carlo simulation in Section 6. A numerical example is
provided to show the approximate simultaneous confidence intervals in Section
7.

§2. Maximum likelihood estimators

2.1. MLEs of µ and Σ

Let the MLEs of µ and Σ denote by µ̂ and Σ̂, which are partitioned in the
same way as µ and Σ. We assume that the observation vectors are distributed
as Np(µ,Σ) and N1 > p, which is a necessary and sufficient condition for the
existence and uniqueness of the MLEs of (µ,Σ). Anderson and Olkin (1985)
derived the MLEs of (µ,Σ) (see Kanda and Fujikoshi (1998), Chang and
Richards (2009)) as follows:

µ̂ =
(

µ̂1

µ̂2

)
=

(
xT

x
(1)
2 − Σ̂21Σ̂

−1

11

(
x

(1)
1 − µ̂1

)
)

,

Σ̂ =

(
Σ̂11 Σ̂12

Σ̂21 Σ̂22

)
=




1
N

(
W

(1)
11 + W (2)

)
Σ̂11

(
W

(1)
11

)−1
W

(1)
12

W
(1)
21

(
W

(1)
11

)−1
Σ̂11

1
N1

W
(1)
22·1 + Σ̂21Σ̂

−1

11 Σ̂12


 ,
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where

W (1) = (N1 − 1)S(1) =

(
W

(1)
11 W

(1)
12

W
(1)
21 W

(1)
22

)
,

W (2) = (N2 − 1)S(2) +
N1N2

N

(
x

(1)
1 − x(2)

)(
x

(1)
1 − x(2)

)′
,

W
(1)
22·1 = W

(1)
22 −W

(1)
21

(
W

(1)
11

)−1
W

(1)
12 .

These MLEs are derived using the usual transformed parameters

η =
(

η1

η2

)
=

(
µ1

µ2 −Σ21Σ−1
11 µ1

)
,

Ψ =
(

Ψ11 Ψ12

Ψ21 Ψ22

)
=

(
Σ11 Σ−1

11 Σ12

Σ21Σ−1
11 Σ22·1

)
,

which have one-to-one correspondence with µ and Σ, where Σ22·1 = Σ22 −
Σ21Σ−1

11 Σ12. Multiplying the observation vectors xj by the transformation
matrix

A =
(

Ip1 O
−Ψ21 Ip2

)

on the left side, the mean vector and the covariance matrix of the transformed
observation vectors are

Aµ =
(

µ1

µ2 −Ψ21µ1

)
= η, AΣA′ =

(
Ψ11 O
O Ψ22

)
,

respectively. The MLEs of (η,Ψ) are expressed as

η̂1 = µ̂1, η̂2 = x
(1)
2 − Ψ̂21x

(1)
1 ,

Ψ̂11 = Σ̂11, Ψ̂12 =
(
W

(1)
11

)−1
W

(1)
12 , Ψ̂22 = 1

N1
W

(1)
22·1.

Kanda and Fujikoshi (1998) derived the next result.

Theorem 1. (Kanda and Fujikoshi (1998))
The mean vector and the covariance matrix of µ̂ are given by

E[µ̂] = µ,
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Cov[µ̂] =




1
N

Σ11
1
N

Σ12

1
N

Σ21 Cov[µ̂2]


 ,

respectively, where

Cov[µ̂2] =
1

N1

(
Σ22 − N2

N
Σ21Σ−1

11 Σ12

)
+

N2p1

NN1(N1 − p1 − 2)
Σ22·1

(N1 > p1 + 2).

2.2. MLE of Σ under H0 : µ = µ0(= 0)

In this section, we derive the MLE of Σ under H0 : µ = µ0(= 0) to
obtain the LRT statistic, following Kanda and Fujikoshi (1998). Let xj =
(x′1j , x

′
2j)

′ be distributed as Np(0,Σ), j=1, . . . , N1 and x1j be distributed as
Np1(0,Σ11), j=N1+1, . . . , N , then, the likelihood function is

L(0,Σ) =
N1∏

j=1

1
(2π)p/2|Σ|1/2

exp
(
−1

2
x′jΣ

−1xj

)

×
N∏

j=N1+1

1
(2π)p1/2|Σ11|1/2

exp
(
−1

2
x′1jΣ

−1
11 x1j

)
.

Multiplying the observation vectors by A on the left side, we have

Axj=
(

x1j

x2j−Ψ21x1j

)
∼ Np

((
0
0

)
,

(
Ψ11 O
O Ψ22

))
, j=1, . . . , N1.

We note that Σ is one to one correspondence to Ψ. For the parameter Ψ, the
likelihood function can be written as

L(0,Ψ) =
N∏

j=1

1
(2π)p1/2|Ψ11|1/2

exp
(
−1

2
x′1jΨ

−1
11 x1j

)

×
N1∏

j=1

1
(2π)p2/2|Ψ22|1/2

exp
{
−1

2
(x2j−Ψ21x1j)

′Ψ−1
22 (x2j−Ψ21x1j)

}
.

Thus, the log likelihood function is

log L(0,Ψ) = −
(

p1N

2
+

p2N1

2

)
log(2π)− N

2
log |Ψ11| − N1

2
log |Ψ22|
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+
N∑

j=1

(
−1

2
x′1jΨ

−1
11 x1j

)
+

N1∑

j=1

{
−1

2
(x2j−Ψ21x1j)

′Ψ−1
22 (x2j−Ψ21x1j)

}
.

