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Abstract. For two-way contingency tables, Tomizawa (1985b) gave a theo-
rem that the double symmetry (DS) model holds if and only if both the quasi
DS and the marginal DS models hold. The present paper proposes, for multi-
way tables, the DS, some quasi DS and marginal DS models, and extends
Tomizawa’s theorem into multi-way tables. It also shows that for multi-way
tables the likelihood ratio statistic for testing goodness of fit of the DS model
is asymptotically equivalent to the sum of those for testing the quasi DS model
with some order and the marginal DS with the corresponding order. An exam-
ple is given.
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§1. Introduction

Consider an r × r square table. Bowker (1948) considered the symmetry (S)
model, Caussinus (1965) proposed the quasi symmetry (Q) model, and Stuart
(1955) considered the marginal homogeneity (M) model (see also, e.g., Bishop,
Fienberg and Holland, 1975, p.282; van der Heijden, Falguerolles and Leeuw,
1989). Caussinus (1965) pointed out that the S model holds if and only if
both the Q and M models hold.

For multi-way rT tables, the complete symmetry (ST ), the hth-order quasi-
symmetry (QT

h ) and the hth-order marginal symmetry (MT
h ) models are con-

sidered; see, e.g., Bishop et al. (1975, p.299), Bhapkar and Darroch (1990),
and Agresti (2002, p.440). Bhapkar and Darroch (1990) pointed out that for
a fixed h (h = 1, . . . , T − 1), the ST model holds if and only if both the QT

h

and MT
h models hold; see also Tomizawa and Tahata (2007).
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Wall and Lienert (1976) considered the point symmetry (P T ) model. Tahata
and Tomizawa (2008) proposed the hth-order quasi point-symmetry (QP T

h )
and the hth-order marginal point-symmetry (MP T

h ) models. Tahata and
Tomizawa (2008) also pointed out that for a fixed h (h = 1, . . . , T − 1), the
P T model holds if and only if both the QP T

h and MP T
h models hold. Note

that when T = 2, these were given by Tomizawa (1985a).
For an r× r square contingency table with the same row and column clas-

sifications, let pij denote the probability that an observation will fall in the
ith row and jth column of the table (i = 1, . . . , r; j = 1, . . . , r). One of our
interests is also whether or not there is a structure of both symmetry and
point symmetry (rather than independence) in the table. Tomizawa (1985b)
considered the double symmetry (DS2) model, defined by

pij = pji = pi∗j∗ = pj∗i∗ (i = 1, . . . , r; j = 1, . . . , r),

where the symbol “∗” denotes i∗ = r+1−i. This model indicates a structure of
double symmetry of the probabilities with respect to the center point and with
respect to the main diagonal of the table. Tomizawa (1985b) considered the
quasi double symmetry (QDS2) and the marginal double symmetry (MDS2)
models. The QDS2 model is defined by

pij = µαiβjψij (i = 1, . . . , r; j = 1, . . . , r),

where ψij = ψji = ψi∗j∗ = ψj∗i∗ . The MDS2 model is defined by

pi· = p·i = pi∗· = p·i∗ (i = 1, . . . , r),

where pi· =
∑r

t=1 pit and p·i =
∑r

s=1 psi. This indicates that the row marginal
distribution is identical to the column marginal distribution and each marginal
distribution is symmetric with respect to the midpoint of the categories.

Tomizawa (1985b) also gave the decomposition of the DS2 model as follows:

Theorem 1. For the r × r table, the DS2 model holds if and only if both the
QDS2 and MDS2 models hold.

We are now interested in extending Theorem 1 into multi-way rT contin-
gency tables (T ≥ 3).

The purpose of this paper is (i) to extend the DS2, QDS2 and MDS2

models into multi-way rT tables (say DST , QDST and MDST models), (ii)
to extend Theorem 1 into multi-way tables, and (iii) to show that for multi-
way tables the test statistic for the DST model is asymptotically equivalent to
the sum of those for the QDST and MDST models. Section 2 proposes new
models, i.e., the DST model, and some QDST and MDST models with the
hth-order (h = 1, . . . , T − 1). Section 3 gives the decomposition of the DST

model, and Section 4 shows the orthogonality of decomposition with respect
to the goodness of fit test statistic. Section 5 gives an example.
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§2. Models

2.1. Case of three-way tables

Consider an r × r × r contingency table. Denote the kth variable by Xk (k =
1, 2, 3).

We shall now consider the double symmetry (DS3) model as follows:

pijk = pikj = pjik = pjki = pkij = pkji = pi∗j∗k∗ (1 ≤ i, j, k ≤ r).

