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§1. INTRODUTION

Impulsive differential equations arise naturally and often in engineering and
physics, see [1]–[4] for example. Recently, various existence principles of such
problems are obtained. Among these, Guo and Liu in [1] proved that at least
two solutions exist for superlinear impulsive boundary value problems. In this
paper, we consider the existence of positive solutions for impulsive integrod-
ifferential boundary value problems, where the nonlinear term is sublinear at
infinity and may have singular nature at the origin. Our results are new even
in the non-impulsive case. Specifically, consider the following problem:

(1.1)



(p(t)x′(t))′ + p(t)f(t, x(t), (Hx)(t), (Sx)(t)) = 0,
t ∈ (0, 1), t 6= tk, k = 1, 2, ...,m,
lim

ε→+0
[x(tk + ε) − x(tk − ε)] = Ik(x(tk)),

x(t) is left continuous at t = tk, k = 1, 2, ...,m,
αx(0) − β lim

t→0
p(t)x′(t) = γx(1) + δ lim

t→1
p(t)x′(t) = 0.
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where f ∈ C[(0, 1) × R+ × R1 × R1, R+], R+ = (0,∞), p ∈ C[0, 1]
∩

C1(0, 1),
p(t) > 0 for t ∈ (0, 1). We shall assume the following conditions throughout
this paper: ∫ 1

0

1
p(t)

dt < ∞.

The operators H and S are given by

(1.2) (Hx)(t) =
∫ t

0
k(t, s)x(s)ds, (Sx)(t) =

∫ 1

0
k1(t, s)x(s)ds

with k, k1 ∈ C[[0, 1]× [0, 1], [0,∞)], and α, β, γ, δ ≥ 0, βγ + αδ + αγ > 0, βδ =
0, Ik ∈ C[[0,∞), [0,∞)], k = 1, 2, ...,m, 0 < t1 < t2 < ... < tm < 1. Note
that the nonlinear term f(t, x, y, z) may be singular at t = 0, 1 and x = 0,
i.e., it may be unbounded when t tends to 0, 1 or when x tends to 0. Let
J = [0, 1], PC(J) = {x : x is a function from J to R1, continuous at t 6= tk,
left continuous at t = tk, and right hand limit at t = tk exist for k = 1, 2, ...,m}.
Recall that PC(J) is a Banach space with norm ‖x‖ = sup

t∈J
|x(t)|. Denote the

normal cone of PC(J) by P = {x : x ∈ PC(J), x(t) ≥ 0, t ∈ [0, 1]}. A function
x is called a positive solution of (1.1) if x(t) > 0, t ∈ (0, 1), x ∈ PC(J) and
satisfies (1.1). Throughout this paper, we use C to denote a generic constant,
and C(ε) a constant dependent of ε.

§2. THE x-NONSINGULAR CASE

In this section, we assume that f(t, x, y, z) is nonsingular with resect to x at
x = 0, and we shall prove the existence of positive solutions. Denote

(2.1) τ1(t) =
∫ 1

t

1
p(t)

dt, τ0(t) =
∫ t

0

1
p(t)

dt

then we have τ1, τ0 ∈ C[0, 1]. Let ρ2 = βγ + αδ + αγ

∫ 1

0

1
p(t)

dt, and write

(2.2) u(t) =
1
ρ
[δ + γτ1(t)], v(t) =

1
ρ
[β + ατ0(t)].

Note that γv + αu ≡ ρ. Define

(2.3) G(t, s) =

{
u(t)v(s)p(s), 0 ≤ s ≤ t ≤ 1,
v(t)u(s)p(s), 0 ≤ t ≤ s ≤ 1.