The partial derivative of log L(0,Ψ) with respect to Ψ11 is

∂ log L(η,Ψ)
∂Ψ11

= −N

2
Ψ−1

11 +
N∑

j=1

1
2
Ψ−1

11 x1jx
′
1jΨ

−1
11 .

Solving the partial derivative of log L(0,Ψ) = 0, we obtain the MLE of Ψ11

as

Ψ̃11 =
1
N

N∑

j=1

x1jx
′
1j .

Similarly, the partial derivative of log L(0,Ψ) with respect to Ψ21 is

∂ log L (η,Ψ)
∂Ψ21

=
N1∑

j=1

(
Ψ−1

22 x2jx
′
1j −Ψ−1

22 Ψ21x1jx
′
1j

)
,

and the partial derivative of log L(0,Ψ) with respect to Ψ22 is

∂ log L(Ψ)
∂Ψ22

= −N1

2
Ψ−1

22 +
N1∑

j=1

1
2
Ψ−1

22 (x2j −Ψ21x1j) (x2j −Ψ21x1j)
′Ψ−1

22 .

We obtain the MLEs of Ψ21 and Ψ22:

Ψ̃21 =
N1∑

j=1

x2jx
′
1j




N1∑

j=1

x1jx
′
1j



−1

,

and

Ψ̃22 =
1

N1

N1∑

j=1

(
x2j − Ψ̃21x1j

)(
x2j − Ψ̃21x1j

)′

=
1

N1





N1∑

j=1

x2jx
′
2j −




N1∑

j=1

x2jx
′
1j







N1∑

j=1

x1jx
′
1j



−1 


N1∑

j=1

x1jx
′
2j






 .

The MLE of Ψ is expressed as

Ψ̃ =

(
Ψ̃11 Ψ̃12

Ψ̃21 Ψ̃22

)
=

(
1
N (W (1)

11 + V (2)) (V (1)
11 )−1V

(1)
12

V
(1)
21 (V (1)

11 )−1 1
N V

(1)
22·1

)
,
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where

V (2) = W (2) + NxT x′T , V
(1)
11 = W

(1)
11 + N1x

(1)
1 x

(1)′
1 ,

V
(1)
12 = W

(1)
12 + N1x

(1)
1 x

(1)′
2 , V

(1)
22 = W

(1)
22 + N1x

(1)
2 x

(1)′
2 .

§3. Test statistics for mean vector

In this section, we provide a test statistic for testing the following hypoth-
esis:

H0 : µ = µ0 vs. H1 : µ 6= µ0,

where µ0 is known.

3.1. T 2 type statistic

When data are non-missing, Hotelling’s T 2 statistic is widely used to test
the hypothesis H0 : µ = µ0 against H1 : µ 6= µ0. For two-step monotone
missing data, it is easy to construct a test statistic based on Hotelling’s T 2

statistic structure:

T 2 = (µ̂− µ0)
′Γ̂
−1

(µ̂− µ0),

where Γ̂ is the estimator of Γ = Cov[µ̂], that is,

Γ̂ = Ĉov[µ̂] =




1
N

Σ̂11
1
N

Σ̂12

1
N

Σ̂21 Ĉov[µ̂2]


 .

We call this statistic the T 2 type statistic. Under H0, the T 2 type statistic is
asymptotically distributed as χ2 with degree of freedom p when N1, N → ∞
with N1/N → δ ∈ (0, 1] (see Chang and Richards (2009)). However, the χ2

distribution is not a good approximation to the upper percentile of the T 2

type statistic when the sample size is not large.
The T 2 type statistic is a generalization of Hotelling’s test statistic for two-

step monotone missing data. If the data are non-missing, N2=0, the T 2 type
statistic is equal to Hotelling’s test statistic. If we assume that x1, . . . ,xN are
distributed as Np(µ,Σ), Hotelling’s T 2 statistic is related to the F distribution
by

T 2
N ∼ (N − 1)p

N − p
Fp,N−p.
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If we have N1 non-missing observations with p dimensions, Hotelling’s T 2

statistic is related to the F distribution by

T 2
N1

∼ (N1 − 1)p
N1 − p

Fp,N1−p.

Considering the data structure, the two-step monotone missing data are larger
than the non-missing data with N1 observations, but smaller than the non-
missing data with N observations. The test statistic for the two-step monotone
missing data should also lie between the two test statistics of non-missing data.
We obtain the approximate upper percentile of the T 2 type statistic.

Theorem 2. Suppose that the data have two-step monotone pattern miss-
ing observations. Then the approximate upper 100α percentile of the T 2 type
statistic is given by

F ∗
α = T 2

N1,α −
Np−N2p2

Np

(
T 2

N1,α − T 2
N,α

)

= cT 2
N1,α + (1− c)T 2

N,α ,

where

c =
N2p2

Np
, T 2

N1,α =
(N1 − 1)p
N1 − p

Fp,N1−p,α, T 2
N,α =

(N − 1)p
N − p

Fp,N−p,α

and Fp,q,α is the upper 100α percentile of the F distribution with p and q
degrees of freedom.

