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Abstract. The object of the present paper is to study a quarter-symmetric
metric connection on a 3-dimensional quasi-Sasakian manifold. The existence of
the connection is given on a Riemannian manifold. We deduce the relation be-
tween the Riemannian connection and the quarter-symmetric metric connection
on a 3-dimensional quasi-Sasakian manifold. We investigate the curvature ten-
sor and the Ricci tensor of a 3-dimensional quasi-Sasakian manifold with respect
to the quarter-symmetric metric connection. We study the projective curvature
tensor with respect to the quarter-symmetric metric connection and also charac-
terized ξ−projectively flat and φ−projectively flat 3-dimensional quasi-Sasakian
manifold with respect to the quarter-symmetric metric connection. Finally we
study locally φ−symmetric 3-dimensional quasi-Sasakian manifold with respect
to the quarter-symmetric metric connection.
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§1. Introduction

The notion of quasi-Sasakian structure was introduced by D. E. Blair [7] to
unify Sasakian and cosymplectic structures. S. Tanno [28] also added some
remarks on quasi-Sasakian structures. The properties of quasi-Sasakian mani-
folds have been studied by several authors, viz., J. C. Gonzalez and D. Chinea
[12], S. Kanemaki [13], [14] and J. A. Oubina [22]. B. H. Kim [15] studied
quasi-Sasakian manifolds and proved that fibred Riemannian spaces with in-
variant fibres normal to the structure vector field do not admit nearly Sasakian
or contact structure but a quasi-Sasakian or cosymplectic structure. Recently,
quasi-Sasakian manifolds have been the subject of growing interest in view of
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finding the significant applications to physics, in particular to super gravity
and magnetic theory ([1], [2]). Quasi-Sasakian structures have wide applica-
tions in the mathematical analysis of string theory ([3], [10]). Motivated by
the roles of curvature tensor and Ricci tensor of quasi-Sasakian manifolds in
string theory ([3]) we like to study curvature properties of a 3-dimensional
quasi-Sasakian manifold with respect to the quarter-symmetric metric con-
nection. On a 3-dimensional quasi-Sasakian manifold, the structure function
β was defined by Z. Olszak [19] and with the help of this function he has ob-
tained necessary and sufficient conditions for the manifold to be conformally
flat ([20]). Next he has proved that if the manifold is additionally confor-
mally flat with β = constant, then (a) the manifold is locally a product of
R and a two-dimensional Kaehlerian space of constant Gauss curvature (the
cosymplectic case), or, (b) the manifold is of constant positive curvature (the
non-cosymplectic case, here the quasi-Sasakian structure is homothetic to a
Sasakian structure). This paper is devoted to study quarter-symmetric metric
connection in a 3-dimensional quasi-Sasakian manifold.

In 1975, S. Golab [11] defined and studied quarter-symmetric connection
in a differentiable manifold with affine connection.

A linear connection ∇̃ on an n-dimensional Riemannian manifold (M, g)
is called a quarter-symmetric connection ([11]) if its torsion tensor T of the
connection ∇̃

T (X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ]

satisfies

(1.1) T (X,Y ) = η(Y )φX − η(X)φY,

where η is a 1-form and φ is a (1, 1) tensor field.
In particular, if φ = id, then the quarter-symmetric connection reduces

to the semi-symmetric connection [9]. Thus the notion of quarter-symmetric
connection generalizes the idea of the semi-symmetric connection.

If moreover, a quarter-symmetric connection ∇̃ satisfies the condition

(∇̃Xg)(Y,Z) = 0,

for all X,Y, Z ∈ T (M), where T (M) is the Lie algebra of vector fields of
the manifold M, then ∇̃ is said to be a quarter-symmetric metric connection,
otherwise it is said to be a quarter-symmetric non-metric connection.

After S. Golab [11], S. C. Rastogi ([24],[25]) continued the systematic study
of quarter-symmetric metric connection.

In 1980, R. S. Mishra and S. N. Pandey [17] studied quarter-symmetric
metric connection in Riemannian, Kaehlerian and Sasakian manifolds.

In 1982, K. Yano and T. Imai [30] studied quarter-symmetric metric con-
nection in Hermitian and Kaehlerian manifolds.