Denote θ(s) = τ1(s) for s ∈ (0, 1) when β > 0, δ = 0; θ(s) = τ0(s) for s ∈ (0, 1)
when β = 0, δ > 0; θ(s) = τ0(s) for s ∈ [0, 1

2 ], and θ(s) = τ1(s) for s ∈ (1
2 , 1]

when β = 0, δ = 0. Write
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4(px′)
∣∣∣
tk

= lim
ε→+0

[p(tk + ε)x′(tk + ε) − p(tk − ε)x′(tk − ε)],

and introduce the following condition (see [1]):

(2.4) 4(px′)
∣∣∣
tk

= − γIk(x(tk))
δ + γτ1(tk)

, k = 1, 2, ...,m.

Similar to Lemma 1 of [1], we have the following Lemma.

Lemma 2.1. If x ∈ P is a solution of the following integral equation

x(t) = (Ax)(t) =
∫ 1

0
G(t, s)f(s, x(s), (Hx)(s), (Sx)(s))ds

+ (δ + γτ1(t))
∑

0<tk<t

Ik(x(tk))
δ + γτ1(tk)

(2.5)

then x is a positive solution of (1.1) satisfying condition (2.4).

Lemma 2.2. The following estimate holds

G(t, s) ≤ θ(s)p(s), t, s ∈ [0, 1], s 6= 0, 1.

Proof. It is straight forward, see [5], or see Appendix. 2

In order to show the existence of positive solutions, we now make the fol-
lowing assumptions:

(H1) f(t, x, y, z) ≤ ψ(t)φ(x, y, z), where ψ ∈ C[(0, 1), R+], φ ∈ C[R+ ×

R1 × R1, R+] and
∫ 1

0
θ(s)p(s)ψ(s)ds < ∞.

(H2) θ(s)p(s) is bounded for s ∈ (0, 1).

(H3) lim
x→∞

Ik(x)
x

= 0, k = 1, 2, ...,m.

(H4) lim
|x|+|y|+|z|→∞

φ(x, y, z)
|x| + |y| + |z|

≤ λ, λ > 0.

(H5) λ[1+M +M1]
∫ 1

0
θ(s)ψ(s)p(s)ds <

1
m + 1

, where M = max{k(t, s) :

t, s ∈ [0, 1]},M1 = max{k1(t, s) : t, s ∈ [0, 1]}.
(H6) For any h > 0, there exist y ∈ C[0, 1] with y(t) ≥ 0 for t ∈ [0, 1] and

y(t) 6≡ 0 such that f(t, x, y, z) ≥ y(t) for t ∈ (0, 1), x, y, z ∈ (0, h].
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Lemma 2.3. Assume (H1) holds, and φ(x, y, z) is bounded on (0, 1)× [0,M ]
×[0,M ], where M > 0 is arbitrary. Then the operator A maps P ∗ into P and
is completely continuous, where P ∗ = {x ∈ P : x(t) > 0, t ∈ (0, 1)}.

Proof. For any x ∈ Q, where Q is a bounded subset of P , we have that

(2.6) f(s, x(s),Hx, Sx) ≤ Cψ(s),

where C is a constant. Define

y1(t) =
∫ 1

0
G(t, s)f(s, x(s), (Hx)(s), (Sx)(s))ds = (A1x)(t),

y2(t) = (δ + γτ1(t))
∑

0<tk<t

Ik(x(tk))
δ + γτ1(tk)

= (A2x)(t).

From [5] we know that y1 ∈ C[0, 1] and A is continuous and maps bounded
sets into bounded sets, where P ∗ and P have induced topology from PC(J),
see Appendix for complete proof. When t ∈ (0, 1), t 6= tk, we can directly get

(2.7) −p(t)y′1(t) =
γ

ρ

∫ t

0
vpfds − α

ρ

∫ 1

t
upfds.

Because the proofs of other cases are similar, we now only consider the case
of β = δ = 0, α = γ = 1. Then from (2.6) we have

|p(t)y′1(t)| ≤ C

∫ t

0
τ0pψds + C

∫ 1

t
τ1pψds.

Notice the fact that∫ 1

0

1
p(t)

(
∫ t

0
τ0pψds)dt =

∫ 1

0
τ0τ1ψpdt < ∞,

∫ 1

0

1
p(t)

(
∫ 1

t
τ1pψds)dt =

∫ 1

0
τ0τ1ψpdt < ∞.

