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Abstract. Regular general connections of conformal type provided for space-
times are investigated. Using the Hessian-type tensors of time function, certain
isometric decomposition theorems of space-times can be obtained. The null
geodesics concerning the general connection of conformal type are defined and
a criterion for its incompleteness is researched.

AMS 1991 Mathematics Subject Classification. Primary 53C05, 53B30.

Key words and phrases. General connection, Time function, Lorentzian twisted
product.

§0. Introduction

The concept of general connections was introduced by Tominoske Otsuki [14]
and the fundamental theories on general connections were constructed in
[15],[16],[19]. Recently the general connection is also called the Otsuki connec-
tion outside of Japan. It seems to be remarkable that the theories of general
connections were applied to the geometrical investigations of space-times by
H.Nagayama [10],[11] and T.Otsuki [17], [18],[20],[21]. On the other hand,
N.Abe [1],[2],[3] developed the theory of general connections on arbitrary vec-
tor bundles, in particular, H.Nemoto [12] discussed a differential geometry of
submanifolds using the induced general connections on tangent subbundles.

In the paper, we investigate space-times provided with certain kind of gen-
eral connections and define the Hessian-type tensors of time function with
respect to such general connections.

This paper is organized as follows:In Sect.1, the pseudo-Riemannian twisted
products are equipped with torsion-free, metrical, regular general connections
and the induced general connections on the factor manifolds are researched. In
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Sect.2, the quasi-Hessian tensor of a function relative to a torsion-free general
connection is defined by using the notion of tangent bundle of order 2. And
also the regular general connection of conformal type is defined. In Sect.3,
the regular general connection of conformal type is given to a simply con-
nected space-time admitting a time function such that every timelike geodesic
is complete. On such a space-time, a certain foliated structure is assumed,
which concerns with the level hypersurfaces of time function and the princi-
pal endomorphism of given general connection. By supposing that a certain
Hessian-type tensor of time function is symmetric and a scalar multiple of
Lorentzian metric, a globally-isometric decomposition theorem is established.
In Sect.4, the null geodesic is defined in the sense of the regular general con-
nection of conformal type and a criterion for its geodesic incompleteness can
be obtained in the space-time decomposed as a certain Lorentzian warped
product. As an application, the isometric decomposition theorem obtained in
Sect.3 is applied to the space-time given a regular general connection of scalar
type.

In case of defining the Hessian-type tensors, we require the notion of the
tangent bundle of order 2 appeared in [14], for the reason, we shall review the
definition of a general connection due to T.Otsuki.

The following exposition of general connections is owing to Otsuki’s papers
[15],[19]:

Let N be an n-dimensional differentiable manifold. Throughout the paper,
we use the Einstein convention for summation. Now we choose any different
coordinate neighborhood (U, ui) and (V, vj) covering a point p of N . Then
we assign for the point p an (n + n2)-dimensional vector space spanned by
the tensor products dui ⊗ duj and the differentials d2ui of order 2, which are
related with the ones of (V, vi) as follows:

d2vj =
∂vj

∂ui
d2ui +

∂2vj

∂ui∂uk
dui ⊗ duk.

Now we call this vector space the cotangent space of order 2 at p, denoting
hy D2

pN . Collecting D2
pN for every p of N , we get the cotangent vector bundle

of order 2 over N , which is denoted by D2N . The dual vector bundle of D2N
is called the tangent bundle of order 2 over N and denoted by T 2N . A smooth
cross-section Γ of the vector bundle TN ⊗D2N over N is said to be a general
connection on N , which is represented in local coordinates ui as follows:

∂

∂ui
⊗ (P i

jd
2uj + Γi

jkduj ⊗ duk),

where P i
j , Γi

jk are called the components of Γ in (U, ui). If P ′i
j , Γ′ i

jk are the
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components of Γ in (V, vi), then we have the following relations:

(0.1) P ′i
j =

∂vi

∂uk
P k

h

∂uh

∂vj
,

and

(0.2) Γ′i
jk =

∂vi

∂uh
(P h

r

∂2ur

∂vj∂vk
+ Γh

rs

∂ur

∂vj

∂us

∂vk
).

Thus P i
j are the components of a tensor of type (1, 1 ), which we denote by

P . P is called the principal endomorphism of Γ.

(0.3) ∇XY := (Xi ∂Y j

∂ui
P k

j + X iY jΓk
ij)

∂

∂uk
,

where X = Xi∂/∂ui, Y = Y i∂/∂ui and the right hand side of (0.3) is inde-
pendent of the choice of coordinate system, since the formula (0.1) and (0.2)
hold. Then we have the following rules:

(0.4) ∇fX+Y Z = f∇XZ + ∇Y Z,

(0.5) ∇X(fY + Z) = (Xf)PY + f∇XY + ∇XZ.

In the paper, we denote by Γ = (P,∇) a general connection such that P
is the principal endomorphism of Γ and ∇ is the covariant derivative with
respect to Γ. A general connection Γ = (P,∇) is said to be torsion-free if for
all tangent vector fields X, Y on N ,

(0.6) P [X,Y ] = ∇XY −∇Y X.

