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Abstract. It is shown how the atomic decomposition of tent spaces can be
used to get a characterization of the weight functions u, v for which the frac-
tional maximal operators Ms sends the weighted Lebesgue spaces Lp

v into Lq
u

with 1 < p < ∞, 0 < q < ∞.
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§1 Introduction and Results

The fractional maximal operator Ms of order s, 0 ≤ s < n, acts on locally
integrable functions of Rn as

(Msf)(x) = sup
{
|Q| s

n−1

∫
Q

|f(y)|dy; Q cube with Q 3 x
}

.

The cubes considered have always their sides parallel to the coordinate axes.
Here M = M0 is the well known Hardy-Littlewood maximal operator.

Let u(.), v(.) be weight functions on Rn, i.e. nonnegative locally integrable
functions. For 1 < p ≤ q < ∞, the two weight norm inequality

(1.1)
∥∥∥(Msf)(.)

∥∥∥
Lq

u

=
(∫

Rn
(Msf)q(y)u(y)dy

) 1
q

≤ C

(∫
Rn

fp(y)v(y)dy

) 1
p

= C
∥∥∥f(.)

∥∥∥
Lp

v

for all f(.) ≥ 0

was first characterized by Sawyer [Sa] by the condition

(1.2)
∥∥∥(Msσ1IQ)(.)1IQ(.)

∥∥∥
Lq

u

≤ S
∥∥∥σ(.)1IQ(.)

∥∥∥
Lp

v

< ∞ for all cubes Q.

Here C and S are nonnegative fixed constants, σ(.) = v−
1

p−1 (.), and 1IE(.) is
the characteristic function of the measurable set E.
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92 Y. RAKOTONDRATSIMBA

Our purpose is to provide a proof of this famous Sawyer’s theorem, by using
the atomic decompositions of tent spaces introduced by Coifman, Meyer, Stein
[Co-Me-St]. The idea of getting maximal inequalities from notions on tents
spaces is known. However the systematic use for the two weight inequality
(1.1) seems not clear in the literature. The motivation in writing this paper
follows after investigations on vector valued inequalities and weighted inequal-
ities in Lorentz and Orlicz spaces for maximal operators. So it appears (see
a forthcoming paper) that atomic decomposition of tent spaces are powerful
and convenient tools to tackle weighted inequalities. We present here the basic
elements of this unified approach.

A condition required for the inequality (1.1) is

1
p
− 1

q
≤ s

n
.

Indeed (1.1) implies |Q|
s
n + 1

q −
1
p

(
1

|Q|
∫

Q
u(y)dy

) 1
q ≤ C

(
1

|Q|
∫

Q
v(y)dy

) 1
p

for all
cubes Q, and taking Q 3 x with |Q| → 0 then, by the Lebesgue differentiation
theorem, the above restriction on s, n, p, q holds. Consequently for the Hardy-
Littlewood maximal operator M = M0 (i.e. s = 0) the two weight norm
inequality (1.1) has only a sense when q ≤ p. The problem for p = q is
treated by the Sawyer’s theorem quoted above, and the case q < p is solved
by Verbitsky [Ve].

Now we first see how the necessary condition (1.2) is also sufficient to obtain
inequality (1.1). As proved in [Sa], the real problem remains to get a dyadic
version of (1.1) which can be stated as

Theorem 1. Let 1 < p ≤ q < ∞. Assume the condition (1.2) is satisfied for
all dyadic cubes. Then there is C > 0 such that

(1.3)
∥∥∥(Mdya

s f)(.)
∥∥∥

Lq
u

≤ CS
∥∥f(.)

∥∥
Lp

v
for all f(.) ≥ 0

where (Mdya
s f)(x) = sup

{
|Q| s

n−1

∫
Q

|f(y)|dy; Q dyadic cube with Q 3 x
}

.

The constant C only depends on s, n, p and q. This result was first due to
Sawyer [Sa], but here we provide a proof (see the next paragraph) based on
atomic decomposition of tent spaces.