This model indicates both of symmetry and point symmetry.
The DS3 model may be expressed in a log-linear form

log pijk = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk)

(1 ≤ i, j, k ≤ r),

where

u1(i) = u2(i) = u3(i) = u1(i∗),

u12(ij) = u13(ij) = u23(ij) = u12(ji) = u12(i∗j∗),

u123(ijk) = u123(ikj) = u123(jik) = u123(jki) = u123(kij) = u123(kji) = u123(i∗j∗k∗).

Next, consider two kinds of quasi double symmetry models. Consider a
model defined by

log pijk = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk)

(1 ≤ i, j, k ≤ r),

where

u12(ij) = u13(ij) = u23(ij) = u12(ji) = u12(i∗j∗),

u123(ijk) = u123(ikj) = u123(jik) = u123(jki) = u123(kij) = u123(kji) = u123(i∗j∗k∗).

We will refer to this model as the first-order quasi double symmetry (QDS3
1)

model. Note that the DS3 model is a special case of the QDS3
1 model.

Using the odds ratios, the QDS3
1 model can also be expressed as

θ
1(i)
(j1<j2;k1<k2)

= θ
1(i)
(k1<k2;j1<j2)

= θ
1(i∗)
(j∗2<j∗1 ;k

∗
2<k∗1)

= θ
1(i∗)
(k∗2<k∗1 ;j

∗
2<j∗1 )

(1 ≤ i ≤ r; 1 ≤ j1 < j2 ≤ r; 1 ≤ k1 < k2 ≤ r),
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θ
2(j)
(i1<i2;k1<k2)

= θ
2(j)
(k1<k2;i1<i2)

= θ
2(j∗)
(i∗2<i∗1;k

∗
2<k∗1)

= θ
2(j∗)
(k∗2<k∗1 ;i

∗
2<i∗1)

(1 ≤ i1 < i2 ≤ r; 1 ≤ j ≤ r; 1 ≤ k1 < k2 ≤ r),

and

θ
3(k)
(i1<i2;j1<j2)

= θ
3(k)
(j1<j2;i1<i2)

= θ
3(k∗)
(i∗2<i∗1;j

∗
2<j∗1 )

= θ
3(k∗)
(j∗2<j∗1 ;i

∗
2<i∗1)

(1 ≤ i1 < i2 ≤ r; 1 ≤ j1 < j2 ≤ r; 1 ≤ k ≤ r),

where

θ
1(i)
(j1<j2;k1<k2)

=
pij1k1pij2k2
pij2k1pij1k2

,

θ
2(j)
(i1<i2;k1<k2)

=
pi1jk1pi2jk2
pi2jk1pi1jk2

,

θ
3(k)
(i1<i2;j1<j2)

=
pi1j1kpi2j2k
pi2j1kpi1j2k

.

Note that, for example, θ
3(k)
(i1<i2;j1<j2)

indicates the odds ratio for i1 and i2 (> i1)

of X1, and j1 and j2 (> j1) of X2 when X3 = k. Therefore the QDS3
1 model

has its characterization in terms of double symmetry of odds ratios.
Consider another quasi double symmetry model defined by

log pijk = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik) + u23(jk) + u123(ijk)

(1 ≤ i, j, k ≤ r),

where

u123(ijk) = u123(ikj) = u123(jik) = u123(jki) = u123(kij) = u123(kji) = u123(i∗j∗k∗).

We will refer to this model as the second-order quasi double symmetry (QDS3
2)

model. Note that the DS3 and QDS3
1 models are special cases of the QDS3

2

model.
Using the odds ratios, the QDS3

2 model can also be expressed as

θ
1(i2)
(j1<j2;k1<k2)

θ
1(i1)
(j1<j2;k1<k2)

=
θ
1(i2)
(k1<k2;j1<j2)

θ
1(i1)
(k1<k2;j1<j2)

=
θ
1(i∗2)
(j∗2<j∗1 ;k

∗
2<k∗1)

θ
1(i∗1)

(j∗2<j∗1 ;k
∗
2<k∗1)

=
θ
1(i∗2)
(k∗2<k∗1 ;j

∗
2<j∗1 )

θ
1(i∗1)

(k∗2<k∗1 ;j
∗
2<j∗1 )

,

or

θ
2(j2)
(i1<i2;k1<k2)

θ
2(j1)
(i1<i2;k1<k2)

=
θ
2(j2)
(k1<k2;i1<i2)

θ
2(j1)
(k1<k2;i1<i2)

=
θ
2(j∗2 )
(i∗2<i∗1;k

∗
2<k∗1)

θ
2(j∗1 )

(i∗2<i∗1;k
∗
2<k∗1)

=
θ
2(j∗2 )
(k∗2<k∗1 ;i

∗
2<i∗1)

θ
2(j∗1 )

(k∗2<k∗1 ;i
∗
2<i∗1)

,
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or

θ
3(k2)
(i1<i2;j1<j2)