3.2. Likelihood ratio test statistic

Using the MLEs derived in Section 2.2, we obtain the LRT statistic for
testing the hypothesis H0 : µ = µ0 against H1 : µ 6= µ0. Without loss
of generality, we can assume that µ0 = 0 . The LRT statistic, −2 log λ, is
asymptotically distributed as χ2 with p degrees of freedom, where

λ =
L(µ0, Σ̃)

L(µ̂, Σ̂)
=

L(0, Ψ̃)

L(η̂, Ψ̂)

=
|Ψ̂11|N/2

|Ψ̃11|N/2
× |Ψ̂22|N1/2

|Ψ̃22|N1/2
.

When the data are non-missing, if we assume that x1, . . . , xN are distributed
as Np(µ,Σ), the likelihood ratio can be written using Hotelling’s T 2 statistic
as

λ
2
N =

(
1 +

T 2

N − 1

)−1

.
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The LRT statistic is

−2logλ = N log
(

1 +
T 2

N − 1

)
.

The LRT statistic for the non-missing data with N observations can be written
using Hotelling’s T 2 statistic, T 2

N , as

QN = −2logλN = N log
(

1 +
T 2

N

N − 1

)
,

and the LRT statistic for the non-missing data with N1 observations can be
written using Hotelling’s T 2 statistic, T 2

N1
, as

QN1 = −2logλN1 = N1log

(
1 +

T 2
N1

N1 − 1

)
.

Using the same idea for the T 2 type statistic, we obtain the approximate upper
percentile of the LRT statistic.

Theorem 3. Suppose that the data have two-step monotone pattern missing
observations. Then the approximate upper 100α percentile of the LRT statistic
is given by

Q∗
α = QN1,α − Np−N2p2

Np
(QN1,α −QN,α)

= cQN1,α + (1− c)QN,α ,

where

c =
N2p2

Np
, QN1,α = N1log

(
1 +

T 2
N1,α

N1 − 1

)
, QN,α = N log

(
1 +

T 2
N,α

N − 1

)
,

T 2
N1,α =

(N1 − 1)p
N1 − p

Fp,N1−p,α, T 2
N,α =

(N − 1)p
N − p

Fp,N−p,α.

§4. Test statistic for components of mean vector

In this section, we provide a test statistic for the following hypothesis:

H0 : µ1 = µ2 = · · · = µp vs. H1 6= H0.

This hypothesis can be written as

H0 : Cµ = 0 vs. H1 6= H0,
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where

C
(p−1)×p

=




1 −1 0 . . . 0
0 1 −1 . . . 0
...

...
...

...
...

0 0 0 . . . −1


 .

When the data have no missing observations, Hotelling’s T 2 statistic is

T 2 = N(Cx)′(CSC ′)−1(Cx),

where S is a sample covariance matrix. Under the null hypothesis, Hotelling’s
T 2 statistic is related to the F distribution by

T 2 ∼ (N − 1)(p− 1)
(N − p + 1)

Fp−1,N−p+1.

Given two-step monotone missing data, we can construct the T 2 type statistic,
expanding the case in which the data are not missing. Further, without lost of
generality, we assume that Σ = I when we consider the T 2 type statistic. We
set Ci, i = 1, 2 to be a (pi−1)×pi matrix such that Ci1 = 0 and CiC

′
i = Ipi−1

as

Ci =




1√
2

− 1√
2

0 . . . 0
1√
6

1√
6

− 2√
6

. . . 0
...

...
...

...
...

1√
pi(pi−1)

1√
pi(pi−1)

1√
pi(pi−1)

. . . − pi−1√
pi(pi−1)




,

where 1 = (1, 1, . . . , 1)′. Considering that y
(1)
j = C1x

(1)
j , j = 1, 2, . . . , N1 and

y
(2)
j = C2x

(2)
j , j = N1 +1, . . . , N , y

(1)
j are distributed as Np−1(µ∗, I) and y

(2)
j

are distributed as Np1−1(µ∗1, I) , where µ∗ = C1µ, µ∗1 = C2µ1 � The T 2

type statistic for H0 : µ∗(= C1µ) = 0 can be constructed as

T ∗2 = (µ̂∗)′(Γ̂
∗
)−1(µ̂∗),

where µ̂∗ is the MLE of µ∗ and Γ̂
∗

is the estimator of Γ∗ = Cov(µ̂∗). Cov(µ̂∗)
can be given by Theorem 1 in Section 2.1.

It can be easily shown that the test for the components of mean vector
with p dimensions is equivalent to the test for mean vector with p− 1 dimen-
sions. Therefore, we can use the same F ∗

α values derived in Section 3.1 for the
approximate upper percentile of the test statistic.

As a remark, we can use the proposed approximation method for H0 : µ1 =
µ2, which is the hypothesis testing for the components of mean vector when
p = 2 (p1 = p2 = 1).
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§5. Simultaneous confidence intervals

Using the T 2 type statistic in Section 3.1, we obtain the simultaneous
confidence intervals for any and all linear compounds of the mean. Suppose
that we have a sample of N observations with two-step monotone missing
observations with mean vector µ. Then, for any vector a′ = (a1, . . . , ap),

T 2(a) =
[a′(µ̂− µ)]2

a′Γ̂a
≤ (µ̂− µ)′Γ̂

−1
(µ̂− µ)

and from the distribution of the T 2 type statistic it follows that the probability
statement

P [T 2(a) ≤ t2p,α for all a] = 1− α

holds for all a, where t2p,α denotes the upper 100α percentile of the T 2 type
statistic. Then we obtain the simultaneous confidence intervals for a′µ

a′µ̂−
√

a′Γ̂at2p,α ≤ a′µ ≤ a′µ̂ +
√

a′Γ̂at2p,α, ∀a ∈ Rp − {0}.