Hence {y1(t)} is pre-compact for x ∈ Q. Similarly we can prove that {y2(t)}
is pre-compact for x ∈ Q. As a result, A is completely continuous. The proof
is complete. 2

Theorem 2.4. Suppose (H1)–(H5) hold and φ(x, y, z) is bounded on (0, 1)×
[0, M ]×[0,M ] for arbitrary M > 0. Then problem (1.1) has a positive solution
x ∈ PC(J).
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Proof. From the definition of A2 and condition (H3), it is easy to show that

(2.8) ‖A2x‖ ≤ εC‖x‖ + C(ε)

Let M and M1 be as in condition (H5). From our assumptions we know that

φ(x, y, z) ≤ (λ + ε)(|x| + |y| + |z|) + C(ε), x, y, z > 0.

Hence

‖A1x‖ ≤
∫ 1

0
θψpφ(x,Hx, Sx)ds

≤
∫ 1

0
θψpds(λ + ε)(‖x‖ + M‖x‖ + M1‖x‖) + C(ε).

Choose ε such that
∫ 1
0 θψpds(λ + ε)(1 + M + M1) < 1 and we obtain

lim
‖x‖→∞

‖A1x‖
‖x‖

< 1.

Then the fixed point theorem of cone compression (see [6]) yields the required
solution. The proof is complete. 2

§3. THE x-SINGULAR CASE

In this section we will give an existence principle when the function f(t, x, y, z)
is unbounded. First, consider the following approximate problem:

(3.1)



(p(t)x′(t))′ + p(t)fn(t, x(t), (Hx)(t), (Sx)(t)) = 0,
t ∈ (0, 1), t 6= tk, k = 1, 2, ...,m,

lim
ε→+0

[x(tk + ε) − x(tk − ε)] = Ik(x(tk)),

x(t) is left continuous at t = tk, k = 1, 2, ...,m,
αx(0) − β lim

t→0
p(t)x′(t) = γx(1) + δ lim

t→1
p(t)x′(t) = 0

where fn(t, x, y, z) = f(t, max{ 1
n , x}, y, z). Suppose (H1)–(H5) hold. Then

from Theorem 2.4 we know that problem (3.1) is solvable for any integer
n ≤ 1. Moreover, the solutions of (3.1) satisfy (2.4).

Lemma 3.1. Suppose (H1)–(H5) hold. Then there exists a constant R > 0
independent of n such that 0 ≤ x(t) ≤ R, t ∈ [0, 1] for any positive solution x
of (3.1).
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Proof. Let x be a positive solution of (3.1).
(1) Suppose ‖x‖ = x(0). From the boundary condition we know

β lim
t→0

p(t)x′(t) = αx(0) ≥ 0. Obviously lim
t→0

p(t)x′(t) ≤ 0, thus β lim
t→0

p(t)x′(t) =
0. As a result we can deduce α = 0, and furthermore, β > 0 with
lim
t→0

p(t)x′(t) = 0. As stated above, in this case δ = 0, henceforth x(1) = 0.

Then from (3.1) and (2.4) we get x′(t) < 0 for t ∈ (0, 1), t 6= tk. Choose T > 1
such that

φ(x, y, z) ≤ (λ + ε)(|x| + |y| + |z|) for |x| + |y| + |z| ≥ T

Without loss of generality we can assume that there exists t∗k ∈ (tk−1, tk] with
x(t∗k) = T , and ‖x‖ > T . In the following we assume that t0 = 0, tm+1 = 1
for convenience. Now we begin with the first interval [0, t1]. In the case of
x(t1) ≤ T , we then choose t∗1 ∈ (0, t1] such that x(t∗1) = T . By integration we
get for t < t∗1 that

−p(t)x′(t) ≤
∫ t

0
p(s)fn(s, x(s),Hx, Sx)ds

≤ (λ + ε)
∫ t

0
p(s)ψ(s)(x + Hx + Sx)ds

≤ (λ + ε)‖x‖(1 + M + M1)
∫ t

0
p(s)ψ(s)ds.(3.3)