QUARTER-SYMMETRIC METRIC CONNECTION 37

In 1991, S. Mukhopadhyay, A. K. Roy and B. Barua [18] studied a quarter-
symmetric metric connection on a Riemannian manifold (M, g) with an almost
complex structure φ.

In 1997, U. C. De and S. C. Biswas [4] studied a quarter-symmetric met-
ric connection on an SP−Sasakian manifold. Also in 2008, Sular, Ozgur and
De [26] studied a quarter-symmetric metric connection in a Kenmotsu mani-
fold.

Apart from conformal curvature tensor, the projective curvature tensor is
another important tensor from the differential geometric point of view. Let
M be an (2n + 1)−dimensional Riemannian manifold. If there exists a one-
to-one correspondence between each coordinate neighborhood of M and a
domain in Euclidian space such that any geodesic of the Riemannian manifold
corresponds to a straight line in the Euclidean space, then M is said to be
locally projectively flat. For 2n + 1 ≥ 3, M is locally projectively flat if and
only if the well known projective curvature tensor P vanishes. Here P is
defined by [16]

(1.2) P (X,Y )Z = R(X,Y )Z − 1
2n

{S(Y,Z)X − S(X,Z)Y },

for X,Y, Z ∈ T (M), where R is the curvature tensor and S is the Ricci tensor.
In fact, M is projectively flat (that is, P = 0) if and only if the manifold
is of constant curvature (pp. 84-85 of [29]). Thus, the projective curvature
tensor is a measure of the failure of a Riemannian manifold to be of constant
curvature.

A 3-dimensional quasi-Sasakian manifold is said to be an η−Einstein man-
ifold if its Ricci tensor S satisfies the condition

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ),

where a and b are smooth functions on the manifold.
The paper is organized as follows:
After preliminaries, we recall the notion of 3-dimensional quasi-Sasakian

manifold in section 3. In section 4 we prove the existence of the quarter-
symmetric metric connection. In the next section we establish the relation
between the Riemannian connection and the quarter-symmetric metric con-
nection on a 3-dimensional quasi-Sasakian manifold. In section 6 we study the
curvature tensor, the Ricci tensor, scalar curvature and the first Bianchi iden-
tity with respect to the quarter-symmetric metric connection. Section 7 deals
with the projective curvature tensor with respect to the quarter-symmetric
metric connection and prove that for a 3-dimensional quasi-Sasakian mani-
fold, the Riemannian connection ∇ is ξ−projectively flat if and only if the
quarter-symmetric metric connection ∇̃ is so. We also study φ−projectively
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flat 3-dimensional quasi-Sasakian manifold and prove that a 3-dimensional
quasi-Sasakian manifold with constant structure function, is φ−projectively
flat with respect to the quarter-symmetric metric connection if and only if the
manifold is of constant curvature with respect to the quarter-symmetric metric
connection. Finally we characterize locally φ−symmetric 3-dimensional quasi-
Sasakian manifold with respect to the quarter-symmetric metric connection.

§2. Preliminaries

Let M be an (2n + 1)-dimensional connected differentiable manifold endowed
with an almost contact metric structure (φ, ξ, η, g), where φ, ξ, η are tensor
fields on M of types (1, 1), (1, 0), (0, 1) respectively, such that ([5],[6], [31]),

(2.1) φ2 = −I + η ⊗ ξ, η(ξ) = 1,

g(φX, φY ) = g(X,Y ) − η(X)η(Y ), X, Y ∈ T (M),

where T (M) is the Lie algebra of vector fields of the manifold M .
Then

φξ = 0, η ◦ φ = 0, η(X) = g(X, ξ).

Let Φ be the fundamental 2-form of M defined by

Φ(X,Y ) = g(X,φY ) X,Y ∈ T (M).

Then Φ(X, ξ) = 0, X ∈ T (M). M is said to be quasi-Sasakian if the almost
contact structure (φ, ξ, η) is normal and the fundamental 2-form Φ is closed,
that is, for every X,Y ∈ E(2n+1), where E(2n+1) denotes the module of vector
fields on M,

[φ, φ](X,Y ) + dη(X,Y )ξ = 0,

dΦ = 0, Φ(X,Y ) = g(X,φY ).

