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Abstract. It is proved that {∆2 + κ|x|−4;κ ∈ Σc} in L2(RN ) forms a holo-
morphic family of type (A), where Σ is a closed and convex subset of C. In
particular, the m-accretivity of ∆2 + κ|x|−4 in L2(RN ) is established as an ap-
plication of the perturbation theorem for linear m-accretive operators. The key
lies in two inequalities derived by positive semi-definiteness of Gram matrix.
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§1. Introduction

Let A := ∆2 with D(A) := H4(RN ) and B := |x|−4 with D(B) := D(|x|−4) =
{u ∈ L2(RN ); |x|−4u ∈ L2(RN )} (N ∈ N), where ∆ :=

∑N
j=1(∂

2/∂x2j ) is a

usual Laplacian in RN . This paper is concerned with parameter dependence
of the operator sum A+ κB (κ ∈ C) in the complex Hilbert space L2(RN ):

(A+ κB)u := ∆2u+
κ

|x|4
u, u ∈ D(A) ∩D(B) = H4(RN ) ∩D(|x|−4).

In the previous paper [9] Okazawa, Tamura and Yokota have discussed the
selfadjointness of A+κB when “κ ∈ R” in the (complex) Hilbert space L2(RN )
(N ∈ N). Namely, it is proved in [9] that A + κB is nonnegative selfadjoint
on D(A) ∩D(B) for κ > κ0, where

κ0 = κ0(N) :=

k1 N ≤ 8,

k2 N ≥ 9,
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and k1, k2 will be given in Theorem 1.1. In addition we can assert that A+κ0B
is nonnegative and essentially selfadjoint in L2(RN ). As a continuation of [9]
this paper concerns the m-accretivity and the resolvent set of A + κB when
“κ ∈ C”. First we want to find Σ ⊂ C such that {A + κB;κ ∈ Σc} is a
holomorphic family of type (A) in the sense of Kato [5, Chapter VII]. Next
we consider the m-accretivity of A+ κB for κ in the subset Σc.

Now we review the notion of holomorphic family in a simple case (the
definition of m-accretivity will be given in Section 2).

Definition 1. Let X be a reflexive complex Banach space. Let Ω be a domain
in C and {T (κ); κ ∈ Ω} a family of linear operators in X. Then {T (κ); κ ∈ Ω}
is said to be a holomorphic family of type (A) in X if

(i) T (κ) is closed in X and D(T (κ)) = D independent of κ;

(ii) κ 7→ T (κ)u is holomorphic in Ω for every u ∈ D.

Kato [6] proved that {−∆ + κ|x|−2; κ ∈ Ω1} forms a holomorphic family
of type (A) in L2(RN ), where β := 1− (N − 2)2/4 = −N(N − 4)/4 and

Ω1 := {ξ + iη ∈ C; η2 > 4(β − ξ)} = {ξ + iη ∈ C; ξ > γ(η) := β − η2/4}.

Borisov-Okazawa [1] proved that {d/dx+κx−1; κ ∈ Ω2} forms a holomorphic
family of type (A) in Lp(0,∞) (1 < p < ∞), where

Ω2 :=
{
κ ∈ C; Reκ > −p ′−1}

, p−1 + p ′−1
= 1.

Concerning fourth order elliptic operators, there seems to be no preceding
work on holomorphic family of type (A). So we try to clarify the regions
where A + κB forms a holomorphic family of type (A) and where A + κB is
m-accretive.

Our result is stated as follows.

Theorem 1.1. Set A := ∆2, B := |x|−4. Let k1 = k1(N) (N ∈ N) be the
constant defined as

(1.1) k1 := 112− 3(N − 2)2.

Let Σ be the closed convex subset of C defined as

Σ :=
{
ξ+ iη ∈ C; ξ ≤ k1, η

2 ≤ 64
[√

k1 − ξ+
(
10+N−N2

4

)]
(
√
k1 − ξ+8)2

}
.

Then the following (i)–(iii) hold.
(i) B is (A+ κB)-bounded for κ ∈ Σc, with

‖Bu‖ ≤ dist(κ,Σ)−1‖(A+ κB)u‖, u ∈ D(A) ∩D(B),
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and hence {A + κB; κ ∈ Σc} forms a holomorphic family of type (A) in
L2(RN ). In particular, if N ≥ 9 then B is A-bounded, with

‖Bu‖ ≤ |k2|−1‖Au‖, u ∈ D(A) ⊂ D(B),

where k2 = k2(N) (N ≥ 9) is the negative constant defined as

(1.2) k2 := k1 −
[(N − 2

2

)2
− 11

]2
= −N

16
(N − 8)(N2 − 16).

In addition, Σ can be expressed in terms of k2 :

Σ =

{
ξ + iη ∈ C; ξ ≤ k2, η2 ≤ 64(k2 − ξ)(

√
k1 − ξ + 8)2√

k1 − ξ +
(
N2/4−N − 10

)}.
(ii) A+ κB is m-accretive on D(A) ∩D(B) for κ ∈ Σc with Reκ ≥ −α0 and
A + κB is essentially m-accretive in L2(RN ) for κ ∈ ∂Σ with Reκ ≥ −α0,
where α0 is defined as

(1.3) α0 = α0(N) :=

0, N ≤ 4,[N(N − 4)

4

]2
, N ≥ 5.

In particular, if κ ∈ R, then m-accretivity is replaced with nonnegative selfad-
jointness.