Thus we have

x(0) − T ≤ (λ + ε)‖x‖(1 + M + M1)
∫ t∗1

0
p(s)ψ(s)τ1(s)ds

≤ (λ + ε)‖x‖(1 + M + M1)
∫ t1

0
p(s)ψ(s)θ(s)ds.(3.4)

From condition (H5), by letting ε be small enough we can get the required
constant R > 0 such that ‖x‖ ≤ R. If on the other hand x(t1) > T , then we
integrate (3.3) on [0, t1]. Thus we get

(3.5) x(0) − x(t1) ≤ (λ + ε)‖x‖(1 + M + M1)
∫ t1

0
ψ(s)θ(s)p(s)ds.

Because x satisfies (2.4) we know px′
∣∣∣
t1+0

≤ 0. Then integration on [t1, t] with
t < t∗2 yields

(3.6) −p(t)x′(t) ≤ −px′
∣∣∣
t1+0

+ (λ + ε)‖x‖(1 + M + M1)
∫ t

t1
pψds

where t∗2 belongs to (t1, t2) or t∗2 = t2. From (2.4) we get

(3.7) −px′
∣∣∣
t1+0

= −px′
∣∣∣
t1−0

+
γI1(x(t1))
δ + γτ1(t1)

.
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From (H3) we have C(ε) > 0 dependent of ε such that

(3.8) Ik(x) < εx + C(ε), x > 0, k = 1, 2, ...,m.

Moreover (3.3) yields

(3.9) −px′
∣∣∣
t1−0

≤ (λ + ε)‖x‖(1 + M + M1)
∫ t1

0
ψpds.

Together with (3.7) we can deduce that

(3.10) −px′
∣∣∣
t1+0

≤ (λ + ε)‖x‖(1 + M + M1)
∫ t1

0
ψpds + εC‖x‖ + C(ε).

Combining (3.6) and (3.10) yields (Note that θ = τ1 in this case):

x(t1 + 0) − x(t∗2)

≤ (λ + ε)‖x‖(1 + M + M1)(
∫ t2

t1

1
p
ds)(

∫ t1

0
ψpds) + εC‖x‖ + C(ε)

+ (λ + ε)‖x‖(1 + M + M1)
∫ t2

t1

[ 1
p(t)

∫ t

t1
ψp(s)ds

]
dt

≤ (λ + ε)‖x‖(1 + M + M1)
∫ t1

0
ψpθds + εC‖x‖ + C(ε)

+ (λ + ε)‖x‖(1 + M + M1)
∫ t2

t1
ψpθds.

Using 4x
∣∣∣
t1

> 0, (2.4) and (3.5) we then obtain

x(0) ≤ x(t∗2) + (λ + ε)‖x‖(1 + M + M1)
∫ t2

0
ψpθds + εC‖x‖

+ C(ε) + (λ + ε)‖x‖(1 + M + M1)
∫ t1

0
ψpθds.(3.11)

If x(t∗2) = T , then the proof is complete by letting ε be small enough. If
x(t2) > T and t∗2 = t2 we can get (3.11) for t∗2 = t2. Then inequalities similar
to (3.5)–(3.11) hold. Thus by induction we finally have

x(0) ≤ x(t∗k) + (λ + ε)‖x‖(1 + M + M1)
∫ tk

0
ψpθds + εC‖x‖

+ C(ε) + (k − 1)(λ + ε)‖x‖(1 + M + M1)
∫ tk

0
ψpθds.(3.12)

By (H5) we can choose ε small, and the required R exists.
(2) Suppose ‖x‖ = x(1), then γ = 1, δ = 0, and lim

t→1
p(t)x′(t) = 0. The rest

of the proof is similar to step (1).
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(3) Suppose ‖x‖ = x(t0), where t0 ∈ (tk−1, tk). First assume α = 0, β > 0,
then x′(t0) = 0, and θ(s) = τ1(s). So the proof is similar to case (1). If
β = δ = 0, α = γ = 1, then we can distinguish between two cases: t0 ≤ 1

2
and t0 ≥ 1

2 . Integration on [t0, 1] and [0, t0] respectively will yield the required
estimate.