If det(P i
j (p)) 6= 0 at every point p of N , then Γ = (P,∇) is said to be regular.

Suppose (N, g) is a pseudo-Riemannian manifold and Γ = (P,∇) a general
connection on N . Then we say that Γ is metrical with respect to g if

(0.7) Zg(PX,PY ) = g(∇ZX,PY ) + g(PX,∇ZY )

for all tangent vector fields X, Y and Z on N .
Throughout the paper, we use the following notation: TN , the tangent

bundle over N ; V N , the vector space of smooth cross sections of TN ; T 2N ,
the tangent bund1e of order 2 over N ; V 2N , the vector space of smooth cross
sections of T 2N ; FN , the vector space of smooth functions on N ; Dϕ, the
differential map of a smooth map ϕ.
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§1. Induced general connections

Let (L, g) and (H,h) be a pseudo-Riemannian manifold and a Riemannian
manifold, respectively. Let ψ be a positive-valued smooth function on the
product manifold L × H.

Definition 1.1. We define the pseudo-Riemannian twisted product M =
L ×ψ H as follows: M is the product manifold equipped with the pseudo-
Riemannian metric g̃ defined for v, w ∈ TpM by

g̃p(v, w) := gπ(p)((Dπ)pv, (Dπ)pw) + ψ(p)hη(p)((Dη)pv, (Dη)pw),

where π:M → L and η: M → H denote the projection maps.

Definition 1.2. TL (resp., TH) is said to be P -invariant if (Dη)X = 0
implies (Dη)PX = 0 (resp., (Dπ)X = 0 implies (Dπ)PX = 0) for X ∈ V M .

Theorem 1.3. If we give a general connection Γ = (P,∇) to the twisted
product M = L ×ψ H of (L, g) and (H,h), then there exist general connec-
tions Γ1 = (P 1,∇1) and Γ2 = (P 2,∇2) induced on π−1(TL) and η−1(TH),
respectively. Furthermore the following (a), (b) and (c) are valid:
(a) If Γ is torsion-free, then Γ1 and Γ2 are torsion-free.
(b) Suppose that Γ is metrical with respect to g̃. Then

(b1) Γ1 is metrical with respect to g, if TL is P -invariant.
(b2) Γ2 is metrical with respect to h, if TH is P -invariant and ψ depends

only on L.
(c) Suppose that Γ is regular. If TL and TH are P -invariant, then Γ1 and Γ2

are regular.

Proof. Let X,Y ∈ V (π−1(TL)). For a general connection (P,∇) on
M = L ×ψ H, we define the maps ∇1:V (π−1(TL)) × V (π−1(TL)) →
V (π−1(TL)) (resp., ∇2: V (η−1(TH)) × V (η−1(TH)) → V (η−1(TH)) and
P 1: V (π−1(TL)) → V (π−1(TL)) (resp., P 2: V (η−1(TH)) → V (η−1(TH))) by

∇1
XY := (Dπ)∇XY and P 1X := (Dπ)PX

(resp., ∇2
UW := (Dη)∇UW and P 2U := (Dη)PU for U,W ∈ V (η−1(TH))),

where we are identifying X and U with (X, 0) ∈ V (L × H) and (0, U) ∈
V (L × H), respectively. Then we have for f ∈ FL and Z ∈ V (π−1(TL)),

∇1
fX+Y Z = (Dπ)(∇fX+Y Z)

= (Dπ)(f∇XZ) + (Dπ)(∇Y Z) = f∇1
XZ + ∇1

Y Z.
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Similarly we have
∇1

X(Y + Z) = ∇1
XY + ∇1

XZ.

Also we obtain

∇1
X(fY ) = (Dπ)∇X(fY ) = (Dπ)((Xf)PY + f∇XY )

= (Xf)P 1Y + f∇1
XY.

Consequently, (P 1,∇1) defines a general connection Γ1 on π−1(TL) such that
its principal endomorphism is P 1. Similarly we obtain the induced general
connection Γ2 = (P 2,∇2) on η−1(TH). Let Γ be torsion-free and X, Y ∈
V (π−1(TL)). Then we have

∇1
XY −∇1

Y X = (Dπ)(∇XY −∇Y X)
= (Dπ)(P [X,Y ]) = P 1[X,Y ],

which implies Γ1 is torsion-free. Similarly we see Γ2 is torsion-free.
Let Γ be metrical with respect to g̃ and let X, Y , Z ∈ V (π−1(TL)) and U, V,

W ∈ V (η−1(TH)). From the direct computations, we obtain the following

Zg(P 1X,P 1Y )(1.1)
= g(∇1

ZX,P 1Y ) + g(P 1X,∇1
ZY ) + ψh((Dη)∇zX, (Dη)PY )

+ ψh((Dη)PX, (Dη)∇ZY ) − Z(ψh(Dη)PX, (Dη)PY )),

and

Wh(P 2U,P 2V )(1.2)
= h(∇2

W U,P 2V ) + h(P 2U,∇2
wV ) − ψ−1Wg((Dπ)PU, (Dπ)PV )

+ ψ−1g((Dπ)∇W U, (Dπ)PV ) + ψ−1g((Dπ)PU, (Dπ)∇W V )
− ψ−2(Wψ){g̃(PU,PV ) − g((Dπ)PU, (Dπ)PV )}.