(iii) Let κ ∈ Σ c with Reκ < −α0. Let cα0(κ) and θα0 be defined as

cα0(κ) :=


min

{ | − α0 + iη − κ|
dist(−α0 + iη,Σ)

; η0 < η < ∞
}
, Imκ > 0,

min
{ | − α0 + iη − κ|
dist(−α0 + iη,Σ)

; η0 < η < ∞
}
, Imκ < 0,

θα0 := tan−1

(
1− cα0(κ)√

cα0(κ)(2− cα0(κ))

)
,

where η0 := max{η ≥ 0; −α0 + iη ∈ Σ}. Then cα0(κ) ∈ (0, 1) and θα0 ∈
(0, π/2).

(a) If Imκ > 0, then the resolvent set ρ(−(A+κB)) contains the sector S+(κ),
where

S+(κ) := {λ ∈ C; −θα0 < arg λ < π/2}.

(b) If Imκ < 0, then the resolvent set ρ(−(A+κB)) contains the sector S−(κ),
where

S−(κ) := {λ ∈ C; −π/2 < arg λ < θα0}.
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Remark 1.1. When N ≥ 5, α0 in (1.3) appears in the Rellich inequality (cf.
Davies-Hinz [3, Corollary 14], Okazawa [8, Lemma 3.8], [9, Lemma 3.2]).

Remark 1.2. Theorem 1.1 (iii) (and also Theorem 2.1 (iii), Theorem 2.7 (vi))
can be improved. Actually, the referee1 informed us that θα0 in Theorem 1.1
can be replaced with

tan−1

(√
1− cα0(κ)

2

cα0(κ)

)
.

N = 4 N = 5

O

η

ξk1 O

η

ξ−α0 k1

N = 8 N = 9

O

η

ξ−α0

k1
O

η

ξ−α0

k2

Figure 1: The images of Σ for N = 4, 5, 8, 9 and the value of −α0

In Section 2 we propose abstract theorems based on Kato [6]. However, the
assumption and conclusions are slightly changed. In the proof of Theorem 1.1
we need some generalized forms of the inequalities obtained in [9]. Section 3
starts with their proofs depending on the positive semi-definiteness of Gram
matrix. At the end of Section 3 we complete the proof of Theorem 1.1 by
applying abstract theorems prepared in Section 2.

1The author would like to thank the referee for this comment.
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§2. Abstract theory toward Theorem 1.1

First we review some definitions required to state Theorems 2.1 and 2.7. Let
A be a linear operator with domain D(A) and range R(A) in a (complex)
Hilbert space H. Then A is said to be accretive if Re (Au, u) ≥ 0 for every
u ∈ D(A). An accretive operator A is said to be m-accretive if R(A+1) = H.

Let A be m-accretive in H. Then, for every λ ∈ C with Reλ > 0, R(A +
λ) = H holds with

‖(A+ λ)−1‖ ≤ (Reλ)−1.

Therefore we can define the Yosida approximation {Aε; ε > 0} of A:

Aε := A(1 + εA)−1, ε > 0.

A nonnegative selfadjoint operator is a typical example of m-accretive oper-
ator, while a symmetric m-accretive operator is nonnegative and selfadjoint
(see Brézis [2, Proposition VII.6] or Kato [5, Problem V.3.32]).

Next we consider the m-accretivity of A+ κB (κ ∈ C) where A and B are
nonnegative selfadjoint operators in H. Since m-accretive operators are closed
and densely defined, we will first find Ω ⊂ C where {A+ κB; κ ∈ Ω} forms a
holomorphic family of type (A). Next we will find a set of κ ∈ Ω where A+κB
is m-accretive. We also consider the resolvent set of A+ κB for each κ ∈ Ω.

Theorem 2.1. Let A and B be nonnegative selfadjoint operators in H. Let
Σ ⊂ C, and γ : R → R. Assume that Σ and γ satisfy (γ1)– (γ4) and (γ5)0 :

(γ1) γ is continuous and concave,

(γ2) γ(η) = γ(−η) for η ∈ R,

(γ3) Σ = {ξ + iη ∈ C; ξ ≤ γ(η)},

(γ4) −(Au,Bεu) ∈ Σ for u ∈ D(A) with ‖Bεu‖ = ‖B(1 + εB)−1u‖ = 1 for
any ε > 0,

(γ5)0 0 ≤ γ(0) (⇔ 0 ∈ Σ).

Then the following (i)–(iii) hold.

(i) B is (A+ κB)-bounded for κ ∈ Σ c, with

(2.1) ‖Bu‖ ≤ dist(κ,Σ)−1‖(A+ κB)u‖, u ∈ D(A) ∩D(B),

and {A+ κB; κ ∈ Σ c} forms a holomorphic family of type (A).

(ii) A + κB is m-accretive on D(A) ∩ D(B) for κ ∈ Σ c with Reκ ≥ 0 and
A+ κB is essentially m-accretive in H for κ ∈ ∂Σ with Reκ ≥ 0.
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(iii) Let κ ∈ Σ c with Reκ < 0. Let c0(κ) and θ0 be defined as

c0(κ) :=


min

{ |iη − κ|
dist(iη,Σ)

; η0 < η < ∞
}
, Imκ > 0,

min
{ |iη − κ|
dist(iη,Σ)

; η0 < η < ∞
}
, Imκ < 0,

(2.2)

θ0 := tan−1

(
1− c0(κ)√

c0(κ)(2− c0(κ))

)
,(2.3)

where η0 := max{η ≥ 0; iη ∈ Σ}. Then c0(κ) ∈ (0, 1) and θ0 ∈ (0, π/2), and
the resolvent set is described by θ0 as follows.

(a) If Imκ > 0, then the resolvent set ρ(−(A+κB)) contains the sector S+(κ),
where

S+(κ) := {µ ∈ C; −θ0 < arg µ < π/2}.