(4) Suppose ‖x‖ = x(tk+0), 1 ≤ k ≤ m. Then x′(tk+0) ≤ 0, and x′(t+0) <
0 for t ∈ (tk, 1). If lim

t→0
p(t)x′(t) = 0 we can prove as in case (1) that x(0) ≤ R.

Thus condition (H3) implies that ‖x‖ is bounded.
Now assume that x′ has one zero to in [0, tk] ( including right limit zeros ).

From equation (3.1) and conditon (2.4), we know that x′(t) ≤ 0 for t ∈ (t0, 1)\
{t1, t2, ..., tm}. Then from the impulse conditions lim

ε→+0
[x(tj + ε)−x(tj − ε)] =

Ij(x(tj)) for j = 1, 2, ...,m and (3.8) we get

(3.13) ‖x‖ = x(tk + 0) ≤ mε‖x‖ + C(ε) + x(t∗∗ + 0), t∗∗ ∈ [t0, tk).

By essentially the same way as in the proof of (3.12) of step (1), we get

x(t0 + 0) ≤ x(t∗k) + (λ + ε)‖x‖(1 + M + M1)
∫ tk

0
ψpθds + εC‖x‖ + C(ε)

+ (k − 1)(λ + ε)‖x‖(1 + M + M1)
∫ tk

0
ψpθds(3.14)

where t∗k satisfies t∗k = tk, or x(t∗k) = T and t∗k ∈ (t0, tk). If x(t∗k) = T then
(3.14) becomes

x(t0 + 0) ≤ T + (λ + ε)‖x‖(1 + M + M1)
∫ tk

0
ψpθds + εC‖x‖ + C(ε)

+ (k − 1)(λ + ε)‖x‖(1 + M + M1)
∫ tk

0
ψpθds.(3.15)

Thus the inequalities (3.13) and (3.15) yield

‖x‖ ≤ T + (λ + ε)‖x‖(1 + M + M1)
∫ tk

0
ψpθds

+ εC‖x‖ + C(ε) + mε‖x‖

+ (k − 1)(λ + ε)‖x‖(1 + M + M1)
∫ tk

0
ψpθds.(3.16)

If on the other hand t∗k = tk, then let t∗∗ = tk in (3.13), and together with
(3.14) we get that (3.16) holds. By letting ε be small enough we know that
the required estimate holds.

Finally let x′ have no zeros in [0, tk]. If x′(tk − 0) ≥ 0, then from (2.4) and
(3.8) we have

(3.17) 0 ≤ −px′
∣∣∣
tk+0

≤ −4(px′)
∣∣∣
tk

≤ Cε‖x‖ + C(ε),
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(3.18) 0 ≤ −px′
∣∣∣
tk−0

≤ −4(px′)
∣∣∣
tk

≤ Cε‖x‖ + C(ε).

Since the proofs are similar we only consider the case of β > 0, δ = 0. Thus
γ = 0 and x(1) = 0. By integration, instead of lim

t→0
p(t)x′(t) = 0 (or x′(t0) = 0),

we can use inequality (3.17). Then similar to (3.3)–(3.12) we can easily obtain

‖x‖ ≤ T + (λ + ε)‖x‖(1 + M + M1)
∫ 1

tk

ψpθds + εC‖x‖ + C(ε)

+ mCε‖x‖ + (m − k)(λ + ε)‖x‖(1 + M + M1)
∫ 1

tk

ψpθds.