θ
3(k1)
(i1<i2;j1<j2)

=
θ
3(k2)
(j1<j2;i1<i2)

θ
3(k1)
(j1<j2;i1<i2)

=
θ
3(k∗2)
(i∗2<i∗1;j

∗
2<j∗1 )

θ
3(k∗1)

(i∗2<i∗1;j
∗
2<j∗1 )

=
θ
3(k∗2)
(j∗2<j∗1 ;i

∗
2<i∗1)

θ
3(k∗1)

(j∗2<j∗1 ;i
∗
2<i∗1)

,

for 1 ≤ i1 < i2 ≤ r; 1 ≤ j1 < j2 ≤ r; 1 ≤ k1 < k2 ≤ r. Therefore the QDS3
2

model has its characterization in terms of double symmetry of ratio of odds
ratios.

Moreover, consider a model defined by

pi·· = p·i· = p··i = pi∗·· (i = 1, . . . , r),

where pi·· =
∑

s

∑
t pist, p·i· =

∑
s

∑
t psit and p··i =

∑
s

∑
t psti. This model

indicates that the marginal distributions of Xk (k = 1, 2, 3) are identical and
each marginal distribution is point-symmetric with respect to the midpoint of
the categories. We will refer to this model as the first-order marginal double
symmetry (MDS3

1) model.
Lastly, consider a model defined by

pij· = pi·j = p·ij = pji· = pi∗j∗· (i = 1, . . . , r; j = 1, . . . , r),

where pij· =
∑

s pijs, pi·j =
∑

s pisj and p·ij =
∑

s psij . This model indicates
that the marginal distributions of Xs and Xt (1 ≤ s < t ≤ 3) are identical and
symmetry, and also point-symmetric with respect to the center point in the
marginal r× r table. We will refer to this model as the second-order marginal
double symmetry (MDS3

2) model.

2.2. Extension to multi-way tables

Consider an rT table (T ≥ 2). Let i = (i1, . . . , iT ) for ik = 1, . . . , r (k =
1, . . . , T ) and let pi denote the probability that an observation will fall in the
ith cell of the table. Let Xk (k = 1, . . . , T ) denote the kth variable. We shall
consider the double symmetry DST model as follows:

pi = pj = pi∗ ,

where j = (j1, . . . , jT ) is any permutation of i = (i1, . . . , iT ) and i∗ = (i∗1, . . . , i
∗
T ),

i∗k = r + 1− ik (k = 1, . . . , T ).
Next, for a fixed h (h = 1, . . . , T − 1), consider a model defined by

log pi = u+
T∑

k=1

uk(ik) +
∑
1≤k1

∑
<k2≤T

uk1k2(ik1 ,ik2 )

+ · · ·+
∑

1≤k1<···
· · ·

∑
<kT−1≤T

uk1...kT−1(ik1 ,...,ikT−1
) + u12...T (i),
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for any i = (i1, . . . , iT ), where

uk1,...,kl(ik1 ,...,ikl )
= uk1,...,kl(jk1 ,...,jkl )

= um1,...,ml(ik1 ,...,ikl )
,(2.1)

and

uk1,...,kl(ik1 ,...,ikl )
= uk1,...,kl(i∗k1 ,...,i

∗
kl
),(2.2)

for l = h + 1, . . . , T ; 1 ≤ k1 < · · · < kl ≤ T ; 1 ≤ m1 < · · · < ml ≤ T , and
(jk1 , . . . , jkl) is any permutation of (ik1 , . . . , ikl) and i∗k = r + 1 − ik. We will
refer to this model as the hth-order (h = 1, . . . , T − 1) quasi double symmetry
(QDST

h ) model. Note that (2.1) indicates the structure of the QT
h model and

(2.2) indicates the structure of the QP T
h model.

Denote the hth-order (h = 1, . . . , T − 1) marginal probability P(Xs1 =
i1, . . . , Xsh = ih) by psi , where s = (s1, . . . , sh) and i = (i1, . . . , ih) with 1 ≤
s1 < · · · < sh ≤ T and ik = 1, . . . , r (k = 1, . . . , h).

For a fixed h (h = 1, . . . , T − 1), consider a model defined by

psi = psj = pti,(2.3)

and

psi = psi∗ ,(2.4)

for any s = (s1, . . . , sh) and t = (t1, . . . , th) with 1 ≤ t1 < · · · < th ≤ T
and s 6= t, where j = (j1, . . . , jh) is any permutation of i = (i1, . . . , ih) and
i∗ = (i∗1, . . . , i

∗
h) with i∗k = r + 1 − ik. We will refer to this model as the hth-

order (h = 1, . . . , T − 1) marginal double symmetry (MDST
h ) model. Note

that (2.3) indicates the structure of the MT
h model and (2.4) indicates the

structure of the MP T
h model.