For weight functions v(.) with σ(.) = v− 1
p−1 (.) satisfying the usual Muck-

enhoupt condition A∞ [Ga-FR], Pérez [Pe] proved that (1.1) is equivalent to
the simpler condition

(1.4) |Q| s
n−1

(∫
Q

u(y)dy

) 1
q
(∫

Q

σ(y)dy

)1− 1
p

≤ A > 0 for all cubes Q.
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Clearly (1.4) is also a characterizing condition for (1.1) whenever there is C > 0
such that

(C) (Msσ1IQ)(.)1IQ(.) ≤ C|Q| s
n−1

(∫
Q

σ(y)dy
)
1IQ(.).

Weight functions σ(.) satisfying (C) can be given by

Proposition 2. Inequality (C) is satisfied whenever σ(.) ∈ RDρ with ρ > 0
and 1 − s

n ≤ ρ.

The condition σ(.) ∈ RDρ means
∫

Q′ σ(y)dy ≤ R
(

|Q′|
|Q|

)ρ ∫
Q

σ(y)dy for
all cubes Q′, Q with Q′ ⊂ Q. Any doubling weight functions σ(.) (and in
particular any A∞ weight function) satisfies the RDρ condition for some ρ > 0.

Clearly a necessary condition for (1.1) is

(1.5)
∥∥∥(

Ms

[
σ

∑
j

αj1IQj

])
(.)1I⋃

j

Qj
(.)

∥∥∥
Lq

u

≤ S
∥∥∥σ(.)

∑
j

αj1IQj (.)
∥∥∥

Lp
v

for all dyadic cubes Qj and all αj > 0. This condition can be seen as a
generalization of the Sawyer’s one (1.2). By density argument, in considering
εσ(.)1I[−N,N ]n(.) + σ(.)

∑
j αj1IQj (.) with ε → 0 and N → ∞, then (1.5)

becomes also a sufficient condition for Ms: Lp
v → Lq

u.
Although (1.5) is a characterizing condition for (1.1) for q < p, it is un-

fortunately too complicated for any practical use. Studies of more convenient
conditions for computations and their connections with results in [Ve] have
been made by the author in [Ra].

Theorem 3. Let 1 < p < ∞, 0 < q < ∞. Suppose for a constant S > 0

(1.6)
∥∥∥∑

j

αj(Msσ1IQj )(.)1IQj (.)
∥∥∥

Lq
u

≤ S
∥∥∥σ(.)

∑
j

αj1IQj (.)
∥∥∥

Lp
v

for all cubes Qj and all αj > 0. Then the embedding (1.1) holds. Also
(1.6) becomes a necessary condition for (1.1) whenever u(.) satisfies the A∞
condition. In particular for 0 < s < n then

(1.7)
∥∥(Isf)(.)

∥∥
Lq

u
≤ C

∥∥f(.)
∥∥

Lp
v

for all f(.) ≥ 0,

if and only if (1.6) is true, and where Is is the fractional integral operator
(Isf)(x) =

∫
Rn |x − y|s−nf(y)dy.

If moreover σ(.) satisfies (C) then, by Proposition 2, the condition (1.6) in
this result can be replaced by

(1.8)
∥∥∥∑

j

αj

(
|Qj |

s
n−1

∫
Qj

σ(y)dy
)
1IQj (.)

∥∥∥
Lq

u

≤ S
∥∥∥σ(.)

∑
j

αj1IQj (.)
∥∥∥

Lp
v

.

Condition like (1.8) have been introduced by Chanillo, Strömberg, Wheeden in
[Ch-St-Wh] in order to derive similar results, by using atomic decomposition
of weighted Hardy spaces.
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§2 Proofs of Results

Proof of Theorem 1
To prove Theorem 1, as done in [Sa] by applying translations and reflections

of the cone [0,∞[n, it is sufficient to find C > 0 such as

(2.1)
∥∥∥(MR

s f)(.)1I[0,∞[n(.)
∥∥∥

Lq
u

≤ CS
∥∥∥f(.)

∥∥∥
Lp

v

for all R > 0,

where (MR
s f)(x) = sup

{
|Q| s

n−1
∫

Q
|f(y)|dy ; Q dyadic cubes with Q 3 x and

Q ⊂ (]0, R[)n
}

. The estimates which will be obtained do not depend on R > 0.
We first state a basic lemma on which lies the above results.

