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Abstract. In this paper we study the relation between polycyclic codes and se-
quential codes over finite fields. It is shown that, for a sequential code C ⊆ Fn,
C is realized as an ideal in the quotient ring of the polynomial ring. Further-
more, we characterize the dual codes of polycyclic codes.
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§1. Introduction

In coding theory, a linear code of length n over a finite field F is a subspace
C of the vector space Fn = {(a0, · · · , an−1)|ai ∈ F}. A linear code C ⊆ Fn

is called cyclic if (a0, a1, · · · , an−1) ∈ C implies (an−1, a0, a1, · · · , an−2) ∈ C.
The notion of cyclicity has been generalized in several ways.

For a code C ⊆ Fn, C is a sequential code induced by c if there exists a
vector c = (c0, c1, · · · , cn−1) ∈ Fn such that for every (a0, a1, · · · , an−1) ∈ C,
(a1, a2, · · · , an−1, a0c0+a1c1+ · · ·+an−1cn−1) ∈ C. S. R. López-Permouth, B.
R. Parra-Avila and S. Szabo studied the duality between polycyclic codes and
sequential codes in [2]. Polycyclic codes and sequential codes are generalized
using skew polynomial rings. That is, θ-polycyclic codes and θ-sequential
codes. The properties of them were considered in [3].

By the way, Y. Hirano characterized finite frobenius rings in [1]. And J.
A. Wood establish the extension theorem and MacWilliams identities over
finite frobenius rings in [5]. Polycyclic codes and sequential codes over finite
commutative QF rings were considered in [4].

In this paper, we study the relation between polycyclic codes and sequential
codes. And we realize sequential codes as ideals in quotient rings of polynomial
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rings. In section 2 we review properties of polycyclic codes and sequential
codes over finite field. In section 3 we prove that, for a polycyclic code C, its
dual C⊥ is realized as an ideal in the quotient ring of the polynomial ring.

Throughout this paper, F denotes a finite field with 1 6= 0, n denotes a
natural number with n ≥ 2, (g) denotes an ideal generated by g ∈ F[X],
unless otherwise stated.

§2. Polycyclic codes and sequential codes

A linear [n, k]-code over a finite field F is a k-dimensional subspace C ⊆ Fn.
We define polycyclic codes over a finite field.

Definition 1. Let C be a linear code of length n over F. C is a (right)
polycyclic code induced by c if there exists a vector c = (c0, c1, · · · , cn−1) ∈ Fn

such that for every (a0, a1, · · · , an−1) ∈ C,

(0, a0, a1, · · · , an−2) + an−1(c0, c1, · · · , cn−1) ∈ C.

In this case we call c an associated vector of C.

As cyclic codes, polycyclic codes may be understood in terms of ideals in
quotient rings of polynomial rings. Given c = (c0, c1, · · · , cn−1) ∈ Fn, if we let
f(X) = Xn−c(X), where c(X) = cn−1X

n−1+ · · ·+c1X+c0 then the F-linear
isomorphism ρ : Fn → F[X]/(f(X)) sending the vector a = (a0, a1, · · · , an−1)
to the polynomial an−1X

n−1+· · ·+a1X+a0, allows us to identify the polycyclic
codes induced by c with the left ideal of F[X]/(f(X)).

Let C be a polycyclic code in F[X]/(f(X)). Then there exists monic poly-
nomials g and h such that C = (g)/(f) and f = hg.

Proposition 1. A code C ⊆ Fn is a polycyclic code induced by some c ∈ C if
and only if it has a k × n generator matrix of the form

G =


g0 g1 · · · gn−k 0 · · · 0
0 g0 g1 · · · gn−k · · · 0

0
. . .

. . .
. . .

. . .
. . . 0

...
...

0 · · · 0 g0 g1 · · · gn−k


with gn−k 6= 0. In this case ρ(C) =

(
gn−kXn−k + · · ·+ g1X + g0

)
is an ideal

of F[X]/(f(X)).

Proof. See [2, Theorem 2.3].
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For a c = (c0, c1, · · · , cn−1) ∈ Fn, let D be the following square matrix

D =


0 1 0

. . .