If TL be P -invariant, then the formula (1.1) implies

Zg(P 1X,P 1Y ) = g(∇1
ZX,P 1Y ) + g(P 1X,∇1

ZY ),

that is, Γ1 is metrical with respect to g. If TH is P -invariant and ψ depends
only on L, then from the formula (1.2), we have

Wh(P 2U,P 2V ) = h(∇2
W U,P 2V ) + h(P 2U,∇2

W V ),

that is, Γ2 is metrical with respect to h. Thus we have (b1) and (b2).
Let x ∈ M and detP (x) the determinant of linear transformation P (x) =

(P i
j (x)) on TxM induced by the principal endomorphism P of Γ. Then since

TL and TH are P -invariant, we have for every point x of M

det P (x) = (det P 1(x))(det P 2(x)),

where P 1(x) (resp., P 2(x)) denotes the linear transformation induced by the
principal endomorphism of Γ1 (resp., Γ2). Thus we obtain (c). 2
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Definition 1.4. Γ1 = (P 1,∇1) and Γ2 = (P 2,∇2) are called the induced
general connections on π−1(TL) and η−1(TH), respectively.

Definition 1.5. A pseudo-Riemannian twisted product M = L×ψ H is said
to be a pseudo-Riemannian warped product if ψ depends only on L, and ψ
is called a warping function. In particular we say M a Lorentzian warped
product if (L, g) is a Lorentzian manifold.

In the following theorem, we lead an explicit formula with respect to the
induced connections defined in Theorem 1.3.

Theorem 1.6. Let M = L ×ψ H be a pseudo-Riemannian warped product
(L × H, g̃) given a regular general connection Γ = (P,∇) that is torsion-free
and metrical with respect to g̃. Let Γ1 = (P 1,∇1) and Γ2 = (P 2,∇2) be
the induced general connections on π−1(TL) and η−1(TH), respectively. If
TL and TH are P -invariant, moreover, P is symmetric with respect to g̃, i.e.
g̃(PX, Y ) = g̃(X,PY ) for any X,Y ∈ V M , then the following formula holds.

∇XY = ∇1
X1Y 1 + ∇2

X2Y 2 +
1
2
{X1(log ψ)PY 2 + Y 1(log ψ)PX2

− g̃(PX2, PY 2)Q(grad(log ψ))},

where Q denotes the inverse endomorphism of P and X1 (resp., X2) denotes
(Dπ)X (resp., (Dη)X ), respectively.

Proof. Let X, Y , Z ∈ V M . Throughout the proof, we shall identify
(Dπ)X ∈ V (π−1(TL)) with ((Dπ)X, 0) ∈ V M . Since Γ is torsion-free and
metrical with respect to g̃, we have

2g̃(∇XY, PZ)(1.3)
= Xg̃(PY, PZ) + Y g̃(PZ,PX) − Zg̃(PX,PY )

+ g̃(P [Z,X], PY ) + g̃(P [X,Y ], PZ) − g̃(P [Y,Z], PX).

(1.4) (Dπ)(PX) = (Dπ)(PX1) = P 1X1,

(Dη)(PX) = (Dη)(PX2) = P 2X2.

The identifications such as (1.4) are everywhere used in the proof. Similarly
as (1.3), using Theorem 1.3, we have

2{g(∇1
X1Y 1, P 1Z1) + ψh(∇2

X2Y 2, P 2Z2)}(1.5)
= X1g(P 1Y 1, P 1Z1) + Y 1g(P 1Z1, P 1X1) − Z1g(P 1X1, P 1Y 1)
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+ ψ{X2h(P 2Y 2, P 2Z2) + Y 2h(P 2Z2, P 2X2)
− Z2h(P 2X2, P 2Y 2)}

+ g(P 1[Z1, X1], P 1Y 1) + g(P 1[X1, Y 1], P 1Z1)
− g(P 1[Y 1, Z1], P 1X1)
+ ψ{h(P 2[Z2, X2], P 2Y 2) + h(P 2[X2, Y 2], P 2Z2)

− h(P 2[Y 2, Z2], P 2X2)}.

Since ψ depends only on L, we see

X1g(P 1Y 1, P 1Z1) + ψX2h(P 2Y 2, P 2Z2)(1.6)
= X{g(P 1Y 1, P 1Z1) + ψh(P 2Y 2, P 2Z2)} − (X1ψ)h(P 2Y 2, P 2Z2)
= Xg̃(PY, PZ) − (X1ψ)h(P 2Y 2, P 2Z2).