Consequently our lemma is ture. Next from the boundary condition, we have
αx(0) = β lim

t→0
p(t)x′(t). If α = 0, then β > 0 and lim

t→0
p(t)x′(t) = 0. Thus from

equation (3.1) and condition (2.4) we know that ‖x‖ = x(0), and this is exactly
case (1). If α > 0, x(0) = 0, then lim

t→0
p(t)x′(t) ≥ 0. When lim

t→0
p(t)x′(t) = 0,

this is again case (1). Now we need to consider the case of lim
t→0

p(t)x′(t) > 0. If

on the other hand α > 0, x(0) > 0, then β > 0, and lim
t→0

p(t)x′(t) > 0. In both

cases we finally know that x′(t) > 0 when t belongs to some neighbourhood of
zero. Therefore we can choose tj with 1 ≤ j ≤ k − 1 such that x′(tj + 0) ≤ 0
and x′(tj − 0) ≥ 0 (Notice that we have already assumed that x′(t) has no
zeros). Moreover x′(t) ≤ 0 for t ∈ (tj , 1) \ {t1, t2, ..., tm}. Note that we can
use inequalities (3.17) and (3.18) instead of the condition x′(t0) = 0. Let
t0 = tj in inequality (3.13). Then by essentially the same way as in the proof
of inequalities (3.13)–(3.16), we can prove that (3.13)–(3.16) still hold. The
only difference is using t0 instead of tj . The proof is complete. 2

Lemma 3.2. Let (H1)–(H6) hold. Then there exists x∗ such that x∗(t) > 0
for t ∈ (0, 1) and x(t) ≥ x∗(t), t ∈ (0, 1), where x is any solution of the problem
(3.1).

Proof. From (2.5), Lemma 3.1 and (H6), let h = 1 + R + M + M1 and

x∗(t) =
∫ 1

0
G(t, s)y(s)ds.

Then it is easy to show that x∗ is the required function. 2

Now we assume that (H1)–(H6) hold, and φ(x, y, z) ≥ 1 without loss of

generality. Let a(x, y, z) =
φ(x, y, z)

x
, and

b(u) = sup{a(x, y, z) : x ∈ (u,R + 1], y, z ∈ [0, (R + 1)(1 + M + M1)]}.

T (u) =
∫ u

0

1
b(v)

dv.
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Lemma 3.3. Let x be a solution of (3.1). Denote by t0x the zeros of x′(t).
Then there exists η independent of n such that

(i) t0x ≤ 1 − η , when β > 0, δ = 0.
(ii) t0x ≥ η, when δ > 0, β = 0.
(iii) η ≤ t0x ≤ 1 − η , when β = δ = 0.

where n is any integer.

Proof. The proof of this lemma is essentially the same as that of Lemma
4.4 of [5]. Thus it is omitted. 2

Lemma 3.4. Assume (H1)–(H6) hold. Then there exists w(t) ∈ L1(0, 1)
such that ∣∣∣ d

dt
T (x(t))

∣∣∣ ≤ w(t), t 6= tk, k = 1, 2, ...,m

where x is any solution of (3.1).

Proof. From the proof of Lemma 3.1 we know that there are only three cases
of x(t) to be considered.

(1) lim
t→0

p(t)x′(t) = 0 or lim
t→1

p(t)x′(t) = 0. Since the proofs of two cases are

similar, we only consider the case of lim
t→0

p(t)x′(t) = 0, hence α = 0, β > 0, and

x decreases on (tk−1, tk), k = 1, 2, ...,m. Integration on (0, t1) yields

−px′ ≤ C

∫ t

0
pψb(x)ds ≤ Cb(x)

∫ t

0
ψpds.

Let z(t) = T (x(t)). Then from (H1) we know

|z′(t)| ≤ C

p(t)

∫ t

0
ψpds ∈ L1(0, t1).

From (2.4) we have −px′
∣∣∣
t1+0

≤ C, hence for t ∈ (t1, t2) we have

|px′| ≤ C +
∫ t2

t1
ψφpds ≤ C.