0 1
c0 c1 · · · cn−1

.

It follows that a code C ⊆ Fn is polycyclic with an associated vector c ∈ Fn

if and only if it is invariant under right multiplication by D.

Next we define a sequential code.

Definition 2. Let C be a linear code of length n over F. C is a (right)
sequential code induced by c if there exists a vector c = (c0, c1, · · · , cn−1) ∈ Fn

such that for every (a0, a1, · · · , an−1) ∈ C,

(a1, a2, · · · , an−1, a0c0 + a1c1 + · · ·+ an−1cn−1) ∈ C.

In this case we call c an associated vector of C.

Let c = (c0, c1, · · · , cn−1) ∈ Fn. Then, a code C ⊆ Fn is sequential with an
associated vector c ∈ Fn if and only if it is invariant under right multiplication
by the matrix

tD =


0 0 c0
1 c1

. . .
...

0 1 cn−1

.

On Fn define the standard inner product by

< x, y >=
∑n−1

i=0 xiyi

for x = (x0, x1, · · · , xn−1) and y = (y0, y1, · · · , yn−1).

The orthogonal of a linear code C is defined by

C⊥ = {a ∈ Fn| < c, a >= 0 for any c ∈ C}.

It is well-known that dimC⊥ = n− dimC.

Proposition 2. Let C be a linear code of length n. Then C is a polycyclic
(sequential) code if and only if C⊥ is a sequential (polycyclic) code.

Proof. See [2, Theorem 3.2].
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§3. Polynomial realization of sequential codes

We define F-linear isomorphism τ : Fn → F[X]/(Xn − cn−1X
n−1 − · · · − c0)

sending (a0, a1, · · · , an−1) to bn−1Xn−1 + · · ·+ b1X + b0 where bi = an−i−1 −
an−i−2cn−1 − an−i−3cn−2 − · · · − a0ci+1, (i = 0, 1, · · ·, n− 2) and bn−1 = a0.

Theorem 1. If C is a sequential code induced by c, then τ(C) is an ideal of
F[X]/(Xn − cn−1X

n−1 − · · · − c0).

Proof. For any a ∈ C, we can get
Xτ(a) = bn−1Xn + bn−2Xn−1 + · · ·+ b1X2 + b0X
= (bn−2 + bn−1cn−1)Xn−1 + · · ·+ (b1 + bn−1c2)X2 + (b0 + bn−1c1)X + bn−1c0
= τ(atD) ∈ τ(C),
directly. So τ(C) is an ideal of F[X]/(Xn − cn−1X

n−1 − · · · − c0).

By Theorem 1, we get the following corollary.

Corollary 1. For a sequential code C ⊆ Fn, there exists monic polynomials
g and h in F[X] such that τ(C) = (g)/(f) and f = hg.

Example 1. For n = 5, let f(X) = X5− c4X
4− c3X

3− c2X
2− c1X− c0. τ :

F5 → F[X]/(f(X)) sending (a0, a1, a2, a3, a4) to b4X
4+b3X

3+b2X
2+b1X+b0,

where
b4 = a0,
b3 = a1 − a0c4,
b2 = a2 − a1c4 − a0c3,
b1 = a3 − a2c4 − a1c3 − a0c2,
b0 = a4 − a3c4 − a2c3 − a1c2 − a0c1.
For a sequential code C ⊆ F5, τ(C) is an ideal of F[X]/(f(X)).

Lemma 3. For given c1, · · · , cn−1 ∈ F,

Put dk =

k∑
m=1

∑
l1+···+lm=k

cn−l1cn−l2 · · · cn−lm , (1 ≤ k ≤ n− 1).

Then dk = cn−k + cn−k+1d1 + cn−k+2d2 + · · ·+ cn−1dk−1, (2 ≤ k ≤ n− 1).