§3. Decomposition of double symmetry model

Consider the rT tables. As described in Section 1, for a fixed h (h = 1, . . . , T −
1), the ST model holds if and only if both the QT

h and MT
h models hold. Also,

for a fixed h (h = 1, . . . , T − 1), the P T model holds if and only if both the
QP T

h and MP T
h models hold. We see from Section 2 that (1) the DST model

indicates the structure of both the ST and P T , (2) the QDST
h model indicates

the structure of both the QT
h and QP T

h , and (3) the MDST
h model indicates

the structure of both the MT
h and MP T

h . Therefore we obtain the following
theorem.

Theorem 2. For the rT table and a fixed h (h = 1, . . . , T −1), the DST model
holds if and only if both the QDST

h and MDST
h models hold.
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§4. Orthogonality of decomposition of double symmetry

Let ni1...iT denote the observed frequency in the (i1, . . . , iT )th cell of the rT

(T ≥ 2) table (ik = 1, . . . , r; k = 1, . . . , T ) with n =
∑

· · ·
∑

ni1...iT and let
mi1...iT denote the corresponding expected frequency. Assume that {ni1...iT }
have a multinomial distribution. The maximum likelihood estimates of ex-
pected frequencies {mi1...iT } under the DST model are given by solving a
log-likelihood equation. Those under the QDST

h and MDST
h models could

be obtained using the iterative procedures, for example, the general iterative
procedure for log-linear models of Darroch and Ratcliff (1972) or using the
Newton-Raphson method to the log-likelihood equations.

Each model can be tested for goodness of fit by, e.g., the likelihood ratio
chi-squared statistic with the corresponding degrees of freedom (df). The
numbers of df for the DST , QDST

h , MDST
h models are given in Table 1. Let

G2(Ω) denote the likelihood ratio statistic for testing goodness of fit of model
Ω. Thus

G2(Ω) = 2
∑

· · ·
∑

ni1...iT log

(
ni1...iT

m̂i1...iT

)
,

where m̂i1...iT is the maximum likelihood estimate of expected frequency mi1...iT

under model Ω.

For the analysis of contingency tables, Lang and Agresti (1994) and Lang
(1996) considered the simultaneous modeling of the joint distribution and of
the marginal distribution. Aitchison (1962) discussed the asymptotic sepa-
rability, which is equivalent to the orthogonality in Read (1977) and the in-
dependence in Darroch and Silvey (1963), of test statistic for goodness of fit
of two models (also see Lang and Agresti, 1994; Lang, 1996; Tomizawa and
Tahata, 2007).

For the rT table, we shall consider the orthogonality (i.e., separability or
independence) of test statistics for decomposition of the DST model into the
QDST

h and MDST
h models. Consider the case of T = 3.

Theorem 3. For the r × r × r table and a fixed h (h = 1, 2), the following
asymptotic equivalence holds:

G2(DS3) ' G2(QDS3
h) +G2(MDS3

h).(4.1)

The number of df for the DS3 model equals the sum of numbers of df for the
QDS3

h and MDS3
h models.

Proof. We shall consider the case of h = 2 when r is odd. The QDS3
2 model
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is expressed as

log pijk = u+ u1(i) + u2(j) + u3(k) + u12(ij) + u13(ik)(4.2)

+u23(jk) + u123(ijk)

(i = 1, . . . , r; j = 1, . . . , r; k = 1, . . . , r),

where

u123(ijk) = u123(ikj) = u123(jik) = u123(jki) = u123(kij) = u123(kji) = u123(i∗j∗k∗).

Without loss of generality, we set
∑

i um(i) = 0 (m = 1, 2, 3),
∑

i ust(ij) =∑
j ust(ij) = 0 (1 ≤ s < t ≤ 3), and

∑
i u123(ijk) =

∑
j u123(ijk) =

∑
k u123(ijk) =

0. Let

p = (p111, . . . , p1r1, . . . , pr11, . . . , prr1, p112, . . . , p1r2, . . . , pr12, . . . , prr2,

. . . , p11r, . . . , p1rr, . . . , pr1r, . . . , prrr)
′,

β = (u, β1, β2, β3, β12, β13, β23, β123)
′,

where “′” denotes the transpose, and where

βm = (um(1), . . . , um(r−1)) (m = 1, 2, 3),

βst = (ust(11), . . . , ust(1,r−1), ust(21), . . . , ust(2,r−1), . . . , ust(r−1,1), . . . , ust(r−1,r−1))

(1 ≤ s < t ≤ 3),

and β123 is the 1×r(r−1)(r+1)/12 vector of u123(ijk). Then the QDS3
2 model

is expressed as

log p = Xβ = (1r3 , X1, X2, X3, X12, X13, X23, X123)β,(4.3)

where X is the r3 ×K matrix with K = (r3 + 36r2 − 37r + 12)/12 and 1s is
the s× 1 vector of 1 elements,