(b) If Imκ < 0, then the resolvent set ρ(−(A+κB)) contains the sector S−(κ),
where

S−(κ) := {µ ∈ C; −π/2 < arg µ < θ0}.

Remark 2.1. Let A and B be as in Theorem 2.1 with γ(0) ≥ 0. Consider
the closed interval (−∞, γ(0)] as a subset of Σ ∩ R (instead of Σ ⊂ C itself).
Then it is proved in [8, Theorem 1.6] that B is (A+ tB)-bounded for t > γ(0)
(that is, t ∈ (−∞, γ(0)] c), with

‖Bu‖ ≤ (t− γ(0))−1‖(A+ tB)u‖, u ∈ D(A) ∩D(B),

and A+tB is selfadjoint onD(A)∩D(B) for t > γ(0); in particular, if γ(0) > 0,
then A + γ(0)B is essentially selfadjoint in H. These facts are regarded as a
restriction of Theorem 2.1 (i) and (ii) to the subset Σc ∩ R.

As stated above Theorem 2.1 is proved along the idea in the proof of [8,
Theorem 1.6]. We shall divide the proof into several lemmas.

Lemma 2.2. The assertion (i) of Theorem 2.1 holds.

Proof. Let κ ∈ Σ c and ε > 0. To prove (2.1) we shall show that

(2.4) ‖Bεu‖ ≤ dist(κ,Σ)−1‖(A+ κBε)u‖, u ∈ D(A).

Here we may assume that Bεu = B(1 + εB)−1u 6= 0 for u ∈ D(A). Setting
v := ‖Bεu‖−1u, we have v ∈ D(A) and ‖Bεv‖ = 1. It then follows from (γ4)
that

−(Av,Bεv) ∈ Σ.
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Since Σ is closed and convex by (γ1), we have

0 < dist (κ,Σ) ≤ |κ+ (Av,Bεv)| =
|(A+ κBε)u,Bεu)|

‖Bεu‖2

and hence ‖Bεu‖2 ≤ dist (κ,Σ)−1|((A + κBε)u,Bεu)|. Applying the Cauchy-
Schwarz inequality, we have (2.4). Letting ε ↓ 0 in (2.4) with u ∈ D(A)∩D(B)
we obtain (2.1). The closedness of A + κB is a consequence of (2.1). This
completes the proof of assertion (i) in Theorem 2.1.

Lemma 2.3. A+ κB is m-accretive in H for κ ∈ Σ c with Reκ ≥ 0.

Proof. Let κ ∈ Σ c with Reκ ≥ 0. Then it remains to show that

(2.5) R(A+ κB + 1) = H.

SinceA+κBε is alsom-accretive (see Pazy [10, Corollary 3.3.3]), for f ∈ H and
ε > 0 there exists a unique solution uε ∈ D(A) of the approximate equation

(2.6) Auε + κBεuε + uε = f,

satisfying ‖uε‖ ≤ ‖f‖ and hence ‖(A+κBε)uε‖ = ‖f−uε‖ ≤ 2 ‖f‖. Therefore
we see from (2.4) that

‖Bεuε‖ ≤ 2 dist (κ,Σ)−1‖f‖.

This implies that ‖Bε(A+κBε+1)−1‖ is bounded. Thus we obtain (2.5) (see
[7, Proposition 2.2] or [4, Exercise 6.12.7 Chapter 1]).

Lemma 2.4. The closure of A + κB (denoted by (A + κB)̃ ) is m-accretive
in H for κ ∈ ∂Σ with Reκ ≥ 0.

Proof. Let κ ∈ ∂Σ with Reκ ≥ 0. First we note that A+ κB is closable and
its closure is also accretive (cf. [10, Theorem 1.4.5]). Now (γ1) means that
there exists ν ∈ C satisfying |ν| = 1 and

(2.7) Re [ν(z − κ)] ≤ 0 ∀ z ∈ Σ.

(if ∂Σ is smooth at a neighborhood of κ, then ν is uniquely defined as a unit
outward normal vector of ∂Σ at κ). (2.7) implies that the function ζ ∈ Σ 7→
|(κ+ ν)− ζ| attains to its minimum at ζ = κ (cf. [2, Theorem V.2]). We can
show for every t > 0 that

Re (κ+ tν) ≥ 0,(2.8)

dist (κ+ tν,Σ) = t.(2.9)
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In fact, (γ3) and κ ∈ ∂Σ implies κ − 1 ∈ Σ. Setting z = κ − 1 in (2.7), we
have Re ν ≥ 0 and (2.8). (2.9) is a consequence of (2.7) multiplied by t > 0.
(2.8) implies that A+(κ+(ν/n))B is m-accretive for each n ∈ N (see Lemma
2.3), that is, for every f ∈ H there is a unique solution un ∈ D(A) ∩D(B) of

(2.10) Aun + (κ+ (ν/n))Bun + un = f,

satisfying

(2.11) ‖un‖ ≤ ‖f‖.

Now we can prove that ‖(ν/n)Bun‖ = n−1‖Bun‖ ≤ 2 ‖f‖. In fact, we see
from (2.1) that

‖Bun‖ ≤ dist (κ+ ν/n,Σ)−1‖(A+ (κ+ ν/n)B)un‖ = n ‖f − un‖
≤ 2n ‖f‖.

This yields together with (2.10) that ‖(A + κB)un‖ ≤ 4 ‖f‖. To finish the
proof we show that (ν/n)Bun converges to zero weakly in H. It follows from
(2.11) that for every v ∈ D(B),

|((ν/n)Bun, v)| = n−1|(un, Bv)| ≤ n−1‖f‖ · ‖Bv‖ → 0 (n → ∞).