This was first introduced by Blair [7]. There are many types of quasi-Sasakian
structures ranging from the cosymplectic case, dη = 0 (rank η = 1), to the
Sasakian case, η ∧ (dη)n 6= 0 (rank η = 2n + 1, Φ = dη). The 1−form η has
rank r′ = 2p if dηp 6= 0 and η ∧ (dη)p = 0, and has rank r′ = 2p + 1 if dηp = 0
and η ∧ (dη)p 6= 0. We also say that r′ is the rank of the quasi-Sasakian
structure. Blair [7] also proved that there are no quasi-Sasakian structure
of even rank. In order to study the properties of quasi-Sasakian manifolds
Blair [7] proved some theorems regarding Kaehlerian manifolds and existence
of quasi-Sasakian manifolds. S. Tanno [28] rectified some of these theorems.
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However, while Tanno studied locally product quasi-Sasakian manifolds, he
mentioned the following:

Let M2p+1
1 (φ1, ξ1, η1, g1) be a Sasakian manifold and let M2q

2 (J2, G2) be a
Kaehlerian manifold. Then M1×M2 has a quasi-Sasakian structure (φ, ξ, η, g)
of rank 2p + 1 such that

φX = (φ1X1, J2X2), ξ = (ξ1, 0),

η(X) = η1(X1), g(X,Y ) = g1(X1, Y1) + G2(X2, Y2),

for the canonical decomposition X = (X1, X2) of a vector field X on M1 ×
M2 ([7]).

Theorem [28]: Let M(φ, ξ, η, g) be a quasi-Sasakian manifold (more generally
a normal almost contact Riemannian manifold) of rank 2p + 1. If g∗ defined
by

2g∗(X,Y ) = −dη(X,φY ),

X, Y ∈ E2n+1, is positive definite on E2p and ∇θ = 0 with respect to the
Riemannian metric g defined by

g(X,Y ) = η(X)η(Y ) + g∗(ψ2X,ψ2Y ) + g(θ2X, θ2Y ),

where the (1, 1) tensors ψ and θ are given by

ψ(X) = φ(X) if X ∈ E2p,
= 0 if X ∈ E2q ⊕ E1,

θ(X) = φ(X) if X ∈ E2q,
= 0 if X ∈ E2p+1,

then (φ, ξ, η, g) is also a quasi-Sasakian structure of rank 2p+1 and M(φ, ξ, η, g)
is locally the product of a Sasakian manifold and a Kaehler manifold.

It is mentioned that E2p+1, E2q, E1 are submodules of E2n+1. S. Tanno [28]
also gave an example of a 3-dimensional quasi-Sasakian manifold which is not
Sasakian. For a quasi-Sasakian manifold we have the relation ([21])

(∇Xφ)Y = −g(∇Xξ, φY )ξ − η(Y )φ∇Xξ,

which generalizes the well-known conditions ∇φ = 0 and (∇Xφ)Y = g(X,Y )ξ−
η(Y )X characterizing respectively cosymplectic and Sasakian manifolds. The
quasi-Sasakian condition also reflects in some properties of curvature and of
the vector field ξ. In fact, we have the following results.

Lemma([7], [21]): Let M(φ, ξ, η, g) be a quasi-Sasakian manifold. Then
(i) the vector field ξ is Killing and its integral curves are geodesics;
(ii) the Ricci curvature in the direction of ξ is given by ||∇ξ||2.



40 U. C. DE AND A. K. MONDAL

§3. Quasi-Sasakian structure of dimension three

An almost contact metric manifold M is a 3-dimensional quasi-Sasakian man-
ifold if and only if ([19])

(3.1) ∇Xξ = −βφX, X ∈ T (M),

for a certain function β on M , such that ξβ = 0, ∇ being the operator of
the covariant differentiation with respect to the Riemannian connection of M .
Clearly, such a quasi-Sasakian manifold is cosymplectic if and only if β = 0.
Here we have shown that the assumption ξβ = 0 is not necessary.

As a consequence of (3.1), we have ([19])

(3.2) (∇Xφ)(Y ) = β(g(X,Y )ξ − η(Y )X), X, Y εT (M).

Because of (3.1) and (3.2), we find

∇X(∇Y ξ) = −(Xβ)φY − β2{g(X,Y )ξ − η(Y )X} − βφ∇XY

which implies that

(3.3) R(X,Y )ξ = −(Xβ)φY + (Y β)φX + β2{η(Y )X − η(X)Y }.