Proof. dk =

k∑
m=1

∑
l1+···+lm=k

cn−l1cn−l2 · · · cn−lm

= cn−k + cn−k+1

∑
l1=1

cn−l1 + cn−k+2

2∑
m=1

∑
l1+···+lm=2

(cn−l1 · · · cn−lm) + · · ·

· · ·+ cn−1

k−1∑
m=1

∑
l1+···+lm=k−1

(cn−l1 · · · cn−lm)

= cn−k + cn−k+1d1 + cn−k+2d2 + · · ·+ cn−1dk−1, (2 ≤ k ≤ n− 1).
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Example 2. For given c1, · · · , cn−1 ∈ F,
d1 = cn−1,
d2 = cn−2 + c2n−1,
d3 = cn−3 + cn−2cn−1 + cn−1cn−2 + c3n−1

= cn−3 + 2cn−2cn−1 + c3n−1,
d4 = cn−4 + cn−3cn−1 + cn−2cn−2 + cn−1cn−3 + cn−2c

2
n−1 + cn−1cn−2cn−1

+ c2n−1cn−2 + c4n−1

= cn−4 + 2cn−3cn−1 + c2n−2 + 3cn−2c
2
n−1 + c4n−1.

For given c1, · · · , cn−1 ∈ F, let M be the following square matrix

M =



−c1 −c2 −c3 · · · −cn−1 1
−c2 −c3 1 0

−c3 · · ·
...

... · · ·
...

−cn−1 1 0 · · ·
...

1 0 · · · · · · · · · 0


.

Lemma 4. For any c1, · · · , cn−1 ∈ F, M−1 is given by the following matrix

M−1 =



0 · · · · · · · · · 0 1
... 0 1 d1
... · · · 1 d1 d2
... · · · · · ·

...

0 1 d1
...

1 d1 d2 · · · · · · dn−1


where dk =

k∑
m=1

∑
l1+···+lm=k

cn−l1cn−l2 · · · cn−lm, (1 ≤ k ≤ n− 1).

Proof. Put



−c1 −c2 · · · −cn−1 1
−c2 −c3 1 0

−c3 · · ·
...

... · · ·
...

−cn−1 1 · · ·
...

1 0 · · · · · · 0





0 · · · · · · 0 1
... · · · 1 d1
... · · · · · · d1 d2
... · · · · · ·

...

0 1
...

1 d1 · · · · · · dn−1


= (mij).
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It is clear that m11 = · · · = mnn = 1 and mij = 0, (i > j). By Lemma 3,
mij = −cn−j+i − cn−j+i+1d1 − cn−j+i+2d2 − · · · − cn−1dj−i−1 + dj−i = 0, (i <
j).

Finally, we characterize the dual code C⊥ of a polycyclic code C.

Theorem 2. Let C ⊆ Fn be a polycyclic code corresponding to (g)/(f) ⊆
F[X]/(f(X)) via ρ where f = hg. Then C⊥ is a sequential code such that
τ(C⊥) = (h)/(f).

Proof. Put f(X) = Xn−cn−1X
n−1−· · ·−c1X−c0, h(X) = hkX

k+· · ·+h1X+
h0 and g(X) = gn−kX

n−k + · · ·+ g1X + g0, where gn−k 6= 0 and hk 6= 0. Let
E be a linear subspace generated by {h,Xh, · · · , Xn−k−1h} in F[X]/(f(X)).
Suppose τ(a0, · · · , an−1) = bn−1Xn−1 + · · ·+ b1X + b0. Then (b0, · · · , bn−1) =

M(a0, · · · , an−1). By cu =
∑

s+t=u

gsht, we have

< ρ−1(Xig), τ−1(Xjh) >
=< X ig,M−1(Xjh) >
= −cn−i−j−1 − cn−i−jd1 − cn−i−j+1d2 − · · · − cn−1di+j + di+j+1.

Then we get < ρ−1(X ig), τ−1(Xjh) >= 0 by Lemma 3. Therefore E ⊆ C⊥.
Since E and C⊥ are the same dimension n − k and F is a finite field, we get
E = C⊥.

By Theorem 2, for a polycyclic code C, C⊥ is represented by C⊥ =
τ−1((h)/(f)).

In coding theory, the Hamming distance is very important. Thus we have
the following problem.

Problem 1. Study the relation of the Hamming distance between C and τ(C)
for a sequential code C.
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