Using (1.3), (1.5), (1.6) and the P -invariance of TL and TH, we have

2{g(∇1
X1Y 1, P 1Z1) + ψh(∇2

X2Y 2, P 2Z2)}
= Xg̃(PY, PZ) + Y g̃(PZ,PX) − Zg̃(PX,PY ) + g̃(P [Z,X], PY )

+ g̃(P [X,Y ], PZ) − g̃(P [Y,Z], PX) − (X1ψ)h(P 2Y 2, P 2Z2)
− (Y 1ψ)h(P 2Z2, P 2X2) + (Z1ψ)h(P 2X2, P 2Y 2)

= 2g̃(∇XY, PZ) − (X1ψ)h(P 2Y 2, P 2Z2) − (Y 1ψ)h(P 2Z2, P 2X2)
+ (Z1ψ)h(P 2X2, P 2Y 2).

Consequently, we obtain

2{g(∇1
X1Y 1, P 1Z1) + ψh(∇2

X2Y 2, P 2Z2)}
= 2g̃(∇XY, PZ) − (X1(log ψ))g̃(P 2Y 2, P 2Z2)

− (Y 1(log ψ))g̃(P 2Z2, P 2X2) + (Z1(log ψ))g̃(P 2X2, P 2Y 2).

Thus, from the identifications such as (1.4 ) and PX1 = P 1X1, we have

2g̃(∇XY −∇1
X1Y 1 −∇2

X2Y 2, PZ)
= (X1(log ψ))g̃(P 2Y 2, PZ) + (Y 1(log ψ))g̃(P 2X2, PZ)

− g̃(PX2, PY 2)g̃(grad(log ψ), Z),

from which, we see easily

2g̃(∇XY −∇1
X1Y 1 −∇2

X2Y 2, Z)(1.7)
= (X1(log ψ))g̃(P 2Y 2, Z) + (Y 1(log ψ))g̃(P 2X2, Z)

− g̃(PX2, PY 2)g̃(grad(log ψ), QZ).

Since Q is symmetric with respect to g̃, (1.7) leads to the formula of Theo-
rem 1.6. 2
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Remark 1.7. N.Abe [2] has developed a standard theory of induced general
connections on vector subbundles.

§2. Regular general connections of conformal type

Let N be a differential manifold. We denote by T 2N and V 2N the tangent
bundle of order 2 over N and the space of its smooth cross-sections, respec-
tively. First we shall define the Hessian-type tensor of a function relative to a
torsion-free general connection of N .

Definition 2.1. A bilinear map E: V N⊗V N → V 2N is said to be left-sided
F -linear if E(fX, Y ) = fE(X,Y ) for every X, Y ∈ V N and every f ∈ FN .
Let Γ = (P,∇) be a torsion-free general connection of N . We say a left-sided
F -linear map E is associated with Γ if E(X, fY ) = fE(X,Y ) + (Xf)PY for
every X, Y ∈ V N and every f ∈ FN .

Definition 2.2. Let Γ = (P,∇) be a torsion-free general connection of N
and E: V N ⊗V N → V 2N a left-sided F -linear map associated with Γ. Then,
for ν ∈ FN , we can define the tensor field Hν on N of type (0, 2) as follows:

Hν(X,Y ) := E(X,Y )ν − (∇XY )ν

for every X, Y ∈ V N . We say Hν the quasi-Hessian tensor field with respect
to Γ of ν.

Note. In the definition above, Hν is not always symmetric as a tensor of type
(0, 2). In fact, Hν(X,Y ) = Hν(Y,X) if and only if E(X,Y )ν − E(Y,X)ν =
(P [X,Y ])ν.

Now we shall give the examples of quasi-Hessian tensor fields with respect
to torsion-free general connections:

Examples 2.3. Let X, Y ∈ V N and ν ∈ FN . (a) Let D be a torsion-
free linear connection of N , which we regard as a special one of torsion-free
general connections. Since it is easy to verify that the left-sided F -linear map
E1: (X,Y ) → XY ∈ V 2N is associated with D, we can see that the quasi-
Hessian tensor hν of ν relative to D can be defined as follows:

hν(X,Y ) := E1(X,Y )ν − (DXY )ν.

Then hν is consistent with the (usual) Hessian tensor of ν.
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(b) Let λ ∈ FN be positive-valued and Γλ = (P,∇) a torsion-free, regular
general connection of N such that P = λI, where I denotes the identity
endomorphism of TN . Then the left-sided F -linear map Eλ: V N⊗V N → V 2N
defined by (X,Y ) → λXY is associated with Γλ. Hence we can give the quasi-
Hessian tensor Hλ

ν of ν by

Hλ
ν (X,Y ) := Eλ(X,Y )ν − (∇XY )ν = λX(Y ν) − (∇XY )ν,

which is symmetric, since Γλ is torsion-free.