Since the asymptotic distribution of the T 2 type statistic is χ2, asymptotic
simultaneous confidence intervals can be given using the upper 100α percentile
of the χ2 distribution, χ2

p,α, instead of t2p,α. However, as stated in Section 3.1,
F ∗

α is a better approximation to the upper 100α percentiles of the T 2 type
statistic. The approximate simultaneous confidence intervals for a′µ can be
improved using F ∗

α :

a′µ̂−
√

a′Γ̂aF ∗
α ≤ a′µ ≤ a′µ̂ +

√
a′Γ̂aF ∗

α, ∀a ∈ Rp − {0}.

§6. Simulation studies

We compute the upper 100α percentiles of the T 2 type statistic and the
LRT statistic by Monte Carlo simulation (106 runs) for α = 0.05, 0.01 and var-
ious conditions of p,N1, N2. We generate artificial two-step monotone missing
data from Np(0, Ip). We examine the asymptotic distributions of these statis-
tics when ρi = ni/n → positive constants as Nis tend to infinity(i = 1, 2),
where ni = Ni − 1 and n = n1 + n2. We also examine the cases in which
ρ1 = 1 as N1 is large and N2 is fixed. Then we evaluate the accuracy of the
proposed approximate upper percentiles of the test statistics.

The simulated upper percentiles of the T 2 type statistic and F ∗
α values

are given in Table 1 for three conditions ρ1 = ρ2 = 1/2, ρ1 = 2/3 and ρ2 =
1/3, ρ1 = 1/3 and ρ2 = 2/3. It can be seen from Table 1 that the simulated
upper percentiles of the T 2 type statistic are closer to the upper percentiles
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of χ2
p distribution as N1 and N2 get larger. Meanwhile, F ∗

α values are much
closer to the simulated upper percentiles of the T 2 type statistic than the upper
percentiles of χ2

p distribution even when the sample sizes are not large. Table 2
shows the results for ρ1 = 1. We can see that the simulated upper percentiles
of the T 2 type statistic are close to the upper percentiles of χ2 distribution
when the sample sizes get larger. F ∗

α is a good approximation to the upper
percentile of the T 2 type statistic. Here, we note that the obtained upper
percentiles of the T 2 type statistic are slightly overestimated in simulation
when N2 is very small relative to N1.

Tables 3 and 4 present the type I error rate when the null hypothesis is
rejected using F ∗

α and χ2
p under the simulated T 2 type statistic. The rejection

regions of F ∗
α and χ2

p are bigger than the true rejection regions when the sample
sizes are small. However, F ∗

α always gives smaller rejection regions compared
to χ2

p. It is clear from these tables that F ∗
α is a very good approximation to

the upper percentile of the T 2 type statistic.
As stated in Section 4, the simulation results for the T 2 type statistic can

be applied to the test for the components of mean vector since the test for
the components of mean vector with p dimensions is equivalent to the test for
mean vector with p− 1 dimensions.

Tables 5 and 6 present the simulated upper percentiles of the LRT statistic
and Q∗

α values. We can see that the simulated upper percentiles of the LRT
statistic are close to the upper percentiles of χ2

p distribution when the sample
sizes get larger and that Q∗

α is a good approximation to the upper percentile
of the LRT statistic. Tables 7 and 8 present the type I error rate when the
null hypothesis is rejected using Q∗

α and χ2
p under the simulated LRT statistic.

The type I error rates show that Q∗
α is a very good approximation to the upper

percentiles of the LRT statistic.
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Table 1: Upper percentiles of T 2 type statistic and F ∗
α value

α = 0.05 α = 0.01

p p1 p2 ρ1 ρ2 N N1 N2 T 2 F ∗α T 2 F ∗α
4 2 2 1/2 1/2 20 10 10 23.81 17.51 47.95 30.72