Thus we get from (3.3)

(3.4)
R(X,Y, Z, ξ) = (Xβ)g(φY,Z) − (Y β)g(φX,Z)

−β2{η(Y )g(X,Z) − η(X)g(Y,Z)},

where R(X,Y, Z,W ) = g(R(X,Y, Z),W ). Putting X = ξ, in (3.4) we obtain

(3.5) R(ξ, Y, Z, ξ) = β2{g(Y,Z) − η(Y )η(Z)} + g(φY,Z)ξβ.

Interchanging Y and Z of (3.5) yields

(3.6) R(ξ, Z, Y, ξ) = β2{g(Y,Z) − η(Y )η(Z)} + g(φZ, Y )ξβ.

Since R(ξ, Y, Z, ξ) = R(Z, ξ, ξ, Y ) = R(ξ, Z, Y, ξ), from (3.5) and (3.6) we have

{g(φY,Z) − g(φZ, Y )}ξβ = 0.

Therefore, we can easily verify that ξβ = 0.
In a 3-dimensional Riemannian manifold, we always have

(3.7)
R(X,Y )Z = g(Y,Z)QX − g(X,Z)QY + S(Y,Z)X

−S(X,Z)Y − r

2
(g(Y,Z)X − g(X,Z)Y ),
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where Q is the Ricci operator, that is, g(QX,Y)=S(X,Y) and r is the scalar
curvature of the manifold.

Let M be a 3-dimensional quasi-Sasakian manifold. The Ricci tensor S of
M is given by ([20])

(3.8)
S(Y,Z) = (

r

2
− β2)g(Y,Z) + (3β2 − r

2
)η(Y )η(Z)

−η(Y )dβ(φZ) − η(Z)dβ(φY ),

where r is the scalar curvature of M .
As a consequence of (3.8), we get for the Ricci operator Q

QX = (
r

2
− β2)X + (3β2 − r

2
)η(X)ξ

+η(X)(φgrad β) − dβ(φX)ξ,

where the gradient of a function f is related to the exterior derivative df by
the formula df(X) = g(grad f,X). From (3.8) we have

(3.9) S(X, ξ) = 2β2η(X) − dβ(φX).

As a consequence of (3.1) we also have ([19])

(3.10) (∇Xη)(Y ) = g(∇Xξ, Y ) = −βg(φX, Y ).

Also from (3.8) it follows that

(3.11) S(φX, φZ) = S(X,Z) − 2β2η(X)η(Z).

§4. Existence of a quarter-symmetric metric connection

Let X and Y be any two vector fields on (M, g). Let us define a connection
∇̃XY by the following equation:

2g(∇̃XY,Z) = Xg(Y,Z) + Y g(Z,X) − Zg(X,Y ) + g([X,Y ], Z)
−g([Y,Z], X) + g([Z,X], Y ) + g(η(Y )φX
−η(X)φY,Z) + g(η(Y )φZ − η(Z)φY,X)
+g(η(X)φZ − η(Z)φX, Y ),

which holds for all vector fields X,Y, Z ∈ T (M).
It can easily be verified that the mapping

(X,Y ) −→ ∇̃XY

satisfies the following equalities:

(4.1) ∇̃X(Y + Z) = ∇̃XY + ∇̃XZ,
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(4.2) ∇̃X+Y Z = ∇̃XZ + ∇̃Y Z,

(4.3) ∇̃fXY = f∇̃XY

and

(4.4) ∇̃X(fY ) = f∇̃XY + (Xf)Y

for all X,Y, Z ∈ T (M) and f ∈ F (M), the set of all differentiable mappings
over M. From (4.1), (4.2), (4.3) and (4.4) we can conclude that ∇̃ determines
a linear connection on (M, g).

Now we have

(4.5) 2g(∇̃XY,Z)−2g(∇̃Y X,Z) = 2g([X,Y ], Z)+2g(η(Y )φX−η(X)φY,Z).

Hence,

∇̃XY − ∇̃Y X − [X,Y ] = η(Y )φX − η(X)φY

or,

T (X,Y ) = η(Y )φX − η(X)φY.