Next we shall define regular general connections of conformal type and the
associated quasi-Hessian tensors of a function. Throughout the paragraph
below, (M, g) denotes a pseudo-Riemannian manifold.

Definition 2.4. Let R be a regular tensor field of type (1, 1) on (M, g). We
say R is ω-conformal if g(RX,RY ) = ωg(X,Y ) for some positive function
ω ∈ FM and for every X, Y ∈ V M .

On the other hand, the following is due to T.Otsuki:

Proposition 2.5. Let R and g be a regular tensor field type (1, 1) and a
nondegenerate symmetric tensor field of type (0, 2) on a differential manifold,
respectively. Then there exists a uniquely determined general connection Γ
satisfying the following:

(a) The principal endomorphism of Γ is R,
(b) Γ is torsion-free,

and (c) Γ is metrical with respect to g.

According to the above proposition, we can state the following:

Definition 2.6. Let R be an ω-conformal regular tensor field of type (1, 1)
on (M, g) and let Γ(ω) = (R,∇) a uniquely determined general connection of
(M, g) such that

(a) The principal endomorphism of Γ(ω) is R,
(b) Γ(ω) is torsion-free,

and (c) Γ(ω) is metrical with respect to g.
Then Γ(ω) is said to be an ω-conformal genenal connection of (M, g).

Proposition 2.7. Let Γ(ω) = (R,∇) be an ω-conformal general connection
of (M, g) and ν ∈ FM . The bilinear map Eω: V M ⊗ V M → V 2M defined by

Eω(X,Y )ν = X((RY )ν) − (X(log
√

ω))(RY )ν

is a left-sided F -linear map associated with Γ(ω).
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Proof. Let X, Y ∈ V M and f, h ∈ FM . Noticing that

(X(f(RY )))h = (Xf)((RY )h) + fX((RY )h),

we have

Eω(X, fY )ν = X(f(RY )ν) − f(X(log
√

ω))(RY )ν
= (Xf)((RY )ν) + fX((RY )ν) − f(X(log

√
ω))(RY )ν

= (Xf)((RY )ν) + fEω(X,Y )ν

and Eω(fX, Y ) = fEω(X,Y ), from which we see that Eω is a left-sided F -
linear map associated with Γ(ω). 2

Using the proposition above we can state the following:

Definition 2.8. Let Γ(ω) be an ω-conformal general connection of (M, g)
and ν ∈ FM . The tensor Hω

ν of type (0, 2) defined by

Hω
ν (X,Y ) = Eω(X,Y )ν − (∇XY )ν (X,Y ∈ V M)

is called the quasi-Hessian tensor with respect to Γ(ω) of ν. We say Hω
ν is

proportional to g, if Hω
ν is symmetric and Hω

ν = µg for some µ ∈ FM .

The following is a standard formulation of the quasi-Hessian tensor:

Lemma 2.9.

Hω
ν (X,Y ) = g(∇XS(grad ν), RY ) − (X(log

√
ω))g(grad ν,RY ),

where S denotes the inverse endomorphism of R.

Proof. Since Γ(ω) is metrical with respect to g, we obtain

Hω
ν (X,Y ) = X((RY )ν) − (X(log

√
ω))(RY )ν − (∇XY )ν

= Xg(R(S(grad ν)), RY ) − (∇XY )ν − (X(log
√

ω))(RY )ν
= g(∇XS(grad ν), RY ) − (X(log

√
ω))(RY )ν,

which yields the formula of Lemma 2.9. 2
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§3. Isometric decompositions of space-times

First we shall prepare the definition of space-times. Throughout the paper
below, we denote by (M, g) a Lorentzian manifold together with Lorentzian
metric g of signature (+, · · ·, +,−). A nonzero vector v ∈ TpM is said to be
timelike (resp., null, spacelike) if g(v, v) < 0 (resp., = 0, > 0). A tangent
vector field V on M is said to be timelike if g(Vp, Vp) < 0 for every point p of
M . If (M, g) does admit a globally defined timelike vector field V , then we say
that (M, g) is time-oriented by V . A time-oriented, noncompact, Lorentzian
manifold is called a space-time. More precisely,

Definition 3.1. A space-time is a noncompact, connected, smooth Haus-
dorff manifold of dimension ≥ 2 which has a countable basis, a Lorentzian
metric of signature (+, · · ·, +,−) and a time orientation.

Definition 3.2. Φ ∈ FM is called a time function if the gradient vector field
gradΦ of Φ is timelike everywhere. If (M, g) admits a time function Φ, then
(M, g) becomes a space-time by gradΦ. In this case, we say (M, g) is a space-
time admitting a time function Φ. Moreover, β := (−g(gradΦ, gradΦ))−1/2 is
called the lapse function of Φ.

Remark 3.3. We make no assumptions about the causal topology [5], ex-
cept requiring that (M, g) has a time function [4].