X1 = 1r ⊗
[
Ir−1 ⊗ 1r
−1r1

′
r−1

]
; the r3 × (r − 1) matrix,

X2 = 1r2 ⊗
[
Ir−1

−1′r−1

]
; the r3 × (r − 1) matrix,

X3 =

[
Ir−1 ⊗ 1r2
−1r21

′
r−1

]
; the r3 × (r − 1) matrix,
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X12 = 1r ⊗


Ir−1 ⊗

[
Ir−1

−1′r−1

]

1′r−1 ⊗
[
−Ir−1

1′r−1

]
 ; the r3 × (r − 1)2 matrix,

X13 =



C1

C2
...

Cr−1

−Ir−1 ⊗ 1r1
′
r−1

1r1
′
(r−1)2


; the r3 × (r − 1)2 matrix,

where

Ci =

[
Ir−1 ⊗Ai

−1′r−1 ⊗Ai

]

Ai =
[
Or,i−1, 1r, Or,r−1−i

]
; the r × (r − 1) matrix,

with

A1 =
[
1r, Or,r−2

]
, Ar−1 =

[
Or,r−2, 1r

]
,

and

X23 =



D11 . . . D1,r−1

. . .
Dr−1,1 . . . Dr−1,r−1

1r ⊗
[
−Ir−1 ⊗ 1′r−1

1′(r−1)2

]

 ; the r3 × (r − 1)2 matrix,

where

Dij = 1r ⊗ Eji; the r2 × (r − 1) matrix,

Eji is the r × (r − 1) matrix with 1 in the (j, i)th element, −1 in the (r, i)th
element and 0’s elsewhere, the elements of X123 which is the r3 × r(r− 1)(r+
1)/12 matrix are determined from (4.2) and Ir−1 is the (r−1)×(r−1) identity
matrix, Ost is the s × t zero matrix, and ⊗ denotes the Kronecker product.
Note that the matrix X has full column rank which is K. In a similar manner
to Haber (1985), Lang and Agresti (1994), and Tomizawa and Tahata (2007),



92 K. YAMAMOTO, F. TAKAHASHI AND S. TOMIZAWA

we denote the linear space spanned by the columns of the matrix X by S(X)
with the dimension K. Let U be an r3 × d1 full column rank matrix, where
d1 = r3−K = (11r3−36r2+37r−12)/12, such that the linear space spanned
by the columns of U , i.e., S(U), is the orthogonal complement of the space
S(X). Thus, U ′X = Od1,K . Therefore the QDS3

2 model is expressed as

h1(p) = 0d1 ,

where 0d1 is the d1 × 1 zero vector, and

h1(p) = U ′ log p.

The MDS3
2 may be expressed as

pi·· = p·i· = p··i (i = 1, . . . , r − 1),(4.4)

pij· = pi·j (i = 1, . . . , r − 1; j = 1, . . . , r − 1),(4.5)

pij· = p·ij (i = 1, . . . , r − 1; j = 1, . . . , r − 1),(4.6)

pij· = pji· (i = 1, . . . , r − 2; j = i+ 1, . . . , r − 1),(4.7)

pi·· = pi∗·· (i = 1, . . . , (r − 1)/2),(4.8)

pij· = pi∗j∗· (i = 1, . . . , (r − 1)/2; j = i, i+ 1, . . . , r − 1− i).(4.9)

The conditions given by the equations (4.4), (4.5) and (4.6) may be expressed
as

pi·· − pr·· = p·i· − p·r· = p··i − p··r (i = 1, . . . , r − 1),(4.10)

pij· − pir· − prj· + prr· = pi·j − pi·r − pr·j + pr·r(4.11)

(i = 1, . . . , r − 1; j = 1, . . . , r − 1),

pij· − pir· − prj· + prr· = p·ij − p·ir − p·rj + p·rr(4.12)

(i = 1, . . . , r − 1; j = 1, . . . , r − 1).

Thus the equations (4.10), (4.11) and (4.12) are expressed as

W1p = 02r(r−1),
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where W1 is the 2r(r − 1)× r3 matrix with

W1 =


X ′

1 −X ′
2

X ′
1 −X ′

3

X ′
12 −X ′

13

X ′
12 −X ′

23

 .

The equation (4.7) is expressed as

W2p = 0(r−1)(r−2)/2,

where W2 is the (r − 1)(r − 2)/2× r3 matrix with

W2 = A′
1 −A′

2,

A1 =
[
a12, a13, . . . , a1,r−1, a23, . . . , a2,r−1, . . . , ar−2,r−1

]
,

A2 =
[
a21, a31, . . . , ar−1,1, a32, . . . , ar−1,2, . . . , ar−1,r−2

]
,

and aij is the r3 × 1 vector, and

aij =
1

r
(x1(i) + x2(j)) + x12(ij) −

1

r

r−1∑
k=1

(x12(ik) + x12(kj)),

where xt(i) is the r3 × 1 column vector in Xt shouldering ut(i) (t = 1, 2) and
x12(ij) is the r3 × 1 column vector in X12 shouldering u12(ij).