Also we have

2g(∇̃XY,Z) + 2g(∇̃XZ, Y ) = 2Xg(Y,Z),

or,

(∇̃Xg)(Y,Z) = 0,

that is,

(4.6) ∇̃g = 0.

From (4.5) and (4.6) it follows that ∇̃ determines a quarter-symmetric met-
ric connection on (M, g). It can be easily verified that ∇̃ determines a unique
quarter-symmetric metric connection on (M, g). Thus we have the following:

Theorem 4.1. Let M be a Riemannian manifold and η be a 1-form on it.
Then there exists a unique linear connection ∇̃ satisfying (4.5) and (4.6).

Remark: The above theorem proves the existence of a quarter-symmetric
metric connection on (M, g).
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§5. Relation between the Riemannian connection and the
quarter-symmetric metric connection

Let ∇̃ be a linear connection and ∇ be a Riemannian connection of an almost
contact metric manifold M such that

∇̃XY = ∇XY + U(X,Y ),

where U is a tensor of type (1, 1). For ∇̃ to be a quarter-symmetric metric
connection in M, we have ([11])

(5.1) U(X,Y ) =
1
2
[T (X,Y ) + T ′(X,Y ) + T ′(Y,X)],

where

(5.2) g(T ′(X,Y ), Z) = g(T (Z,X), Y ).

From (1.1) and (5.2) we get

(5.3) T ′(X,Y ) = g(φY,X)ξ − η(X)φY

and using (1.1) and (5.3) in (5.2) we obtain

U(X,Y ) = −η(X)φY.

Hence a quarter-symmetric metric connection ∇̃ on a 3-dimensional quasi-
Sasakian manifold is given by

(5.4) ∇̃XY = ∇XY − η(X)φY.

Conversely, we show that a linear connection ∇̃ on a 3-dimensional quasi-
Sasakian manifold defined by

(5.5) ∇̃XY = ∇XY − η(X)φY,

denotes a quarter-symmetric metric connection.
Using (5.5) the torsion tensor of the connection ∇̃ is given by

(5.6) T (X,Y ) = ∇̃XY − ∇̃Y X − [X,Y ]
= η(Y )φX − η(X)φY.

The above equation shows that the connection ∇̃ is a quarter-symmetric con-
nection ([11]). Also we have

(5.7) (∇̃Xg)(Y,Z) = Xg(Y,Z) − g(∇̃XY,Z) − g(Y, ∇̃XZ)
= η(X)[g(φY,Z) + g(φZ, Y )] = 0.

In virtue of (5.6) and (5.7) we conclude that ∇̃ is a quarter-symmetric
metric connection. Therefore equation (5.4) is the relation between the Rie-
mannian connection and the quarter-symmetric connection on a 3-dimensional
quasi-Sasakian manifold.
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§6. Curvature tensor of a 3-dimensional quasi-Sasakian manifold
with respect to the quarter-symmetric metric connection

We define the curvature tensor of a 3-dimensional quasi-Sasakian manifold
with respect to the quarter-symmetric metric connection ∇̃ by

(6.1) R̃(X,Y )Z = ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z.

In view of (6.1) and (5.4) we obtain

R̃(X,Y )Z = R(X,Y )Z − (∇Xη)(Y )φZ + (∇Y η)(X)φZ
−η(Y )(∇Xφ)Z + η(X)(∇Y φ)Z,

which in view of (3.2) and (3.10) we get

(6.2) R̃(X,Y )Z = R(X,Y )Z + 2βg(φX, Y )φZ − β{η(Y )g(X,Z)
−η(X)g(Y,Z)}ξ + β{η(Y )X − η(X)Y }η(Z).

A relation between the curvature tensor of M with respect to the quarter-
symmetric metric connection ∇̃ and the Riemannian connection ∇ is given by
the relation (6.2). So from (6.2) and (3.3) we have

R̃(X, ξ)Y = R(X, ξ)Y − β{g(X,Y ) − η(X)η(Y )}ξ
+β{η(Y )X − η(X)Y },

and
R̃(X,Y )ξ = β(β + 1){η(Y )X − η(X)Y }

+dβ(Y )φX − dβ(X)φY.