Let (M, g) be an (n + 1)-dimensional space-time admitting a time function
Φ. Since (M, g) has a foliated structure by level hypersurfaces of Φ, we can
describe the following

Definition 3.4. Let R be a regular endomorphism on TM . the assignment:

p ∈ M → R(ker(DΦ)p) ⊂ TpM

defines an n-dimensional distribution on M . This is called the RΦ-disribution
on (M, g).

Now we prove the following theorem with respect to locally isometric de-
compositions of space-times.
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Theorem 3.5. Let (M, g) be an (n + 1)-dimensional space-time admitting
a time function Φ, Γ(ω) = (R,∇) an ω-conformal general connection of (M, g)
and S the inverse endomorphism of R. Suppose the SΦ-distribution is involu-
tive and assume the quasi-Hessian Hω

Φ of Φ is proportional to g. Then (M, g)
is locally isometric to the following:

ds2 = −dt2 + (ωβ)−2du2,

where du2 is a certain n-dimensional Riemannian metric and β is the lapse
function of Φ.

Proof. Let p ∈ M . Since the SΦ-distribution on (M, g) is involutive, we can
choose a coordinate neighborhood (U ; y1, · · ·, yn+1) at p such that y1, · · ·, yn

are local coordinates in the leaf of SΦ-foliation through p. 2

Lemma 3.6.

∂

∂yi
g(S(grad Φ), S(grad Φ)) = 0, 1 ≤ i ≤ n.

Proof. Using the covariant derivative with respect to Γ(ω) and Lemma 2.9,
we have

∂

∂yi
g(S(gradΦ), S(grad Φ)) =

∂

∂yi
(ω−1g(grad Φ, grad Φ))(3.1)

= −ω−2 ∂ω

∂yi
g(gradΦ, gradΦ) + 2ω−1g(∇∂/∂yiS(gradΦ), gradΦ)

= 2ω−1{g(∇∂/∂yiS(gradΦ), gradΦ) − 2−1ω−1 ∂ω

∂yi
g(grad Φ, grad Φ)}

= 2ω−1Hω
Φ(

∂

∂yi
, S(gradΦ)).

Let (u1, · · ·, un) be a suitable local coordinate system at p in Φ-level hyper-
surface. Then we obtain

g(S(
∂

∂ui
), S(grad Φ)) = 0,

and span{ ∂

∂y1
, · · · , ∂

∂yn
} = span{S(

∂

∂u1
), · · · , S(

∂

∂un
)}.

Thus, from the assumption of Hω
Φ, we obtain

(3.2) Hω
Φ(

∂

∂yi
, S(gradΦ)) = 0, 1 ≤ i ≤ n.

From (3.1) and (3.2), we obtain the formula of Lemma 3.6. 2
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Using Lemma 3.6, we have a coordinate neighborhood (W ; y1, · · ·, yn, t) at
p such that

g(
∂

∂t
,

∂

∂t
) = −1 and g(

∂

∂yi
,

∂

∂t
) = 0.

Then (y1, · · ·, yn, t) is a geodesically parallel coordinate system at p in the
sense of the Levi-Civita connection. Let α and F i

j (i, j = 1, · · ·, n) be smooth
functions on W such that

S(gradΦ) = α
∂

∂t
and

∂

∂yj
= F i

jS(
∂

∂ui
).

Now remark that α is a nonzero-valued function depending only on t in
(W ; y1, · · ·, yn, t) (See Lemma 3.6). We argue on (W ; y1, · · ·, yn, t) in the
proof below:

Lemma 3.7. Let hij := g( ∂
∂yi ,

∂
∂yj ) and Zj := F i

j
∂

∂ui ( i, j = 1, · · · , n ). Then
∂
∂tg(Zi, Zj) = 2α−1µhij , where Hω

Φ = µg.

Proof. By Lemma 2.9, we have

Hω
Φ(

∂

∂yi
,

∂

∂yj
) = Hω

Φ(
∂

∂yi
, SZj)

= g(∇∂/∂yiS(gradΦ), Zj) − 2−1ω−1 ∂ω

∂yi
g(gradΦ, Zj),

furthermore, using g(grad Φ, Zj) = 0 and the assumption of Hω
Φ, we see

µhij = g(∇∂/∂yiS(grad Φ), Zj)(3.3)

= αg(∇∂/∂yi

∂

∂t
, Zj).

(3.4)
∂

∂t
g(Zi, Zj)=g(∇∂/∂t

∂

∂yi
, Zj) + g(Zi,∇∂/∂t

∂

∂yj
).

(3.4), we obtain

∂

∂t
g(Zi, Zj) = α−1µ(hij + hji) = 2α−1µhij .

2

Lemma 3.8.
µ = ω

∂α

∂t
.
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Proof. Now we can easily obtain

0 =
∂

∂t
g(

∂

∂t
,

∂

∂t
) =

∂

∂t
(ω−1g(R(

∂

∂t
), R(

∂

∂t
)))

= ω−1 ∂ω

∂t
+ 2ω−1g(∇∂/∂t

∂

∂t
, α−1 gradΦ),

from which, we have

(3.5) g(∇∂/∂t∂/∂t, gradΦ) = −2−1α
∂ω

∂t
.