The equation (4.8) is expressed as

W3p = 0(r−1)/2,

where W3 is the (r − 1)/2× r3 matrix with

W3 =


x′1(1)

x′1(2) − x′1(2∗)
...

x′
1( r−1

2
)
− x′

1(( r−1
2

)∗)

 .

The equation (4.9) is expressed as

W4p = 0(r−1)2/4,

where W4 is the (r − 1)2/4× r3 matrix with

W4 = B′
1 −B′

2,
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B1 =
[
a11, a12, . . . , a1,r−2, a22, a23, . . . , a2,r−3, . . . , a r−1

2
, r−1

2

]
,

B2 =
[
c11, c12, . . . , c1,r−2, c22, c23, . . . , c2,r−3, . . . , c r−1

2
, r−1

2

]
,

cij = ai∗j∗ (i = 1, . . . , (r − 1)/2; j = i, i+ 1, . . . , r − 1− i),

and where we set

x1(r) = x2(r) = x12(ir) = x12(ri) = 0r3 (i = 1, . . . , r),

for convenience.
Thus, the MDS3

2 model is expressed as

h2(p) = 0d2 ,

where d2 = (11r − 3)(r − 1)/4,

h2(p) = Wp =


W1

W2

W3

W4

 p.

All column vectors of W ′ belong to the space S(X), i.e., S(W ′) ⊂ S(X).
Hence WU = Od2d1 . From Theorem 2, the DS3 model may be expressed as

h3(p) = 0d3 ,

where d3 = d1 + d2 = (11r3 − 3r2 − 5r − 3)/12,

h3 = (h′1, h
′
2)

′.

Note that hs(p), s = 1, 2, 3, are the vectors of order ds × 1, and ds, s = 1, 2, 3,
are the numbers of degrees of freedoms for testing goodness of fit of the QDS3

2 ,
MDS3

2 and DS3 models, respectively.
LetHs(p), s = 1, 2, 3, denote the ds×r3 matrix of partial derivatives of hs(p)

with respect to p, i.e., Hs(p) = ∂hs(p)/∂p
′. Let Σ(p) = diag(p) − pp′, where

diag(p) denotes a diagonal matrix with ith component of p as ith diagonal
component. We see that

H1(p)p = U ′1r3 = 0d1 ,

H1(p)diag(p) = U ′,

H2(p) = W.



DOUBLE SYMMETRY MODEL AND ITS ORTHOGONAL DECOMPOSITION 95

Therefore we obtain

H1(p)Σ(p)H2(p)
′ = U ′W ′ = Od1d2 .

Thus we obtain ∆3 = ∆1 +∆2, where

∆s = hs(p)
′[Hs(p)Σ(p)Hs(p)

′]−1hs(p).(4.13)

From the asymptotic equivalence of the Wald statistic and the likelihood ratio
statistic (Rao, 1973, Sec. 6e. 3; Darroch and Silvey, 1963; Aitchison, 1962),
and from (4.13), we obtain (4.1) when r is odd and h = 2. Also, in a similar
way we obtain (4.1) when r is even and when h = 1. So, the proof is completed.

Next, for the rT table, we obtain the following theorem.

Theorem 4. For the rT table and a fixed h (h = 1, . . . , T − 1), the following
asymptotic equivalence holds:

G2(DST ) ' G2(QDST
h ) +G2(MDST

h ).

The number of df for the DST model equals the sum of numbers of df for the
QDST

h and MDST
h models.

The proof of Theorem 4 is omitted because it is obtained in a similar way
to the proof of Theorem 3.

§5. Example

Consider the data in Table 2, taken directly from Tahata, Kobayashi and
Tomizawa (2008). These data are obtained from the Meteorological Agency
in Japan. These are obtained from the daily atmospheric temperatures at
Hiroshima, Tokyo, Sapporo in Japan, 2003, using three levels, (1) low, (2)
normal, and (3) high. The variables X1, X2 and X3 mean the temperatures
at Hiroshima, Tokyo and Sapporo, respectively.