Taking inner product of (6.2) with W we have

(6.3)
R̃(X,Y, Z,W ) = R(X,Y, Z,W ) + 2βg(φX, Y )g(φZ,W )

−β{η(Y )g(X,Z) − η(X)g(Y,Z)}η(W )
+β{η(Y )g(X,W ) − η(X)g(Y,W )}η(Z),

where R̃(X,Y, Z,W ) = g(R̃(X,Y, Z),W ).
From (6.3) clearly

R̃(X,Y, Z,W ) = −R̃(Y,X,Z,W ),

R̃(X,Y, Z,W ) = −R̃(X,Y,W,Z).

Combining above two relations we have

R̃(X,Y, Z,W ) = R̃(Y,X,W,Z).
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We also have

(6.4) R̃(X,Y )Z + R̃(Y,Z)X + R̃(Z,X)Y
= 2β{g(φX, Y )φZ + g(φY,Z)φX + g(φZ,X)φY }.

This is the first Bianchi identity for ∇̃.
From (6.4) it is obvious that

R̃(X,Y )Z + R̃(Y,Z)X + R̃(Z,X)Y = 0 if β = 0.

Hence we can state that if the manifold is cosymplectic then the curvature
tensor with respect to the quarter-symmetric metric connection satisfies first
Bianchi identity.

Contracting (6.3) over X and W , we obtain

(6.5) S̃(Y,Z) = S(Y,Z) − βg(Y,Z) + 3βη(Y )η(Z),

where S̃ and S are the Ricci tensors of the connection ∇̃ and ∇ respectively.
So in a 3-dimensional quasi-Sasakian manifold the Ricci tensor with respect to
the quarter-symmetric metric connection is symmetric. Now, if β = constant,
then using (3.8), the manifold is also an η−Einstein manifold with respect to
the quarter-symmetric metric connection. Also if the manifold is an Einstein
manifold then the manifold is an η− Einstein manifold with respect to the
quarter-symmetric metric connection.

Again contracting (6.5) we have r̃ = r, where r̃ and r are the scalar curva-
tures of the connection ∇̃ and ∇ respectively. So we have the following:

Proposition 6.1. For a 3-dimensional quasi-Sasakian manifold M with the
quarter-symmetric metric connection ∇̃
(a) The curvature tensor R̃ is given by (6.3),
(b) The Ricci tensor S̃ is given by (6.5),
(c) The first Bianchi identity is given by (6.4),
(d) r̃ = r,
(e) The Ricci tensor S̃ is symmetric,
(f) If M is Einstein or η−Einstein with respect to the Riemannian connection,
then M is η−Einstein with respect to the quarter-symmetric metric connec-
tion.

§7. Projective curvature tensor on a 3-dimensional
quasi-Sasakian manifold

We define the generalized projective curvature tensor of a 3-dimensional quasi-
Sasakian manifold with respect to the quarter-symmetric metric connection ∇̃
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by ([16])

P̃ (X,Y )Z = R̃(X,Y )Z + 1
4 [S̃(X,Y )Z − S̃(Y,X)Z]

+
1
8
[{3S̃(X,Z) + S̃(Z,X)}Y

−{3S̃(Y,Z) + S̃(Z, Y )}X].

Since the Ricci tensor S̃ of the manifold with respect to the quarter-
symmetric metric connection ∇̃ is symmetric, the projective curvature tensor
P̃ reduces to

(7.1) P̃ (X,Y )Z = R̃(X,Y )Z − 1
2
[S̃(Y,Z)X − S̃(X,Z)Y ].

Using (6.2) and (6.5), (7.1) reduces to

(7.2)

P̃ (X,Y )Z = P (X,Y )Z + β[2g(φX, Y )φZ − {η(Y )g(X,Z)

−η(X)g(Y,Z)}ξ +
1
2
{g(Y,Z)X − g(X,Z)Y

−η(Y )η(Z)X + η(X)η(Z)Y },

where P is the projective curvature tensor defined by (1.2). From (7.2) we
say that if the manifold is cosymplectic then the projective curvature tensor
P̃ and the projective curvature tensor P are coincide.

ξ−conformally flat K−contact manifolds have been studied by Zhen, Cabrerizo
and Fernandez [32]. Analogous to the definition of ξ−conformally flat K−contact
manifold we define the ξ−projectively flat 3-dimensional quasi-Sasakian man-
ifold.