Thus using gradΦ = αR( ∂
∂t) and (3.5), we obtain

−µ = Hω
Φ(

∂

∂t
,

∂

∂t
)

= g(∇∂/∂tS(grad Φ), R(
∂

∂t
)) − 2−1ω−1 ∂ω

∂t
g(gradΦ, R(

∂

∂t
)

=
∂α

∂t
g(R(

∂

∂t
), R(

∂

∂t
))

+ αg(∇∂/∂t
∂

∂t
,R(

∂

∂t
)) − 2−1ω−1 ∂ω

∂t
g(gradΦ, α−1 gradΦ)

= −ω
∂α

∂t
+ g(∇∂/∂t

∂

∂t
, gradΦ) − 2−1ω−1 ∂ω

∂t
α−1(−α2ω)

= −ω
∂α

∂t
,

hence, we get the formula of Lemma 3.8. 2

Applying the lemma above, let us prove Theorem 3.5: From Lemma 3.7
and Lemma 3.8, we have

(3.6)
∂

∂t
g(R(

∂

∂yi
), R(

∂

∂yj
)) = 2ωα−1 ∂α

∂t
hij .

Using g(R( ∂
∂yi ), R( ∂

∂yj )) = ωhij and (3.6), we obtain ∂
∂t(ωα−2hij) = 0. Conse-

quently we see that du2 := ωα−2hijdyidyj becomes an n-dimensional Rieman-
nian metric on the leaf of SΦ-foliation through p in W . Then we can express
the Lorentzian metric g on M as follows :

ds2 = −dt2 + hijdyidyj = −dt2 + ω−1α2du2.

Moreover, since α2 = −ω−1g(gradΦ, grad Φ) = ω−1β−2, we have

ds2 = −dt2 + (ωβ)−2du2.

Thus we complete the proof of Theorem 3.5 because our argument holds for
each point p of M .

By applying a theory of complementary orthogonal foliations to the
Lorentzian locally twisted product structure in Theorem 3.5, we shall establish
the following globally isometric decomposition theorem:
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Theorem 3.9. Let (M, g) be as in Theorem 3.5. Under the assumptions of
Theorem 3.5, furthermore, suppose that (M, g) is simply connected and every
timelike geodesic is complete in the sense of the Levi-Civita connection. Then
(M, g) is globally isometric to the Lorentzian twisted product L×η H defined
by

(L × H,−dt2 + ηdu2) and η = (ωβ)−2,

where L := (−∞, +∞) is given the negative definite metric −dt2 and (H, du2)
is a certain n-dimensional Riemannian manifold.

Proof. Let F1 and F2 be foliations on M given by S(grad Φ) and the SΦ
-foliation, respectively. From the proof of Theorem 3.5, the leaves of F1 are
complete timelike geodesics and F2 is a totally umblic foliation, respectively.
Let P (F1) be ∪{P (L1);L1 is a leaf of F1}, where P (L1) denotes a linear frame
bundle over L1. Then P (F1) is a principal bundle over M with structure group
GL(1, R) and by π we denote its projection map. Then we have a foliation
F ∗

1 on P (F1) defined by (F ∗
1 )u := (Dπ)−1((F1)π(u)) for every u ∈ P (F1). Let

P ∗ be the reduced bundle of P (F1) obtained by taking normal frames of the
leaves of F1, noticing that each leaf of F1 is a complete timelike geodesic in the
sense of Levi-Civita connection. As we use the technique of R.A.Blumenthal
and J.J.Hebda, we first prepare some concepts with respect to the theory of
foliations described in [6], [7] and [9]. Throughout this section, a vertical
(resp., horizontal) curve on M means a piecewise smooth curve whose tangent
vector field lies in F1 (resp., F2). A tangent vector field X on M is said to
be vertical (resp., horizontal) if X lies in F1 (resp., F2). Hereafter by L1(p)
(resp., L2(p)) we denote the leaf of F1 (resp., F2) through a point p of M . 2

Definition 3.10([6][9]). For a horizontal curve c: [0, 1] → M there exists a
family of diffeomorphisms σt: U0 → Ut (0 ≤ t ≤ 1) such that

(a) Ut is a neighborhood of c(t) in L1(c(t)) for each t,
(b) σt(c(0)) = c(t),
(c) the curve t → σt(q) (σ0(q) = q) for each q ∈ U0 is a horizontal curve,

and
(d) σ0 is the identity map of U0.

This family of diffeomorphisms σt is said to be an element of holonomy along
a horizontal curve c.

Definition 3.11([6][7]). A rectangle is a piecewise smooth map δ: [0, 1] ×
[0, 1] → M such that for each fixed t0 ∈ [0, 1] the curve δ(t0, s) is vertical and
for each fixed s0 ∈ [0, 1] the curve δ(t, s0) horizontal. The curves δ(0, s) and
δ(1, s) (δ(t, 0) and δ(t, 1)) are called the initial vertical (horizontal) edge and
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the terminal vertical (horizontal) edge, respectively. In general, a complemen-
tary distribution D to a foliation F on a differentiable manifold is called an
Ehresmann connection for F if, for each vertical curve c1 and horizontal curve
c2 with the same starting point, there exists a rectangle whose initial edges
are c1 and c2.