χ2
4,0.05 = 9.49 40 20 20 13.47 12.13 20.87 18.31

χ2
4,0.01 = 13.28 100 50 50 10.73 10.37 15.44 14.90

200 100 100 10.06 9.91 14.30 14.04

300 150 150 9.86 9.76 13.90 13.77

400 200 200 9.78 9.69 13.75 13.65

2/3 1/3 30 20 10 13.94 12.58 44.87 30.61

60 40 20 11.27 10.81 16.47 15.71

120 80 40 10.30 10.10 14.71 14.40

240 160 80 9.90 9.79 13.96 13.81

480 320 160 9.67 9.63 13.59 13.54

1/3 2/3 30 10 20 22.16 17.22 21.75 19.17

60 20 40 12.99 11.89 20.07 17.88

120 40 80 10.90 10.51 15.83 15.15

240 80 160 10.13 9.96 14.41 14.14

480 160 320 9.80 9.72 13.79 13.69

8 4 4 1/2 1/2 20 10 10 510.79 201.40 2633.73 937.11

χ2
8,0.05 = 15.51 40 20 20 31.42 25.43 49.03 37.11

χ2
8,0.01 = 20.09 100 50 50 19.19 18.23 26.00 24.43

200 100 100 17.15 16.75 22.60 22.03

300 150 150 16.53 16.31 21.64 21.34

400 200 200 16.26 16.10 21.26 21.01

2/3 1/3 30 20 10 33.29 27.07 52.30 39.84

60 40 20 21.07 19.70 29.13 26.82

120 80 40 17.86 17.35 23.76 22.99

240 160 80 16.60 16.38 21.72 21.45

480 320 160 16.03 15.93 20.88 20.75

1/3 2/3 30 10 20 460.49 249.30 52.13 39.84

60 20 40 29.68 24.87 46.58 36.39

120 40 80 19.93 18.75 27.18 25.32

240 80 160 17.32 16.93 22.88 22.32

480 160 320 16.33 16.18 21.34 21.13

20 10 10 1/2 1/2 100 50 50 54.91 47.39 71.55 60.08

χ2
20,0.05 = 31.41 200 100 100 39.48 37.56 48.57 45.95

χ2
20,0.05 = 37.57 300 150 150 36.25 35.23 44.07 42.74

400 200 200 34.88 34.18 42.23 41.30

500 250 250 34.11 33.58 41.23 40.49

600 300 300 33.66 33.20 40.56 39.97

2/3 1/3 240 160 80 36.48 35.54 44.35 43.15

480 320 160 33.74 33.35 40.66 40.17

960 640 320 32.52 32.35 39.02 38.83

1920 1280 640 31.99 31.87 38.27 38.19

1/3 2/3 240 80 160 41.07 38.79 50.94 47.72

480 160 320 35.35 34.59 42.87 41.87

960 320 640 33.24 32.90 39.97 39.57

1920 640 1280 32.32 32.13 38.77 38.54
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Table 2: Upper percentiles of T 2 type statistic and F ∗
α value when N2 is fixed

α = 0.05 α = 0.01

p p1 p2 N N1 N2 T 2 F ∗α T 2 F ∗α
4 2 2 20 10 10 23.81 17.51 47.95 30.72

χ2
4,0.05 = 9.49 30 20 10 13.94 12.58 21.75 19.17

χ2
4,0.01 = 13.28 60 50 10 11.04 10.71 16.09 15.53

110 100 10 10.26 10.11 14.62 14.41

60 10 50 20.95 17.57 42.69 31.90

70 20 50 12.90 11.85 19.87 17.82

100 50 50 10.73 10.37 15.44 14.90

150 100 50 10.14 9.97 14.44 14.16

110 10 100 20.48 17.88 41.43 32.81

120 20 100 12.54 11.82 19.30 17.79

150 50 100 10.57 10.28 15.21 14.73

200 100 100 10.06 9.91 14.30 14.04

8 4 4 20 10 10 510.79 201.40 2648.20 937.11

χ2
8,0.05 = 15.51 30 20 10 33.29 27.07 52.13 39.84

χ2
8,0.01 = 20.09 60 50 10 20.14 19.34 27.42 26.23

110 100 10 17.61 17.37 23.38 23.02

60 10 50 419.47 301.80 2174.61 1505.83

70 20 50 29.29 24.86 45.76 36.45

100 50 50 19.19 18.23 25.89 24.43

150 100 50 17.34 16.95 22.89 22.35

110 10 100 401.03 326.45 2094.58 1638.67

120 20 100 28.25 25.06 43.94 37.01

150 50 100 18.76 17.96 25.26 24.00

200 100 100 17.15 16.75 22.62 22.03

20 10 10 100 50 50 54.91 47.39 71.55 60.08

χ2
20,0.05 = 31.41 150 100 50 40.43 38.58 49.88 47.36

χ2
20,0.01 = 37.57 200 150 50 37.19 36.25 45.31 44.14

150 50 100 52.38 46.28 68.26 58.66

200 100 100 39.48 37.56 48.57 45.95

250 150 100 36.62 35.57 44.53 43.21
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Table 3: Type I error rate using F ∗
α and χ2