Table 3 gives the values of likelihood ratio test statistic G2 for various
double symmetry models. The DS3 model fits these data poorly, yielding
G2 = 34.23 with 21 df. By using the decompositions of the DS3 model, we
shall consider the reason why the DS3 model fits these data poorly. The
QDS3

1 and QDS3
2 models fit the data in Table 2 well, however, the MDS3

1

and MDS3
2 models fit these data poorly. Thus, it is seen from Theorem 3

that the poor fit of the DS3 model is caused by the influence of the lack of
structure of the MDS3

1 and MDS3
2 models. Also, we note that for these data

the value of the test statistic for the DS3 model is close to the sum of the
values of those for the QDST

h and MDST
h (h = 1, 2) models.
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According to the test based on the difference between the G2 values for the
QDS3

1 and QDS3
2 models, the QDS3

1 model is preferable to the QDS3
2 model.

Under the QDS3
1 model, it is inferred that there is a structure of double

symmetry of odds ratios for the data in Table 2, namely for 1 ≤ i ≤ 3,
1 ≤ j1 < j2 ≤ 3, 1 ≤ k1 < k2 ≤ 3,

θ
1(i)
(j1<j2;k1<k2)

= θ
1(i)
(k1<k2;j1<j2)

= θ
1(i∗)
(j∗2<j∗1 ;k

∗
2<k∗1)

= θ
1(i∗)
(k∗2<k∗1 ;j

∗
2<j∗1 )

.

Thus, under the QDS3
1 model, for example, it is inferred that there is a struc-

ture of

θ
1(1)
(1<2;1<3) = θ

1(1)
(1<3;1<2) = θ

1(3)
(2<3;1<3) = θ

1(3)
(1<3;2<3).

Therefore, the QDS3
1 model provides that when the temperature at Hiroshima

is “low”, (1) the odds that the temperature at Sapporo is “low” instead of

“high” is estimated to be θ̂
1(1)
(1<2;1<3) = 4.11 times higher when “low” than

when “normal” at Tokyo, and (2) the odds that it at Tokyo is “low” instead of

“high” is estimated to be θ̂
1(1)
(1<3;1<2) = 4.11 times higher when “low” than when

“normal” at Sapporo; and also when the temperature at Hiroshima is “high”,
(3) the odds that it at Sapporo is “high” instead of “low” is estimated to be

θ̂
1(3)
(2<3;1<3) = 4.11 times higher when “high” than when “normal” at Tokyo,

and (4) the odds that it at Tokyo is “high” instead of “low” is estimated to be

θ̂
1(3)
(1<3;2<3) = 4.11 times higher when “high” than when “normal” at Sapporo.

Also, under the QDS3
1 model, it is inferred that there is the structure of

θ
1(2)
(1<2;1<3) = θ

1(2)
(1<3;1<2) = θ

1(2)
(2<3;1<3) = θ

1(2)
(1<3;2<3).

Therefore, the QDS3
1 model also provides that when the temperature at Hi-

roshima is “normal”, (1) the odds that the temperature at Sapporo is “low”

instead of “high” is estimated to be θ̂
1(2)
(1<2;1<3) = 2.08 times higher when “low”

than when “normal” at Tokyo, (2) the odds that it at Tokyo is “low” instead

of “high” is estimated to be θ̂
1(2)
(1<3;1<2) = 2.08 times higher when “low” than

when “normal” at Sapporo, (3) the odds that it at Sapporo is “high” instead

of “low” is estimated to be θ̂
1(2)
(2<3;1<3) = 2.08 times higher when “high” than

when “normal” at Tokyo, and (4) the odds that it at Tokyo is “high” instead

of “low” is estimated to be θ̂
1(2)
(1<3;2<3) = 2.08 times higher when “high” than

when “normal” at Sapporo.

Moreover, under the QDS3
1 model, it is inferred that there is the structure

of

θ
1(1)
(1<3;1<3) = θ

1(3)
(1<3;1<3).
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Therefore, the QDS3
1 model provides that when the temperature at Hiroshima

is “low” or when it is “high” (namely, when it at Hiroshima is not “normal”),
the odds that the temperature at Sapporo is “low” instead of “high” is esti-

mated to be θ̂
1(1)
(1<3;1<3) = θ̂

1(3)
(1<3;1<3) = 8.54 times higher when “low” than when

“high” at Tokyo. Note that under the QDS3
1 model, when the temperature

at Hiroshima is “normal”, the odds that the temperature at Sapporo is “low”

instead of “high” is estimated to be θ̂
1(2)
(1<3;1<3) = 4.32 times higher when “low”

than when “high” at Tokyo.

§6. Concluding remarks

For two-way contingency tables, Tomizawa (1985b) considered the DS2, QDS2

and MDS2 models, and gave a decomposition theorem of the DS2 model into
the QDS2 and MDS2 models. [Note that in Tomizawa (1985b) the orthog-
onality of test statistics was not shown.] In the present paper, we extended
them into multi-way rT tables and showed the orthogonality of test statistics.