Lemma 1. Let 1 < p < ∞, and 0 ≤ s < n. There is C > 0 such that, for
all f(.) ∈ Lp

v and R > 0, one can find scalars λj > 0, and dyadic cubes Qj for
which

(2.2)
(∑

j

λp
j

) 1
p

≤ C
∥∥∥f(.)

∥∥∥
Lp

v

(2.3)
∥∥∥∑

j

λj |Qj |
− 1

p
σ 1IQj (.)

∥∥∥
Lp

σ

≤ C
∥∥∥f(.)

∥∥∥
Lp

v

(2.4) (MR
s f)r(.) ≤

∑
j

λr
j |Qj |

− r
p

σ (Msσ1IQj )
r(.)1IQj (.) for all r > 0,

here |Q|σ is defined as
∫

Q
σ(y)dy.

Inequality (2.4) holds for almost x ∈]0,∞[n, and precisely for non dyadic
points (see below). Technical difficulties due to 0 × ∞ can be avoided by
truncating the weight function v(.), and by observing that all estimates do
not call on the bound of this weight. For the convenience, formal operations
will be done and as usual 0 ×∞ is taken as 0.

Lemma 1 contains the whole philosophy of weighted inequalities (1.1). In-
deed inequality (2.4) yields a cut off of (MR

s f)(.). Summation of the resulting
pieces is ensured by (2.2) [resp. (2.3)]. Deferring after the proof of this Lemma,
the remaining of the proof of Theorem 1 is very easy.

Remind that p ≤ q or q
p ≥ 1. Using the fact that u(.) does not charge

(dyadic) points, then∥∥∥(MR
s f)(.)1I[0,∞[n(.)

∥∥∥p

Lq
u

=
∥∥∥(MR

s f)p(.)1I[0,∞[n(.)
∥∥∥

L

q
p
u

≤
∑

j

λp
j

(
|Qj |

− 1
p

σ

∥∥∥(Msσ1IQj )(.)1IQj (.)
∥∥∥

Lq
u

)p

by (2.4)
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≤ Sp
∑

j

λp
j ≤ CSp

∥∥∥f(.)
∥∥∥p

Lp
v

by using condition (1.2) and (2.2).

So Theorem 1 can be derived from these estimates.
Proof of Theorem 3

As above, instead of (1.1), it is sufficient to get the dyadic inequality (1.3).
And this last is obtained as follows

‖(MR
s f)(.)1I[0,∞[n(.)‖Lq

u
≤

∥∥∥∑
j

λj |Qj |
− 1

p
σ (Msσ1IQj )(.)1IQj (.)

∥∥∥
Lq

u

by (2.4)

≤ S
∥∥∥σ(.)

∑
j

λj |Qj |
− 1

p
σ 1IQj (.)

∥∥∥
Lp

v

by condition (1.6)

= S
∥∥∥∑

j

λj |Qj |
− 1

p
σ 1IQj (.)

∥∥∥
Lp

σ

recall that σ(.) = v− 1
p−1 (.)

≤ CS
∥∥∥f(.)

∥∥∥
Lp

v

by (2.3).

By a Muckenhoupt-Wheeden’s inequality [Mu-Wh], for 0 < s < n and
u(.) satisfying the A∞ condition then ‖(Msf)(.)‖Lq

u
≈ ‖(Isf)(.)‖Lq

u
, so the

embedding (1.1) becomes equivalent to (1.7). Consequently the necessity of
condition (1.6) appears by taking f(.) = σ(.)

∑
j αj1IQj (.) in (1.7) and by

using the linearity of Is and also the fact that (Msg)(.) ≤ c(s, n)(Isg)(.).
Proof of Proposition 2

To get inequality (C) let Q0 be a cube and x ∈ Q0. It is sufficient to
estimate Q = |Q| s

n−1
∫

Q∩Q0
σ(y)dy by C|Q0|

s
n−1

∫
Q0

σ(y)dy. Here Q∩Q0 3 x

and C > 0 is a constant which depends only on s, n and the constant on the
RDρ condition.