p values under T 2 type statistic

α = 0.05 α = 0.01

p p1 p2 ρ1 ρ2 N N1 N2 F ∗α χ2
p F ∗α χ2

p

4 2 2 1/2 1/2 20 10 10 0.094 0.264 0.029 0.156

40 20 20 0.068 0.131 0.017 0.052

100 50 50 0.057 0.076 0.012 0.021

200 100 100 0.053 0.062 0.011 0.015

300 150 150 0.052 0.058 0.011 0.013

400 200 200 0.052 0.056 0.011 0.012

2/3 1/3 30 20 10 0.068 0.140 0.017 0.058

60 40 20 0.058 0.088 0.013 0.027

120 80 40 0.054 0.067 0.011 0.017

240 160 80 0.052 0.058 0.011 0.013

480 320 160 0.051 0.054 0.010 0.011

1/3 2/3 30 10 20 0.085 0.243 0.025 0.139

60 20 40 0.066 0.121 0.016 0.047

120 40 80 0.057 0.080 0.012 0.023

240 80 160 0.053 0.064 0.011 0.015

480 160 320 0.052 0.057 0.010 0.012

8 4 4 1/2 1/2 20 10 10 0.120 0.773 0.028 0.690

40 20 20 0.094 0.334 0.029 0.176

100 50 50 0.063 0.118 0.014 0.040

200 100 100 0.056 0.079 0.012 0.021

300 150 150 0.053 0.068 0.011 0.017

400 200 200 0.053 0.063 0.011 0.015

2/3 1/3 30 20 10 0.094 0.334 0.027 0.199

60 40 20 0.066 0.154 0.016 0.061

120 80 40 0.057 0.093 0.012 0.027

240 160 80 0.053 0.069 0.011 0.017

480 320 160 0.052 0.059 0.010 0.013

1/3 2/3 30 10 20 0.089 0.742 0.019 0.653

60 20 40 0.086 0.280 0.025 0.156

120 40 80 0.065 0.015 0.015 0.048

240 80 160 0.056 0.083 0.012 0.023

480 160 320 0.052 0.064 0.011 0.015

20 10 10 1/2 1/2 100 50 50 0.104 0.424 0.030 0.257

200 100 100 0.069 0.178 0.016 0.068

300 150 150 0.061 0.122 0.013 0.039

400 200 200 0.058 0.099 0.012 0.028

500 250 250 0.056 0.088 0.012 0.023

600 300 300 0.055 0.081 0.012 0.020

2/3 1/3 240 160 80 0.060 0.126 0.013 0.041

480 320 160 0.054 0.082 0.011 0.021

960 640 320 0.052 0.064 0.011 0.015

1920 1280 640 0.051 0.057 0.010 0.012

1/3 2/3 240 80 160 0.071 0.206 0.017 0.086

480 160 320 0.058 0.107 0.013 0.032

960 320 640 0.054 0.074 0.011 0.018

1920 640 1280 0.052 0.062 0.011 0.014
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Table 4: Type I error rate using F ∗
α and χ2

p values under T 2 type statistic
when N2 is fixed

α = 0.05 α = 0.01

p p1 p2 N N1 N2 F ∗α χ2
p F ∗α χ2

p

4 2 2 20 10 10 0.094 0.264 0.029 0.156

30 20 10 0.068 0.140 0.017 0.058

60 50 10 0.055 0.082 0.012 0.024

110 100 10 0.052 0.066 0.011 0.016

60 10 50 0.072 0.223 0.020 0.125

70 20 50 0.064 0.119 0.015 0.045

100 50 50 0.057 0.076 0.012 0.021

150 100 50 0.053 0.064 0.011 0.016

110 10 100 0.066 0.214 0.018 0.118

120 20 100 0.060 0.112 0.014 0.041

150 50 100 0.055 0.073 0.012 0.020

200 100 100 0.053 0.062 0.011 0.015

8 4 4 20 10 10 0.120 0.773 0.028 0.690

30 20 10 0.094 0.334 0.027 0.199

60 50 10 0.059 0.136 0.013 0.050

110 100 10 0.054 0.088 0.011 0.025

60 10 50 0.068 0.710 0.014 0.619

70 20 50 0.083 0.274 0.023 0.151

100 50 50 0.063 0.118 0.014 0.040

150 100 50 0.056 0.083 0.012 0.023

110 10 100 0.061 0.697 0.013 0.605

120 20 100 0.073 0.254 0.019 0.137

150 50 100 0.061 0.110 0.014 0.036

200 100 100 0.056 0.079 0.012 0.021

20 10 10 100 50 50 0.104 0.424 0.030 0.257

150 100 50 0.068 0.196 0.016 0.079

200 150 50 0.059 0.138 0.013 0.047

150 50 100 0.094 0.383 0.026 0.221

200 100 100 0.069 0.178 0.016 0.068

250 150 100 0.061 0.127 0.013 0.042
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Table 5: Upper percentiles of LRT statistic and Q∗
α value

α = 0.05 α = 0.01

p p1 p2 ρ1 ρ2 N N1 N2 LRT Q∗α LRT Q∗α
4 2 2 1/2 1/2 20 10 10 13.32 11.89 18.84 16.68