Since D(B) is dense in H and n−1‖Bun‖ is bounded, we see that n−1Bun → 0
(n → ∞) weakly. (2.11) implies that we can choose a subsequence {unk

} ⊂
{un} such that u :=w-limk→∞ unk

exists. Then we have

(A+ κB)unk
= f − unk

− (ν/nk)Bunk

→ f − u (k → ∞) weakly.

It follows from the (weak) closedness of (A + κB)̃ that u ∈ D((A + κB)̃ )
and (A + κB)̃ u = f − u. This proves the essential m-accretivity of A + κB
for κ ∈ ∂Σ with Reκ ≥ 0.

Lemma 2.5. Let κ ∈ Σ c with Reκ < 0. Let c0(κ) be defined in (2.2).

(a) If Imκ > 0, then ρ(−(A+ κB)) contains the sector {λ ∈ C; 0 ≤ arg λ <
π/2}, with

(2.12) ‖(A+ κB + λ)−1‖ ≤ [1− c0(κ)]
−1(Reλ)−1, Reλ > 0, Imλ ≥ 0.

(b) If Imκ < 0, then ρ(−(A + κB)) contains the sector {λ ∈ C; −π/2 <
arg λ ≤ 0}, with

(2.13) ‖(A+ κB + λ)−1‖ ≤ [1− c0(κ)]
−1(Reλ)−1, Reλ > 0, Imλ ≤ 0.
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Proof. Let κ ∈ Σ c with Reκ < 0. Since Σ is symmetric with respect to the
real axis by (γ2), it suffices to prove the assertion (a).

(a) Let Imκ > 0. Then we shall show that λ ∈ ρ(−(A+ κB)) for λ ∈ C with
Reλ > 0 and Imλ ≥ 0. This is equivalent to the unique solvability of the
equation for each f ∈ H

(2.14) Au+ κBu+ λu = f.

Let ζ ∈ Σ c with Re ζ = 0 and Im ζ > 0. Then A+ζB is m-accretive in H (see
Lemma 2.3). Setting K := (ζ − κ)B(A+ ζB + λ)−1, (2.14) can be written as

(2.15) (1−K)(A+ ζB + λ)u = f,

Thus it remains to show the unique solvability of the equation (1 −K)v = f ,
since A+ ζB + λ is invertible. To do so it suffices to show that

(2.16) ‖K‖ = |ζ − κ| · ‖B(A+ ζB + λ)−1‖ < 1.

Now let κ ∈ Σ c (with Reκ < 0 and Imκ > 0) satisfy |ζ − κ| < dist (ζ,Σ)
(see Figure 2); in this connection note that if Im ζ < 0 then we have |ζ − κ| >
dist (ζ,Σ).

O

η

ξ

ζ
κ

Figure 2: |ζ − κ| < dist (ζ,Σ)

Then we can solve (2.15). It follows from (2.1) that

(2.17) ‖Bu‖ ≤ dist (ζ,Σ)−1‖(A+ ζB)u‖.

On the other hand, we can show that

(2.18) ‖(A+ ζB)u‖ ≤ ‖v‖.
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In fact, making the inner product of (A+ ζB + λ)u = v with (A+ ζB)u gives

‖(A+ ζB)u‖2 + (Reλ)‖A1/2u‖2 +Re (λζ)‖B1/2u‖2 = Re (v, (A+ ζB)u).

Since Re ζ = 0 and Im ζ > 0, we have Re (λζ) = (Imλ)(Im ζ) ≥ 0. Hence
applying the Cauchy-Schwarz inequality gives (2.18). Combining (2.17) with
(2.18), we have

‖Bu‖ = ‖B(A+ ζB + λ)−1v‖ ≤ dist (ζ,Σ)−1‖v‖.

Therefore, since |ζ − κ| < dist (ζ,Σ), we obtain (2.16):

‖K‖ ≤ |ζ − κ| dist (ζ,Σ)−1 < 1.

This completes the proof of λ ∈ ρ(−(A + κB)) for λ ∈ C with Reλ > 0 and
Imλ ≥ 0.

Now we prove the estimate (2.12). Since ‖v‖ = ‖(1 − K)−1f‖ ≤ (1 −
‖K‖)−1‖f‖, it follows from (2.15) that

‖(A+ κB + λ)−1f‖ = ‖(A+ ζB + λ)−1v‖ ≤ (Reλ)−1‖f‖
1− |ζ − κ| dist (ζ,Σ)−1

.

Here we note that the function ϕ(η) := |iη − κ|dist (iη,Σ)−1 is continuous on
the open interval (η0,∞), where η0 := max{η ≥ 0; iη ∈ Σ}. We show that
inf{ϕ(η); η > η0} = min{ϕ(η); η > η0} < 1. Let P : C → Σ be the projection.
Let η1 ∈ (η0,∞) satisfy that Pκ, κ and iη1 are on the same line. Then we
have inf{ϕ(η); η > η0} ≤ ϕ(η1) < 1. On the other hand, we have for every
η > η0

ϕ(η) =
|iη − κ|
|iη − iη0|

|iη − iη0|
dist (iη,Σ)

≥ |iη − κ|
|iη − iη0|

,

which implies
lim inf
η→∞

ϕ(η) ≥ 1.

Thus we can find η2 ≥ η1 such that inf{ϕ(η); η > η2} ≥ ϕ(η1). Therefore we
obtain inf{ϕ(η); η > η0} = min{ϕ(η); η > η0}. Setting c0(κ) := min{ϕ(η); η >
η0}, we obtain (2.12).