If 1
3 |Q0|

1
n ≤ |Q| 1

n then clearly Q ≤ c(s, n)|Q0|
s
n−1

∫
Q0

σ(y)dy. Now suppose

|Q| 1
n ≤ 1

3 |Q0|
1
n . If Q ⊂ Q0 then Q ≤ C|Q0|

s
n−1

∫
Q0

σ(y)dy, by the condition
σ(.) ∈ RDρ with n − s ≤ nρ. Otherwise there is another cube Q1 ⊂ Q0

such that |Q1| = |Q| and Q ∩ Q0 ⊂ Q1. By using the same condition, then
Q ≤ |Q1|

s
n−1

∫
Q1

σ(y)dy ≤ C|Q0|
s
n−1

∫
Q0

σ(y)dy.

Preliminaries for the Proof of Lemma 1
For the convenience the essential notions on tent spaces [Co-Me-St], used

for the proof of Lemma 1, are reminded.
Let X be the cone [0,∞[n minus the set of dyadics points, i.e. X =

[0,∞[n−{(2−lkj)j ; l ∈ Z and (kj)j ∈ Nn}. The upper half-space is de-
fined by X̃ = X × {2−l; l ∈ Z}. For each couple (y, w) ∈ X̃ there is an
unique (open) dyadic cube Q = Qyw which contains y and with the side
length w = 2−l. We write

(2.5) (y, w) ∈ Γ̃(x) if and only if x ∈ Qyw.
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And

(2.6) Ω̂ =
(⋃

{Γ̃(x); x ∈ Ωc}
)c

for each set Ω ⊂ [0,∞[n.

Thus

(2.7) (y, w) ∈ Ω̂ if and only if Qyw ⊂ Ω.

Finally the functional A∞ acting on each measurable function f̃ on X̃ is
defined by

(2.8) (A∞f̃)(x) = sup{|f̃(y, w)|; (y, w) ∈ Γ̃(x)}.

Then we have the following (atomic decomposition)

Lemma 2. Let 0 < p < ∞. There is C > 0 such that, for all functions f̃(y, w)
with support contained in ̂(]0, R[n) (R > 0) and ‖(A∞f̃)(.)‖Lp

σ
< ∞, one can

find scalars λj > 0, dyadic cubes Qj , and functions ãj(y, w) which satisfy:
(2.9)

the supports of the ãj are disjoint and |ãj(y, w)| ≤ |Qj |
− 1

p
σ 1̃I

Q̂j
(y, w);

(2.10) f̃(y, w) =
∑

j

λj ãj(y, w) a.e.;

(2.11)
(∑

j

λp
j

) 1
p

≤ C
∥∥∥(A∞f̃)(.)

∥∥∥
Lp

σ

;

(2.12)
∑

j

(
λj |Qj |

− 1
p

σ

)r

1IQj (.) ≤ C(A∞f̃)r(.) for all r > 0.

Here 1̃I
Q̂

(., .) is the characteristic function of the tent Q̂.

The notions introduced in [Co-Me-St] are not exactly quoted above, since
here the dyadic version is presented. Lemma 2 can be obtained by doing a
slight modification of the proof given in [Co-Me-St], and outlines of proof will
be given below.
Proof of Lemma 1

Let f(.) ∈ Lp
v and R > 0. First observe that

(MR
s f)(x) = sup

{
|Qyw|

s
n−1

∫
Qyw

|f(y)|dy; Qyw 3 x and Qyw ⊂ (]0, R[)n
}
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= sup
{(

|Qyw|
s
n−1|Qyw|σ

)
f̃(y, w); Qyw 3 x and Qyw ⊂ (]0, R[)n

}
for each x ∈ X. Here f̃(y, w) can be considered as a function supported by
̂]0, R[n, and on this support

(2.13) f̃(y, w) = f̃σ(y, w) = |Qyw|−1
σ

∫
Qyw

|(σ−1f)(y)|σ(y)dy.

By (2.8) and (2.5) then

(2.14) (A∞f̃)(.) ≤ (Nσ[σ−1f ])(.)

with (Nσg)(x) = sup
{
|Q|−1

σ

∫
Q
|g(y)|σ(y)dy; Q is a dyadic cube with Q 3 x

}
.