χ2
4,0.05 = 9.49 40 20 20 10.95 10.50 15.39 14.70

χ2
4,0.01 = 13.28 100 50 50 10.01 9.86 14.03 13.80

200 100 100 9.75 9.67 13.63 13.53

300 150 150 9.65 9.61 13.51 13.45

400 200 200 9.60 9.58 13.42 13.40

2/3 1/3 30 20 10 11.06 10.67 15.49 14.94

60 40 20 10.19 10.04 14.25 14.05

120 80 40 9.82 9.75 13.73 13.65

240 160 80 9.65 9.62 13.53 13.46

480 320 160 9.58 9.55 13.36 13.37

1/3 2/3 30 10 20 13.17 11.68 18.67 16.39

60 20 40 10.86 10.40 15.24 14.56

120 40 80 10.12 9.91 14.16 13.87

240 80 160 9.78 9.69 13.67 13.56

480 160 320 9.63 9.59 13.48 13.42

8 4 4 1/2 1/2 20 10 10 42.15 26.87 58.36 35.76

χ2
8,0.05 = 15.51 40 20 20 20.60 18.68 26.87 24.26

χ2
8,0.01 = 20.09 100 50 50 17.02 16.57 22.09 21.48

200 100 100 16.24 16.01 21.00 20.75

300 150 150 15.96 15.84 20.67 20.52

400 200 200 15.84 15.76 20.54 20.41

2/3 1/3 30 20 10 20.80 19.22 27.14 24.96

60 40 20 17.58 17.10 22.85 22.16

120 80 40 16.47 16.25 21.31 21.06

240 160 80 15.94 15.87 20.65 20.56

480 320 160 15.72 15.68 20.36 20.32

1/3 2/3 30 10 20 41.78 27.08 58.04 36.23

60 20 40 20.39 18.40 26.62 23.89

120 40 80 17.39 16.73 22.56 21.68

240 80 160 16.35 16.08 21.19 20.83

480 160 320 15.91 15.78 20.61 20.45

20 10 10 1/2 1/2 100 50 50 40.25 36.95 48.29 44.25

χ2
20,0.05 = 31.41 200 100 100 34.95 33.83 41.81 40.46

χ2
20,0.01 = 37.57 300 150 150 33.65 32.96 40.26 39.42

400 200 200 33.00 32.55 32.55 38.93

500 250 250 32.66 32.31 39.04 38.65

600 300 300 32.46 32.16 38.77 38.46

2/3 1/3 240 160 80 33.56 33.09 40.15 39.57

480 320 160 32.44 32.22 38.84 38.53

960 640 320 31.93 31.81 38.19 38.04

1920 1280 640 31.65 31.61 37.89 37.80

1/3 2/3 240 80 160 35.89 34.21 43.01 40.93

480 160 320 33.37 32.70 40.00 39.11

960 320 640 32.30 32.03 38.65 38.31

1920 640 1280 31.88 31.72 38.08 37.93
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Table 6: Upper percentiles of LRT statistic and Q∗
α value when N2 is fixed

α = 0.05 α = 0.01

p p1 p2 N N1 N2 LRT Q∗α LRT Q∗α
4 2 2 20 10 10 13.32 11.89 18.84 16.68

χ2
4,0.05 = 9.49 30 20 10 11.06 10.67 15.49 14.94

χ2
4,0.01 = 13.28 60 50 10 10.06 10.00 14.06 14.00

110 100 10 9.78 9.76 13.66 13.65

60 10 50 13.00 11.63 18.49 16.32

70 20 50 10.81 10.38 15.17 14.53

100 50 50 10.01 9.86 14.03 13.80

150 100 50 9.76 9.70 13.63 13.57

110 10 100 12.94 11.65 18.42 16.35

120 20 100 10.77 10.35 15.13 14.49

150 50 100 9.95 9.82 13.91 13.74

200 100 100 9.75 9.67 13.63 13.53

8 4 4 20 10 10 42.15 26.87 58.36 35.76

χ2
8,0.05 = 15.51 30 20 10 20.80 19.22 27.14 24.96

χ2
8,0.01 = 20.09 60 50 10 17.20 16.98 22.30 22.01

110 100 10 16.32 16.26 21.19 21.07

60 10 50 41.49 28.07 57.70 37.77

70 20 50 20.32 18.35 26.61 23.83

100 50 50 17.02 16.57 22.09 21.48

150 100 50 16.25 16.09 21.06 20.85

110 10 100 41.30 28.70 57.52 38.70

120 20 100 20.20 18.31 26.42 23.79

150 50 100 16.95 16.46 21.97 21.33

200 100 100 16.24 16.01 21.00 20.75

20 10 10 100 50 50 40.25 36.95 48.29 44.25

χ2
20,0.05 = 31.41 150 100 50 35.13 34.22 42.04 40.94

χ2
20,0.01 = 37.57 200 150 50 33.81 33.36 40.43 39.91

150 50 100 39.92 36.44 47.90 43.64

200 100 100 34.95 33.83 41.81 40.46

250 150 100 33.70 33.10 40.31 39.59
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Table 7: Type I error rate using Q∗
α and χ2