Lemma 2.6. Let κ ∈ Σ c with Reκ < 0. Let θ0 be defined in (2.3). Then

(a) If Imκ > 0, then ρ(−(A+κB)) contains S+(κ) = {λ ∈ C; −θ0 < arg λ <
π/2}.
(b) If Imκ < 0, then ρ(−(A + κB)) contains S−(κ) = {λ ∈ C; −π/2 <
arg λ < θ0}.
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Proof. We prove only (a) as in the proof of Lemma 2.5.

(a) Let Imκ > 0. Then it remains to prove that the sector {λ ∈ C; −θ0 <
arg λ < 0} is contained in ρ(−(A + κB)) (see Lemma 2.5 (a)). Let ξ > 0.
Then ξ ∈ ρ(−(A+κB)), with ‖(A+κB+ξ)−1‖ ≤ [1−c0(κ)]

−1 ξ−1 [ see (2.12)].
Now let f ∈ H. Then we want to solve the equation Au+κBu+λu = f , with
Reλ > 0. Setting K := (ξ − λ)(A+ κB + ξ)−1, we have

(2.19) (1−K)(A+ κB + ξ)u = f.

Noting that if Imλ > −(Reλ) tan θ0, then there exists some ξ > 0 such that
|ξ−λ| < [1−c0(κ)] ξ (see Figure 2) and hence ‖K‖ ≤ |ξ−λ|[1−c0(κ)]

−1 ξ−1 < 1.

O

y

x
ξ

λ

θ0

[1− c0(κ)]ξ

Figure 2: tan θ0 = (1− c0(κ))/
√

c0(κ)(2− c0(κ))

Therefore u := (A+ κB + ξ)−1(1−K)−1f is a unique solution of (2.19), with

‖u‖ = ‖(A+ κB + ξ)−1v‖ ≤ [1− c0(κ)]
−1ξ−1‖v‖

≤ ‖f‖
[1− c0(κ)]ξ − |ξ − λ|

,

where we have used the inequality

‖v‖ ≤ [1− |ξ − λ|[1− c0(κ)]
−1ξ−1]−1‖f‖

derived from (2.19). Therefore we can conclude that λ ∈ ρ(−(A + κB)) for
λ ∈ C with Reλ > 0 and Imλ > −(Reλ) tan θ0.

Next, we state two particular cases of Theorem 2.1 in which B1/2 is A1/2-
bounded or B is A-bounded (under the condition γ(0) < 0).

Theorem 2.7. Let A, B, Σ and γ be the same as those in Theorem 2.1 with
(γ1)–(γ4). Assume that there exists α0 > 0 such that

(2.20) α0(Bεu, u) ≤ (Au, u), u ∈ D(A).
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If (γ5)0 is replaced with

(γ5)α0 −α0 ≤ γ(0),

then, in addition to (i) of Theorem 2.1, the following (iv)–(vi) hold.

(iv) If γ(0) < 0 (⇔ 0 ∈ Σ c), then B is A-bounded with

(2.21) ‖Bu‖ ≤ |γ(0)|−1‖Au‖, u ∈ D(A) ⊂ D(B).

(v) A+ κB is m-accretive on D(A)∩D(B) for κ ∈ Σ c with Reκ ≥ −α0 and
A+ κB is essentially m-accretive in H for κ ∈ ∂Σ with Reκ ≥ −α0.

(vi) Let κ ∈ Σ c with Reκ < −α0. Let cα0(κ) and θα0 be defined as

cα0(κ) :=


min

{ | − α0 + iη − κ|
dist(−α0 + iη,Σ)

; η0 < η < ∞
}
, Imκ > 0,

min
{ | − α0 + iη − κ|
dist(−α0 + iη,Σ)

; η0 < η < ∞
}
, Imκ < 0,

θα0 := tan−1

(
1− cα0(κ)√

cα0(κ)(2− cα0(κ))

)
,

where η0 := max{η ≥ 0; −α0 + iη ∈ Σ}. Then cα0(κ) ∈ (0, 1) and θα0 ∈
(0, π/2).

(a) If Imκ > 0, then the resolvent set ρ(−(A+κB)) contains the sector S+(κ),
where

S+(κ) := {λ ∈ C; −θα0 < arg λ < π/2}.

(b) If Imκ < 0, then the resolvent set ρ(−(A+κB)) contains the sector S−(κ),
where

S−(κ) := {λ ∈ C; −π/2 < arg λ < θα0}.

Remark 2.2. Let A and B be as in Theorem 2.7, satisfying (2.20), with
−α0 ≤ γ(0) < 0. Then it is proved in [8, Theorem 1.7] that B is A-bounded:

‖Bu‖ ≤ |γ(0)|−1‖Au‖, u ∈ D(A) ⊂ D(B),

and A + tB is selfadjoint on D(A) for t > γ(0); in particular, A + γ(0)B
is essentially selfadjoint in H. These facts are regarded as a restriction of
Theorem 2.7 (iv) and (v) to the subset Σc ∩ R.

Proof. (iv) Let γ(0) < 0. To prove (2.21) it suffices to show that

(2.22) ‖Bεu‖ ≤ dist(0,Σ)−1‖Au‖ = |γ(0)|−1‖Au‖, ε > 0, u ∈ D(A).

As in the proof of Lemma 2.2, we see from (γ4) that

−Re (Av,Bεv) ≤ γ(0) < 0,
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where v := ‖Bεu‖−1u. So we obtain Re (Au,Bεu) ≥ |γ(0)| · ‖Bεu‖2 and hence
(2.22).