Similarly |x′| ≤ C for t ∈ [t1, tm] and |z′| ≤ C. For t ∈ (tm, 1), we have (Notice
that b ≥ 1

1+R)

|px′| ≤ C + C

∫ t

tm
ψφpds ≤ C + Cb(x)

∫ t

tm
ψpds,

|z′| ≤ C

p(t)
+

C

p(t)

∫ t

tm
ψpds ∈ L1(0, 1).
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(2) x′ has one zero t0 in (0, 1), including limit zeros. According to the
boundary conditions, we have the following three cases to be considered:

(i) β > 0, δ = 0,
(ii) δ > 0, β = 0,
(iii) β = δ = 0.

However, proofs of the lemma in these three cases are similar. So for brevity
we only consider the third case, i.e., the case of β = δ = 0 and α = γ = 1.
Then Lemma 3.3 yields η ≤ t0 ≤ 1−η . Now we can assume η ≤ t1, 1−η ≥ tm
for convenience. By integration and condition (3.4) we get C > 0 independent
of n such that

(3.19) |x′(t)| ≤ C, t ∈ [η, 1 − η].

Since b decreases and x increases, integration of (3.1) on (t, t1] yields:

p(t)x′(t) − p(t1)x′(t1)

≤
∫ t1

t
p(s)ψ(s)max{ 1

n
, x(s)}a(max{ 1

n
, x(s)}, (Hx)(s), (Sx)(s))ds

≤ (R + 1)
∫ t1

t
p(s)ψ(s)b(x(s))ds.(3.20)

Thus from (3.19) we have

(3.21) |px′| ≤ C + C

∫ t1

t
ψpb(x)ds ≤ C + Cb(x)

∫ t1

t
ψpds.

Let z(t) = T (x(t)), then

(3.22) |z′| ≤ C + C
1
p

∫ t1

t
ψpds ∈ L1(0, t1).

Similarly we can get

(3.23) |z′| ≤ C + C
1
p

∫ t

tm
ψpds ∈ L1(tm, 1).

(3) There exists tk, 1 ≤ k ≤ m, such that x′(tk + 0) < 0, x′(tk − 0) > 0. As
in the proof of Lemma 3.1, we know in this case that

(3.24) |x′(tk ± 0)| ≤ C.

where C is independent of n. Thus we can also prove that (3.19) is true.
Following the above steps (3.20)–(3.23), it is easy to get the required estimate.
The proof is complete. 2

Now we come to our main theorem of this section.
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Theorem 3.5. Suppose (H1)–(H6) hold. Then problem (1.1) has a positive
solution satisfying (2.4).

Proof. Let xn be solutions of (3.1), and zn = T (xn). From the above Lemma
3.1, Lemma 3.4 and the Arzela-Ascoli theorem we may assume zn converges.
Thus we know xn → x in C[0,1]. Because p(t) is positive on (0,1) we can
assume without loss of generality that xn → x in PC1[ε, 1−ε], where ε ∈ (0, 1)
is arbitrary, and where PC1[ε, 1 − ε] = {x : x is continuously differentiable at
t 6= tk, and left continuous at t = tk, and x(tk+0), x(tk−0), x′(tk+0), x′(tk−0)
exist for k = 1, 2, ...,m}, equipped with the norm

‖x‖1 = max{‖x‖, ‖x′‖}.

Hence x satisfies (2.4) and the impulsive conditions. If β = δ = 0, α = γ = 1,
then x satisfies the boundary conditions and by integration we have

p(η)x′
n(η) − p(t)x′

n(t) =
∫ t

η
p(s)fn(s, xn,Hxn, Sxn)ds.

From the continuity of f we obtain

p(η)x′(η) − p(t)x′(t) =
∫ t

η
p(s)f(s, x,Hx, Sx)ds.

Thus x is a solution of (1.1). If β > 0, δ = 0, then similar to [5] we can prove
x is a solution of (1.1). 2

Remark 3.6. Our conditions are weaker than those of [5], [7] even in the
non-impulsive cases.