Definition 7.1. A 3-dimensional quasi-Sasakian manifold M is called ξ-
projectively flat if the condition P (X,Y )ξ = 0 holds on M .

From (7.2) it is clear that P̃ (X,Y )ξ = P (X,Y )ξ. So we have the following:

Theorem 7.1. For a 3-dimensional quasi-Sasakian manifold, the Rieman-
nian connection ∇ is ξ−projectively flat if and only if the quarter-symmetric
metric connection ∇̃ is so.

Analogous to the definition of φ−conformally flat contact manifold ([8]), we
define φ−projectively flat 3-dimensional quasi-Sasakian manifold.

Definition 7.2. A 3-dimensional quasi-Sasakian manifold satisfying the con-
dition

φ2P (φX, φY )φZ = 0

is called φ−projectively flat ([23]).
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Definition 7.3. A Riemannian manifold M is said to be of constant curvature
with respect to the quarter-symmetric metric connection ∇̃ if

R̃(X,Y )Z = k{g(Y,Z)X − g(X,Z)Y }

where k is a constant.

Let us assume that M is a 3-dimensional φ−projectively flat quasi-Sasakian
manifold with respect to the quarter-symmetric metric connection. It can be
easily seen that φ2P̃ (φX, φY )φZ = 0 holds if and only if

(7.3) g(P̃ (φX, φY )φZ, φW ) = 0,

for X,Y, Z,W ∈ T (M).
Using (7.1) and (7.3), φ−projectively flat means

(7.4) g(R̃(φX, φY )φZ, φW ) =
1
2
{S̃(φY, φZ)g(φX, φW )

−S̃(φX, φZ)g(φY, φW )}.

Let {e1, e2, ξ} be a local orthonormal basis of the vector fields in M and
using the fact that {φe1, φe2, ξ} is also a local orthonormal basis, putting
X = W = ei in (7.4) and summing up with respect to i, we have

(7.5)
∑2

i=1 g(R̃(φei, φY )φZ, φei) =
1
2

2∑
i=1

{S̃(φY, φZ)g(φei, φei)

−S̃(φei, φZ)g(φY, φei)}.

Using (3.7), (6.2) and (6.5), it can be easily verified that
(7.6)∑2

i=1 g(R̃(φei, φY )φZ, φei) =
∑2

i=1 g(R(φei, φY )φZ, φei) − 2βg(φY, φZ)
= S(φY, φZ) − β2g(φY, φZ) − 2βg(φY, φZ)
= S̃(φY, φZ) − β(β + 1)g(φY, φZ),

(7.7)
2∑

i=1

g(φei, φei) = 2,

(7.8)
2∑

i=1

S̃(φei, φZ)g(φY, φei) = S̃(φY, φZ).

So using (7.6), (7.7) and (7.8) the equation (7.5) becomes
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(7.9) S̃(φY, φZ) = 2β(β + 1)g(φY, φZ).

Putting Y = φY and Z = φZ in (7.9) and using (2.1), (3.9) with β = constant,
we get

S̃(Y,Z) = 2β(β + 1)g(Y,Z).

It is known ([31]) that a 3−dimensional Einstein manifold is a manifold of
constant curvature. Also M is projectively flat if and only if it is of constant
curvature ([29]). Now trivially, projectively flatness implies φ−projectively
flat. Hence we can state the following:

Theorem 7.2. A 3-dimensional quasi-Sasakian manifold with constant struc-
ture function is φ−projectively flat with respect to the quarter-symmetric met-
ric connection if and only if the manifold is of constant curvature with respect
to the quarter-symmetric metric connection.

§8. Locally φ−symmetric 3-dimensional quasi-Sasakian manifold
with respect to the quarter-symmetric metric connection

Definition 8.1 A quasi-Sasakian manifold is said to be locally φ−symmetric
if

φ2(∇W R)(X,Y )Z = 0,

for all vector fields W,X, Y, Z orthogonal to ξ. This notion was introduced for
Sasakian manifolds by Takahashi [27].