(v) Let κ ∈ Σ c with α0 + Reκ ≥ 0. Then the accretivity of A + κBε (and
A+ κB) is a consequence of (2.20):

Re ((A+ κBε)u, u) ≥ (α0 +Reκ)(Bεu, u) ≥ 0.

Now we can consider the unique solvability of the equation for each f ∈ H
and λ > 0

Auε + κBεuε + λuε = f.

In order to prove R(A + κB + λ) = H we only have to show that ‖uε‖ and
‖Bεuε‖ are bounded as ε tends to zero. The m-accretivity of A + κBε yields
that ‖uε‖ ≤ λ−1‖f‖ and hence ‖Auε + κBεuε‖ ≤ 2‖f‖. In the same way
as in the proof of Lemma 2.5 we can show that there exists c > 0 such that
‖Auε‖+ ‖Bεuε‖ ≤ c‖f‖. This concludes that R(A+ κB+ λ) = H. The proof
of the essential m-accretivity of A+κB for κ ∈ ∂Σ with Reκ ≥ −α0 is similar
to that of Lemma 2.4.

(vi) Let κ ∈ Σ c with Reκ < −α0 and Imκ > 0. Let λ ∈ C with Reλ > 0. To
show that λ ∈ ρ(−(A+ κB)) let f ∈ H. Then we want to solve the equation

(2.23) Au+ κBu+ λu = f.

Set v := (A + ζB + λ)u for ζ ∈ Σ c with Re ζ = −α0. Since A + ζB is
m-accretive in H [see (v)], we can write (2.23) as

v − (ζ − κ)B(A+ ζB + λ)−1v = f.

Proceeding as in the proof of Lemma 2.5, we can show that |ζ − κ| · ‖B(A +
ζB+λ)−1‖ < 1 if |ζ−κ| < dist(ζ,Σ). Replacing c0(κ) with cα0(κ), the similar
argument to Lemma 2.5 and Lemma 2.6 yields the assertion (a). Considering
κ instead of κ when Imκ < 0, we can also obtain the assertion (b).

Remark 2.3. Let {κn = ξn + iη} ⊂ Σ c be a sequence satisfying ξn ↑ −α0

(n → ∞) in assertion (vi). Then cα0(κn) → 0 and hence the resolvent sets
ρ(−(A + κnB)) extend from the sectors to the right half-plane as n → ∞,
which suggests the m-accretivity of the limiting operator A + (−α0 + iη)B.
This is nothing but the conclusion of (v).

§3. Proof of Theorem 1.1

In this section we prepare some inequalities to apply Theorems 2.1 and 2.7
to A := ∆2 and B := |x|−4. In [9, Lemmas 3.1 and 3.3] we have proved the
following
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Lemma 3.0. Let v ∈ C∞
0 (RN ). Then

(i) Re ((x · ∇)v, v) = −N

2
‖v‖2,

(ii) ‖(x · ∇)v‖2 − (N2/4)‖v‖2 ≥ 0,

(iii)
∥∥|x|2∆v

∥∥2‖v‖2 + 2N
∥∥|x|∇v

∥∥2‖v‖2 − ∥∥|x|∇v
∥∥4 − 4‖(x · ∇)v‖2‖v‖2 ≥ 0.

The following lemma is a strict version of Lemma 3.0 (ii).

Lemma 3.1. Let v ∈ C∞
0 (RN ). Then

(3.1) |Im (v, (x · ∇)v)|2 ≤ ‖v‖2
(
‖(x · ∇)v‖2 − N2

4
‖v‖2

)
.

Proof. Let v ∈ C∞
0 (RN ). From the Schwarz inequality we have

|Im (v, (x · ∇)v)|2 + |Re (v, (x · ∇)v)|2 = |(v, (x · ∇)v)|2 ≤ ‖v‖2‖x · ∇v‖2.

Combining this with Lemma 3.0 (i), we obtain (3.1).

The following lemma together with Lemma 3.1 give a strict version of
Lemma 3.0 (iii).

Lemma 3.2. Let v ∈ C∞
0 (RN ). Then[

‖v‖2Im ((x · ∇)v, |x|2∆v)−
∥∥|x|∇v

∥∥2Im (v, (x · ∇)v)
]2

(3.2)

≤
{
‖v‖2

[
‖(x · ∇)v‖2 − N2

4
‖v‖2

]
− |Im (v, (x · ∇)v)|2

}
×
[∥∥|x|2∆v

∥∥2‖v‖2 + 2N
∥∥|x|∇v

∥∥2‖v‖2 − ∥∥|x|∇v
∥∥4 − 4‖(x · ∇)v‖2‖v‖2

]
.

Proof. For each v ∈ C∞
0 (RN ) set v1 := |x|2∆v, v2 := (x · ∇)v, v3 := v. Let

G := ((vj , vk))jk. Let a, b, c ≥ 0 and α, β, γ ∈ C be defined asc α β
α b γ

β γ a

 :=


∥∥|x|2∆v

∥∥2 (|x|2∆v, (x · ∇)v) (|x|2∆v, v)

((x · ∇)v, |x|2∆v)
∥∥(x · ∇)v

∥∥2 ((x · ∇)v, v)
(v, |x|2∆v) (v, (x · ∇)v) ‖v‖2

 .

Since G is positive semi-definite, we have detG ≥ 0;

a|α|2 + b|β|2 + c|γ|2 ≤ abc+ 2Re (αβγ).