Since (by interpolation) Nσ is bounded on Lp
σ (see [Ga-RF]) and σ1−p(.) = v(.),

then for a constant c > 0 which depends only on n and p:
(2.15)∥∥∥(A∞f̃)(.)

∥∥∥
Lp

σ

≤
∥∥∥(Nσ[σ−1f ])(.)

∥∥∥
Lp

σ

≤ c
∥∥∥σ−1(.)f(.)

∥∥∥
Lp

σ

= c
∥∥∥f(.)

∥∥∥
Lp

v

< ∞.

Consequently by Lemma 2, f̃(., .) can be decomposed as in (2.9)— (2.12).
Inequalities (2.11) [resp. (2.12) with r = 1] and (2.15) yield (2.2) [resp.

(2.3)]. To get (2.4) let r > 0 and Qyw 3 x. Then(
|Qyw|

s
n−1|Qyw|σ

)r

f̃r(y, w)

=
(
|Qyw|

s
n−1|Qyw|σ

)r ∑
j

λr
j ã

r
j(y, w) (the support of the ãj ’s

are disjoint)

≤
∑

j

λr
j |Qj |

− r
p

σ

[
|Qyw|

s
n−1|Qyw|σ1̃I

Q̂j
(y, w)

]r

by (2.9)

≤
∑

j

λr
j |Qj |

− r
p

σ

[
|Qyw|

s
n−1|Qyw ∩ Qj |σ 1̃I

Q̂j
(y, w)

]r

by (2.7): Qyw ⊂ Qj

=
∑

j

λr
j |Qj |

− r
p

σ

[(
|Qyw|

s
n−1

∫
Qyw

σ(y)1IQj (y)dy

)
1̃I

Q̂j
(y, w)

]r

≤
∑

j

λr
j |Qj |

− r
p

σ (Msσ1IQj )
r(x)1IQj (x) recall that x ∈ Qyw ⊂ Qj .

Taking the supremum on cubes Qyw 3 x with Qyw ⊂]0, R[n, then (2.4) ap-
pears.
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Proof of Lemma 2
Let Ωk = {(A∞f̃)(.) > 2k}, where k is an integer. Since (A∞f̃)(.) is

supported by [0, R[n then one can find dyadic cubes such that Ωk =
⋃

j Qjk,
with disjoint interiors. Then Ω̂k =

⋃
j Q̂jk, and Ω̂k+1 ⊂ Ω̂k. On the other

hand |f̃(y, w)| ≤ 2k+1 on Ω̂c
k+1. So define scalars and functions

λjk = 2(k+1)|Qjk|
1
p
σ ,

ãjk(y, w) = 2−(k+1)|Qjk|
− 1

p
σ × f̃(y, w) × 1̃I

Q̂jk − Ω̂k+1
(y, w).

Clearly the supports Ẽjk = Q̂jk−Ω̂k+1 of the ãjk(., .) are disjoint and moreover
the estimate in (2.9) holds. The a.e. equality (2.10) also appears since

f̃(y, w) =
∑

k

f̃(y, w)1̃I
Ω̂k − Ω̂k+1

(y, w) =
∑

k

∑
j

f̃(y, w)1̃I
Q̂jk − Ω̂k+1

(y, w)

=
∑

k

∑
j

λjkãjk(y, w).

Inequality (2.11) can be obtained as follows∑
k

∑
j

λp
jk =

∑
k

2(k+1)p
∑

j

|Qjk|σ

≤ c
∑

k

2kp|(A∞f̃)(.) > 2k|σ ≤ c
∥∥∥(A∞f̃)(.)

∥∥∥p

Lp
σ

.

In order to get (2.12), let r > 0. Then∑
k

∑
j

[
λjk|Qjk|

− 1
p

σ

]r

1IQjk
(.) =

∑
k

2(k+1)r
∑

j

1IQjk
(.)

=
∑

k

2(k+1)r1I{(A∞f̃)(.) > 2k}(.)

= c
∞∑

l=0

2−l
∑

k

2(k+l)r1I{2(k+l) < (A∞f̃)(.) ≤ 2(k+l+1)}(.)

< c
∞∑

l=0

2−l(A∞f̃)r(.) = c′(A∞f̃)r(.).
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