We point out from Theorem 4 that for a fixed h (h = 1, . . . , T − 1), the
likelihood ratio statistic for testing goodness of fit of the DST model assuming
that the QDST

h model holds true is G2(DST )−G2(QDST
h ) and this is asymp-

totically equivalent to the likelihood ratio statistic for testing goodness of fit
of the MDST

h model, i.e., G2(MDST
h ). Namely, G2(MDST

h ) can be utilized
for testing goodness of fit of the MDST

h model and also for testing goodness
of fit of the DST model assuming that the QDST

h model holds true.
Generally suppose that model Ω3 holds if and only if both models Ω1 and

Ω2 hold, where the number of df for Ω3 equals the sum of numbers of df for
Ω1 and Ω2. Darroch and Silvey (1963) described that (i) when the asymptotic
equivalence,

G2(Ω3) ' G2(Ω1) +G2(Ω2),(6.1)

holds, if both Ω1 and Ω2 are accepted (at the α significance level) with high
probability, then Ω3 would be accepted; however (ii) when (6.1) does not
hold, such an incompatible situation that both Ω1 and Ω2 are accepted with
high probability but Ω3 is rejected with high probability is quite possible [in
fact, Darroch and Silvey (1963) showed such an interesting example]. For
the orthogonal decomposition of the DST model into the QDST

h and MDST
h

models, such an incompatible situation would not arise in terms of Theorem
4.

When the DST model fits the data poorly, the decomposition of the DST

model may be useful to observe the reason for its poor fit. Indeed, for the
data in Table 2, the poor fit of the DS3 model is caused by the poor fit of the
MDS3

1 (MDS3
2) model rather than the QDS3

1 (QDS3
2) model.
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Table 1

Numbers of degrees of freedom for various double symmetry models applied
to the rT table.

When r is even When r is odd
Models Degrees of freedom Degrees of freedom

DST rT − 1
2AT rT − 1

2BT

QDST
h rT − 1

2AT − CT (h) rT − 1
2BT −DT (h)

MDST
h CT (h) DT (h)

Note that

AT =



(
T − 1 + r

T

)
+

(T+r−2
2
T
2

)
(T : even),

(
T − 1 + r

T

)
(T : odd),

BT =



(
T − 1 + r

T

)
+

(T+r−1
2
T
2

)
(T : even),

(
T − 1 + r

T

)
+

(T+r−2
2

T−1
2

)
(T : odd),

CT (h) = 1 +
h∑

u=1

{(
T
u

)
(r − 1)u − 1

2
Eu

}
,

DT (h) =
h∑

u=1

{(
T
u

)
(r − 1)u − 1

2
Fu

}
,

where

Eu =



(
u+ r − 2

u

)
+

(u+r−2
2
u
2

)
(u : even),

(
u+ r − 2

u

)
+

(u+r−3
2

u−1
2

)
(u : odd),

Fu =



(
u+ r − 2

u

)
+

(u+r−3
2
u
2

)
(u : even),

(
u+ r − 2

u

)
(u : odd).



DOUBLE SYMMETRY MODEL AND ITS ORTHOGONAL DECOMPOSITION 101

Table 2

The daily atmospheric temperatures at Hiroshima, Tokyo and Sapporo in
Japan, 2003. (The upper and lower parenthesized values are the maximum
likelihood estimates of expected frequencies under the QDS3

1 and QDS3
2 mod-

els, respectively.)

Hiroshima Tokyo Sapporo
(1) low (2) normal (3) high

(1) low (1) low 37 13 3
(36.52) (13.46) (2.28)
(35.15) (13.99) (3.86)

(1) low (2) normal 21 17 5
(19.74) (13.96) (5.06)
(21.51) (15.02) (6.47)

(1) low (3) high 4 4 5
(5.90) (8.93) (3.14)
(5.34) (4.99) (2.67)

(2) normal (1) low 19 15 5
(20.08) (14.20) (5.14)
(19.58) (14.75) (4.67)

(2) normal (2) normal 20 29 8
(20.82) (29.00) (11.09)
(20.15) (29.00) (7.85)

(2) normal (3) high 20 20 12
(13.32) (19.59) (14.75)
(19.27) (20.25) (12.48)

(3) high (1) low 2 8 4
(4.70) (7.11) (2.50)
(3.27) (7.26) (3.47)

(3) high (2) normal 8 15 14
(10.43) (15.34) (11.55)
(7.34) (16.98) (12.68)

(3) high (3) high 7 21 29
(6.48) (20.40) (29.48)
(6.39) (19.76) (30.85)
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Table 3

Likelihood ratio chi-squared values G2 for models applied to Table 2.

Models Degrees of freedom G2

DS3 21 34.23∗

QDS3
1 16 14.55

QDS3
2 6 4.69

MDS3
1 5 18.22∗

MDS3
2 15 28.31∗

∗ means significant at the 0.05 level.
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