Setting α = α1+ iα2, β = β1+ iβ2, γ = γ1+ iγ2 with αj , βj , γj ∈ R (j = 1, 2),
we have

aα2
2 + bβ2

2 + cγ22 + 2(α1β2γ2 + α2β1γ2 + α2β2γ1)(3.3)

≤ abc+ 2α1β1γ1 − (aα2
1 + bβ2

1 + cγ21).
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Now it is easy to see that

α1 =Reα =
N

2
b̃− 2b,(3.4)

β1 =Reβ = Na− b̃,(3.5)

γ1 =Re γ = −N

2
a,(3.6)

where b̃ :=
∥∥|x|∇v

∥∥2 (see [9, Section 3]). It follows (3.4)–(3.6) that the right-
hand side of (3.3) equals

(b− (N2/4)a)(ac+ 2Nab̃− b̃2 − 4ab).

Multiplying (3.3) by a and using the equality β2 = 2γ2, we have

a2α2
2 + 2a(β1 + 2γ1)α2γ2 + a(4α1 + 4b+ c)γ22(3.7)

≤ a(b− (N2/4)a)(ac+ 2Nab̃− b̃2 − 4ab).

We see from (3.4)–(3.6) that the left-hand side of (3.7) equals

(aα2 − b̃γ2)
2 + (ac+ 2Nab̃− b̃2 − 4ab)γ22 ,

which implies that

(3.8) (aα2 − b̃γ2)
2 ≤ (ab− (N2/4)a2 − γ22)(ac+ 2Nab̃− b̃2 − 4ab).

(3.8) is nothing but (3.2).

Lemma 3.3. Let k1 be the constants defined in (1.1):

k1 = 112− 3(N − 2)2.

For u ∈ H4(RN ) and ε > 0 put

IP := (∆2u, (|x|4 + ε)−1u),

and a := ‖(|x|4 + ε)−1u‖2. Then k1a+Re IP ≥ 0 and

|Im IP|2 ≤ 64
√
a(
√

k1a+Re IP− ((N2/4)−N − 10)
√
a)(3.9)

× (
√

k1a+Re IP + 8
√
a)2.

If N ≥ 9, then k2a+Re IP ≥ 0 and

(3.10) |Im IP|2 ≤ 64
√
a(k2a+Re IP)(

√
k1a+Re IP + 8

√
a)2√

k1a+Re IP + ((N2/4)−N − 10)
√
a

where k2 = k1− [(N − 2)2/4− 11]2 = −(N/16)(N − 8)(N2− 16) < 0 (N ≥ 9).
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Proof. Let u ∈ C∞
0 (RN ) and ε > 0. Put v := (|x|4+ε)−1u. By using the same

notations as in the proof of Lemma 3.2 (3.8) is written as

(3.11) L :=
(aα2 − b̃γ2)

2

ab− (N2/4)a2 − γ22
≤ ac+ 2Nab̃− b̃2 − 4ab =: R.

Here we note (see [9, Proof of Lemma 3.4]) that

IP =
∥∥|x|2∆v

∥∥2 + 8( (x · ∇)v, |x|2∆v) + 4(N + 2)(v, |x|2∆v) + ε‖∆v‖2.

It follows that

c =
∥∥|x|2∆v

∥∥2 ≤ Re IP + 16b+ 8b̃− 4N(N + 2)a,(3.12)

α2 =Im ((x · ∇)v, |x|2∆v) =
1

8
Im IP + (N + 2)γ2.(3.13)

In fact, (3.13) holds as a consequence β2 = 2γ2. Applying (3.13) to L yields

L =

(a
8
Im IP + ((N + 2)a− b̃)γ2

)2

a(b− (N2/4)a)− γ22
=

(c1γ2 + c2)
2

c0 − γ22
,

where

c0 := a(b− (N2/4)a) ≥ γ22 ,(3.14)

c1 := (N + 2)a− b̃,(3.15)

c2 :=
a

8
Im IP;(3.16)

note that the inequality in (3.14) is nothing but (3.1). Since the quadratic
equation L(c0 − t2) = (c1t + c2)

2 has a real root t = γ2, the discriminant is
nonnegative:

(3.17) L(c0L+ c0c
2
1 − c22) ≥ 0.

It is clear that L ≥ 0. If L > 0, then (3.17) yields

(3.18) L ≥ (c22/c0)− c21.

If L = 0, then γ2 = −c2/c1 and hence (3.14) yields that 0 ≥ (c22/c0)− c21. This
means that (3.18) holds for L ≥ 0. Hence it follows from (3.14)–(3.16) and
(3.18) that

(3.19) L ≥ a|Im IP|2

64(b− (N2/4)a)
− (̃b− (N + 2)a)2.
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On the other hand, since b ≤ b̃, (3.11) and (3.12) yields

R ≤ aRe IP + 12ab+ 2(N + 4)ab̃− b̃2 − 4N(N + 2)a2(3.20)

≤ a(k1a+Re IP)− (̃b− (N + 10)a)2,

where k1 := (N +10)2−4N(N +2) = 112−3(N −2)2. Since L ≤ R, it follows
from (3.19) and (3.20) that

(3.21)
a|Im IP|2

64(b−N2a/4)
− (̃b− (N +2)a)2 ≤ a(k1a+Re IP)− (̃b− (N +10)a)2.

Therefore we obtain

(3.22)
|Im IP|2

64(b− (N2/4)a)
− 16(̃b− (N + 6)a) ≤ k1a+Re IP =: K.

Now we see from (3.20) that

(̃b− (N + 10)a)2 ≤ R+ (̃b− (N + 10)a)2 ≤ aK

and hence

(3.23) b ≤ b̃ ≤
√
aK + (N + 10)a.