Analogous to the definition of φ−symmetric 3-dimensional quasi-Sasakian
manifold with respect to the Riemannian connection, we define locally φ−
symmetric 3-dimensional quasi-Sasakian manifold with respect to the quarter-
symmetric metric connection by

φ2(∇̃W R̃)(X,Y )Z = 0,

for all vector fields W,X, Y, Z orthogonal to ξ. Using (5.5) we can write

(8.1) (∇̃W R̃)(X,Y )Z = (∇W R̃)(X,Y )Z − η(W )φR̃(X,Y )Z.
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Now differentiating (6.2) with respect to W, we obtain

(∇W R̃)(X,Y )Z = (∇W R)(X,Y )Z + β[2g(φX, Y )(∇W φ)Z
−{(∇W η)(Y )g(X,Z) − (∇W η)(X)g(Y,Z)}ξ
−{η(Y )g(X,Z) − η(X)g(Y,Z)}(∇W ξ)+
(∇W η)(Y )η(Z)X + (∇W η)(Z)η(Y )X
−(∇W η)(X)η(Z)Y − (∇W η)(Z)η(X)Y ]
+(Wβ)[2g(φX, Y )φZ − η(Y )g(X,Z)ξ
+η(X)g(Y,Z)ξ + η(Y )η(Z)X
−η(X)η(Z)Y ].

Using (3.1),(3.2) and (3.11) we have

(8.2)

(∇W R̃)(X,Y )Z = (∇W R)(X,Y )Z + β2[2g(φX, Y )g(Z,W )ξ
−2g(φX, Y )η(Z)W + g(φW, Y )g(X,Z)ξ
−g(φW,X)g(Y,Z)ξ + η(Y )g(X,Z)φW
−η(X)g(Y,Z)φW − g(φW, Y )η(Z)X
−g(φW,Z)η(Y )X + g(φW,X)η(Z)Y
+g(φW,Z)η(X)Y ] + (Wβ)[2g(φX, Y )φZ
−η(Y )g(X,Z)ξ + η(X)g(Y,Z)ξ
+η(Y )η(Z)X − η(X)η(Z)Y ].

Using (8.2) and (2.1) from (8.1) we get

(8.3)

φ2(∇̃W R̃)(X,Y )Z = φ2(∇W R)(X,Y )Z + β2[2g(φX, Y )η(Z)W
−2g(φX, Y )η(Z)η(W )ξ − η(Y )g(X,Z)φW
+η(X)g(Y,Z)φW + g(φW, Y )η(Z)X
−g(φW, Y )η(Z)η(X)ξ + g(φW,Z)η(Y )X
−g(φW,X)η(Z)Y + g(φW,X)η(Z)η(Y )ξ
−g(φW,Z)η(X)Y ] − (Wβ){2g(φX, Y )φZ
+η(Y )η(Z)X − η(X)η(Z)Y }
−η(W )φ2(φR̃)(X,Y )Z.

If φ2(∇̃W R̃)(X,Y )Z = φ2(∇W R)(X,Y )Z, then

(8.4)

β2[2g(φX, Y )η(Z)W − 2g(φX, Y )η(Z)η(W )ξ − η(Y )g(X,Z)φW
+η(X)g(Y,Z)φW + g(φW, Y )η(Z)X
−g(φW, Y )η(Z)η(X)ξ + g(φW,Z)η(Y )X
−g(φW,X)η(Z)Y + g(φW,X)η(Z)η(Y )ξ
−g(φW,Z)η(X)Y ] − (Wβ){2g(φX, Y )φZ
+η(Y )η(Z)X − η(X)η(Z)Y }
−η(W )φ2(φR̃)(X,Y )Z

= 0.
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Taking W,X, Y, Z orthogonal to ξ, (8.4) reduces to

(Wβ)g(φX, Y )φZ = 0,

which implies that
Wβ = 0 for all W.

Hence β = constant.

Conversely, if β = constant and X,Y, Z,W orthogonal to ξ, then in view
of (8.3) we obtain

φ2(∇̃W R̃)(X,Y )Z = φ2(∇W R)(X,Y )Z.

Hence we can state the following:

Theorem 8.1. For a 3-dimensional non-cosymplectic quasi-Sasakian mani-
fold, locally φ−symmetry for the Riemannian connection ∇ and the quarter-
symmetric metric connection ∇̃ are coincide if and only if the structure func-
tion β=constant.
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