p values under LRT statistic

α = 0.05 α = 0.01

p p1 p2 ρ1 ρ2 N N1 N2 Q∗α χ2
p Q∗α χ2

p

4 2 2 1/2 1/2 20 10 10 0.075 0.146 0.019 0.051

40 20 20 0.059 0.084 0.013 0.022

100 50 50 0.053 0.061 0.011 0.014

200 100 100 0.052 0.055 0.010 0.012

300 150 150 0.051 0.053 0.010 0.011

400 200 200 0.050 0.052 0.010 0.011

2/3 1/3 30 20 10 0.057 0.086 0.012 0.022

60 40 20 0.053 0.065 0.011 0.015

120 80 40 0.051 0.057 0.010 0.012

240 160 80 0.051 0.053 0.010 0.011

480 320 160 0.051 0.052 0.010 0.010

1/3 2/3 30 10 20 0.077 0.141 0.020 0.049

60 20 40 0.059 0.081 0.013 0.021

120 40 80 0.054 0.064 0.011 0.014

240 80 160 0.052 0.056 0.010 0.012

480 160 320 0.051 0.053 0.010 0.011

8 4 4 1/2 1/2 20 10 10 0.217 0.570 0.093 0.396

40 20 20 0.079 0.162 0.020 0.057

100 50 50 0.057 0.079 0.012 0.019

200 100 100 0.054 0.063 0.011 0.014

300 150 150 0.052 0.058 0.011 0.012

400 200 200 0.051 0.056 0.010 0.012

2/3 1/3 30 20 10 0.073 0.168 0.018 0.059

60 40 20 0.058 0.091 0.012 0.024

120 80 40 0.054 0.067 0.011 0.015

240 160 80 0.051 0.057 0.010 0.012

480 320 160 0.051 0.054 0.010 0.011

1/3 2/3 30 10 20 0.206 0.557 0.086 0.386

60 20 40 0.081 0.157 0.021 0.054

120 40 80 0.061 0.086 0.013 0.022

240 80 160 0.054 0.065 0.011 0.015

480 160 320 0.052 0.057 0.011 0.012

20 10 10 1/2 1/2 100 50 50 0.090 0.216 0.023 0.081

200 100 100 0.064 0.104 0.014 0.028

300 150 150 0.058 0.081 0.012 0.020

400 200 200 0.056 0.071 0.011 0.016

500 250 250 0.054 0.066 0.011 0.015

600 300 300 0.054 0.064 0.011 0.014

2/3 1/3 240 160 80 0.056 0.081 0.012 0.019

480 320 160 0.053 0.064 0.011 0.014

960 640 320 0.051 0.056 0.010 0.012

1920 1280 640 0.051 0.053 0.010 0.011

1/3 2/3 240 80 160 0.070 0.121 0.016 0.035

480 160 320 0.058 0.077 0.013 0.018

960 320 640 0.053 0.062 0.011 0.014

1920 640 1280 0.052 0.056 0.010 0.012
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Table 8: Type I error rate using Q∗
α and χ2

p values under LRT statistic when
N2 is fixed

α = 0.05 α = 0.01

p p1 p2 N N1 N2 Q∗α χ2
p Q∗α χ2

p

4 2 2 20 10 10 0.075 0.146 0.019 0.051

30 20 10 0.057 0.086 0.012 0.022

60 50 10 0.051 0.062 0.010 0.014

110 100 10 0.050 0.056 0.010 0.012

60 10 50 0.074 0.136 0.019 0.046

70 20 50 0.058 0.080 0.013 0.020

100 50 50 0.053 0.061 0.011 0.014

150 100 50 0.051 0.056 0.010 0.012

110 10 100 0.073 0.134 0.018 0.045

120 20 100 0.058 0.079 0.013 0.020

150 50 100 0.053 0.060 0.011 0.013

200 100 100 0.052 0.055 0.010 0.012

8 4 4 20 10 10 0.217 0.570 0.093 0.396

30 20 10 0.073 0.168 0.018 0.059

60 50 10 0.053 0.082 0.011 0.020

110 100 10 0.051 0.065 0.010 0.015

60 10 50 0.183 0.548 0.072 0.377

70 20 50 0.081 0.155 0.021 0.053

100 50 50 0.057 0.079 0.012 0.019

150 100 50 0.052 0.063 0.011 0.014

110 10 100 0.374 0.543 0.065 0.170

120 20 100 0.079 0.151 0.020 0.051

150 50 100 0.058 0.077 0.012 0.019

200 100 100 0.054 0.063 0.011 0.014

20 10 10 100 50 50 0.090 0.216 0.023 0.081

150 100 50 0.061 0.107 0.013 0.029

200 150 50 0.055 0.084 0.011 0.021

150 50 100 0.093 0.208 0.024 0.077

200 100 100 0.064 0.104 0.014 0.028

250 150 100 0.057 0.082 0.012 0.020
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§7. Numerical example

We illustrate how F ∗
α improves the approximation of simultaneous confi-

dence intervals using an example. The sample data consist of serum cholesterol
values that were measured under treatment at five different time points, base-
line and months 6, 12, 20, and 24 (Wei and Lachin (1984)). The original
data has 36 complete observations. We randomly selected 30 observations and
deleted values for ten observations for months 20 and 24 to create two-step
monotone missing data. We are interested in the change from the baseline at
each post-baseline time point. Thus, we have the two-step monotone missing
data of N1 = 20, N2 = 10, and p1 = p2 = 2. The hypothesis H0 : µ = 0 is
considered for this data. We obtained T 2 = 19.62. Since t24,0.05 = 13.94 from
the simulation study, the null hypothesis is rejected at the significance level
of 0.05. When we use F ∗

0.05 = 12.58 or χ2
4,0.05 = 9.46, the null hypothesis is

also rejected. 95 % simultaneous confidence intervals for the change from the
baseline at each time point are shown in Figure 1. Considering the confidence
intervals using the upper 100α percentile of the T 2 type statistic to be true
results, Figure 1 shows that F ∗

α gives the same results as the T 2 type statistic,
while the χ2 distribution leads to incorrect conclusions at months 6 and 20.

Figure 1: Mean and 95 % simultaneous confidence interval for change from
baseline
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§8. Conclusion remarks

In this paper, we have developed the approximate upper percentiles of
Hotelling’s T 2 type statistic and the likelihood ratio test for mean vector
based on two-step monotone missing data. The approximate values can be
calculated easily and the approximation is much better than the chi-squared
approximation even when the sample size is small. The approximate values
can also be used for the test of the components of mean vector and for the
approximate simultaneous confidence intervals.
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