Applying (3.23) to (3.22), we obtain

|Im IP|2

64
√
a
[√

K − ((N2/4)−N − 10)
√
a
] ≤ K + 16(

√
aK + 4a) = (

√
K + 8

√
a)2.

This proves (3.9) for u ∈ C∞
0 (RN ). Next note that N2/4 − N − 10 ≥ 0 for

N ≥ 9. To obtain (3.10), we have only to use the equality

√
K − ((N2/4)−N − 10)

√
a =

k2a+Re IP√
K + ((N2/4)−N − 10)

√
a

where k2 = −N(N − 8)(N2 − 16)/16. Since C∞
0 (RN ) is dense in H4(RN ), we

obtain (3.9) for every u ∈ H4(RN ).

Proof of Theorem 1.1. Let H := L2(RN ), A := ∆2 with D(A) := H4(RN )
and B := |x|−4 with D(B) := {u ∈ H; |x|−4u ∈ H}. For u ∈ D(A) and ε > 0
take v := Bεu = (|x|4 + ε)−1u with

√
a := ‖v‖ = 1. Set ξ, η ∈ R as

ξ + iη := −IP = −(Au,Bεu).

We shall prove that there exist γ independent of ε > 0 satisfying (γ1), (γ2),
(γ5)0 in Theorem 2.1 (or (γ5)α0 in Theorem 2.7) and Σ defined in (γ3) such
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that −IP ∈ Σ for every u ∈ D(A) and ε > 0, i.e., (γ4) holds. First it follows
from Lemma 3.3 with Re IP = −ξ, Im IP = −η, a = 1 that

(3.24)

{
k1a+Re IP = k1 − ξ ≥ 0,
|η|2 ≤ ϕN (ξ),

where ϕN : (−∞, k1] → R is given as follows (see (3.9)):

(3.25) ϕN (t) := 64
[√

k1 − t+ (10 +N − (N2/4))
]
(
√

k1 − t+ 8)2.

We can easily see that ϕN is monotone decreasing and limt→−∞ ϕN (t) = ∞.
According to the sign of ϕN (k1) we consider two cases N ≤ 8 and N ≥ 9.

In the case N ≤ 8 it holds from 10 + N − (N2/4) > 0 that ϕN (k1) =
min{ϕN (t); t ≤ k1} > 0. If |η|2 ≤ ϕN (k1), then |η|2 ≤ ϕN (ξ) holds. If
|η|2 ≥ ϕN (k1), then |η|2 ≤ ϕN (ξ) is equivalent to ξ ≤ ϕ−1

N (|η|2). Thus we have

(3.26)

{
ξ ≤ k1 when |η|2 ≤ ϕN (k1),

ξ ≤ ϕ−1
N (|η|2) when |η|2 ≥ ϕN (k1).

Set

γ(t) :=

{
k1 when |t|2 ≤ ϕN (k1),

ϕ−1
N (|t|2) when |t|2 ≥ ϕN (k1).

(γ2) is clearly satisfied. Let Σ be defined in (γ3). We show that γ is concave.
(3.24) implies that

(3.27) Σ = {ξ + iη ∈ C; ξ ≤ k1, |η| ≤
√
ϕN (ξ)}.

Since
√
ϕN is concave, (3.27) shows that Σ is convex. Hence γ is concave

and (γ1) is satisfied. (3.24) and (3.27) imply that (γ4) is satisfied. Noting
γ(0) = k1 > 0, we see that (γ5)0 is satisfied. When N ≤ 4, we apply Theorem
2.1 with A, B, γ and Σ to obtain the assertion of Theorem 1.1 in the case
N ≤ 4. When N ≥ 5, we have the Rellich inequality

N(N − 4)

4
‖(|x|2 + ε)−1u‖ ≤ ‖∆u‖, u ∈ H2(RN ),

which implies (2.20) with α0 := [N(N − 4)/4]2. Since γ(0) = k1 > 0 > −α0,
(γ5)α0 is satisfied. Thus we can apply Theorem 2.7 with A, B, γ and Σ to
obtain Theorem 2.7 (v), (vi). Therefore we obtain the assertion of Theorem
1.1 in the case 5 ≤ N ≤ 8.

In the case N ≥ 9 it follows from Lemma 3.3 with Re IP = −ξ, a = 1 that

(3.28) ξ ≤ k2 := −(N/16)(N − 8)(N2 − 16).
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In particular, (3.10) implies that ϕN has another expression:

ϕN (t) =
64(k2 − t)(

√
k1 − t+ 8)√

k1 − t+ ((N2/4)−N − 10)
.

Then ϕN (k2) = 0 and
√
ϕN is concave on (−∞, k2]. Set

γ(t) := ϕ−1
N (|t|2), t ∈ R.

It is clear that (γ2) is satisfied. Let Σ be defined in (γ3). Noting k2 < k1, we
see from (3.24) and (3.28) that

(3.29) Σ = {ξ + iη ∈ C; ξ ≤ k2, |η| ≤
√
ϕN (ξ)}.

Since
√
ϕN is concave, we see from (3.29) that Σ is convex. Hence γ is concave

and (γ1) is satisfied. (3.24), (3.28) and (3.29) imply that (γ4) is satisfied.
Applying the Rellich inequality again, we have (2.20) with α0 := [N(N−4)/4]2.
Since γ(0) = k2 > −α0, (γ5)α0 is satisfied. Since γ(0) = k2 < 0, we obtain
Theorem 2.7 (iv). Therefore we obtain the assertion of Theorem 1.1 in the
case N ≥ 9. This completes the proof of Theorem 1.1.
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