APPENDIX

In this appendix, we will give detailed proof of Lemma 2.2, and will prove that
the oprator A in page 70 is continuous and maps bounded sets into bounded
sets.
Proof of Lemma 2.2. First from the definiton of u(t), v(t) , and the condition∫ 1

0

1
p(t)

dt < ∞, we know that u(t) is decreasing and v(t) is increasing, and

u, v ∈ C[0, 1]. Thus from the definition of G(t, s) we have that

(A1) G(t, s) ≤ u(s)v(s)p(s), for t, s ∈ [0, 1].
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Case (1). Suppose that β > 0, δ = 0. Then

ρ2 = βγ + αγ

∫ 1

0

1
p(t)

dt,

u(s) =
γ

ρ
τ1(s), v(s) =

1
ρ
[β + ατ0(s)],

and θ(s) = τ1(s). Thus from (A1) we have that

G(t, s) ≤ 1
ρ2

[β + ατ0(s)]γτ1(s)p(s) ≤ p(s)θ(s).

Case (2). Suppose that β = 0, δ > 0. Proof of this case is similar to that
of the case (1).

Case (3). Suppose that β = δ = 0. Then

ρ2 = αγ

∫ 1

0

1
p(t)

dt, u(s) =
γ

ρ
τ1(s), v(s) =

α

ρ
τ0(s),

and θ(s) = τ0(s), for s ∈ (0, 1
2); θ(s) = τ1(s), for s ∈ (1

2 , 1). Thus from (A1)
we have that

G(t, s) ≤ 1
ρ2

αγτ0(s)τ1(s)p(s) ≤ p(s)θ(s).

The proof is complete.
Proof of the properties of the oprator A in page 70: Now we shall prove that
the oprator A in page 70 is continuous and maps bounded sets into bounded
sets, where the domain of A is P ∗, and the range of A is P ; both have induced
topology from PC(J). Let the oprators A1, A2 be the same as those in the
proof of Lemma 2.3. We will give the whole proof in the following three steps:

(1) A1 maps P ∗ into P .
In fact, let x ∈ P ∗, y1(t) = (A1x)(t). Because φ(x, y, z) is bounded on

(0, 1) × [0,M ] × [0,M ], where M is arbitrary, we can choose constant C such
that

(A2) G(t, s)f(s, x(s), (Hx)(s), (Sx)(s)) ≤ Cθ(s)p(s)ψ(s) ∈ L1(0, 1).

It is clear that G(t, s) is continuous on [0, 1] × [0, 1]. Thus from Lebesgue’s
convergence theorem of dominance we know that y1(t) is continuous, and thus
belongs to P.

(2) A1 is continuous and maps bounded sets into bounded sets.
In fact, let E be a bounded set in P ∗. Then we can choose a constant C as

in step (1) such that the estimate (A2) holds, which immediately yields that
A1(E) is a bounded set in P. Next let x0 ∈ P ∗ be fixed and x ∈ P ∗ such that
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‖x − x0‖ ≤ 1. Let ε ∈ (0, 1
2). Then for t ∈ (0, 1) there exists constant C such

that

|(A1x)(t) − (A1x0)(t)|

≤ C

∫ ε

0
p(s)θ(s)ψ(s)ds + C

∫ 1

1−ε
p(s)θ(s)ψ(s)ds

+
∫ 1−ε

ε
p(s)θ(s)ψ(s) |f(s, x,Hx, Sx) − f(s, x0,Hx0, Sx0)|ds.

Since f(s, x, y, z) is continuous on (0, 1) × (0,∞) × (0,∞) × [0,∞), it is easy
to show that A1 is continuous.

(3) Clearly A2 maps P ∗ into P , and from the continuity of Ik, k = 1, 2, ...,m
we know that there are constants such that for x, x0 ∈ P ∗ the following esti-
mates hold:

|(A2x)(t) − (A2x0)(t)| ≤ C
m∑

k=1

|Ik(x(tk)) − Ik(x0(tk))|

|(A2x)(t)| ≤ C
m∑

k=1

|Ik(x(tk))|

Hence it is easy to show that A2 is continuous and maps bounded sets into
bounded sets. The proof is complete.
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