Definition 3.12([7]). Let dim F ∗
1 = m. A complete parallelism for F ∗

1 is
a family {Vi; 1 ≤ i ≤ m} of complete vector fields on P ∗ that are linearly
independent and tangent to F ∗

1 everywhere.

Lemma 3.13. A natural lift of F2 can be defined as a complementary dis-
tribution D∗ to F ∗

1 on P ∗ .

Proof. First we see that the elements of holonomy along horizontal curves
on M are local isometries. In fact, since the leaves of F1 can be considered
as complete timelike normal geodesics, for a horizontal vector field Z parallel
along the leaves of F1, we have

(LZg)(ċ(t), ċ(t)) = 0.

where D and LZ denote the Levi-Civita connection and the Lie derivative rel-
ative to Z respectively and ċ(t) is the velocity vector field of a timelike normal
geodesic c(t), a leaf of F1. Next we note that there exists a complementary
distribution D∗ to F ∗

1 on P (F1) as follows: Let u0 ∈ P (F1) and p0 ∈ π(u0).
We now choose a neighborhood U at p0 in M and a horizontal vector field Y
in U which is parallel along the leaves of F1 in the sense of the Levi-Civita
connection. Since the local 1-parameter group ρt of transformations generated
by Y sends the leaves of F1 to the leaves of F1, Dρt is a local 1-parameter
group of transformations in a certain neighborhood of u0. Let Y ∗ be the vector
field on P (F1) induced by Dρt and we define D∗(u0) := {Y ∗; Y is a horizontal
vector field on a neighborhood of p0 and is parallel along the leaves of F1}.
From this construction we have (Dπ)Y ∗ = Y . Thus D∗ is a complementary
distribution to F ∗

1 on P (F1). Furthermore, we note that a complete parallelism
{V1, · · ·, Vm} for F ∗

1 is preserved by D∗, that is, each Vi is invariant under the
elements of holonomy along D∗ -curves, since the elements of holonomy along
horizontal curves on M are local isometries. Therefore D∗ is a complementary
distribution to F ∗

1 on P ∗. Thus we complete the proof of the lemma 3.13. 2

Moreover the following lemmata can be proved as in [7][9]:

Lemma 3.14([7]). If D∗ preserves a complete parallelism for F ∗
1 , then D∗

is an Ehresmann connection for F ∗
1 , and furthermore, F2 is an Ehresmann

connection for F1.
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Lemma 3.15([9]). If F2 is an Ehresmann connection for F1, then for each
leaf L1 of F1 and each leaf L2 of F2, there exists a diffeomorphism: L̃1(p) ×
L̃2(p) → M̃(p), where M̃(p) (resp., L̃1(p), L̃2(p)) denote the universal covering
manifold of M (resp., L1, L2) identfied with the set of all homotopy classes of
curves in M (resp., L1, L2) starting at p (p ∈ L1 ∩ L2).

From Lemma 3.13, Lemma 3.14 and Lemma 3.15, we have a covering map
Π:L1(p) × L2(p) → M , since M is simply connected. On the other hand,
from the proof of Theorem 3.5, we see that (M, g) is locally isometric to
−dt2 + (ωβ)−2du2. Hence, Π is a globally isometric map such that (M, g) is
isometric to the Lorentzian twisted product (L1(p)×L2(p),−dt2+(ωβ)−2du2).
Since each leaf of F1 is considered as a complete (timelike) normal geodesic
and L1(p) is simply connected, we may put L1(p) and L2(p) as L = (−∞, +∞)
and H, respectively, thus we obtain the assertion of Theorem 3.9.

§4. Null geodesically incomplete theorems

Let M∗ = L×ψ H be a Lorentzian warped product equipped with Lorentzian
metric g∗ = −dt2 + ψh, where L = (−∞, +∞) and (H,h) is an arbitrary
Riemannian manifold. All nonspacelike (i.e., timelike or null) tangent vectors
of M∗ are divided into two separate classes, called future and past directed,
by the timelike vector field ∂/∂t.

Definition 4.1. A nonspacelike tangent vector v ∈ TpM
∗ is said to be future

(resp., past) directed if g((∂/∂t)(p), v) < 0 (resp., g((∂/∂t)(p), v) > 0). A
smooth curve is said to be timelike (resp., null, spacelike) if its tangent vector
is always timelike (resp., null, spacelike).

In the following we recall the notion of geodesics with respect to general
connections (Otsuki [19]):

Definition 4.2. Let N be a differentiable manifold and Γ = (P,∇) a reg-
ular general connection of N . A smooth (regular) curve c: (a, b) → N with
parameter t is said to be a Γ-geodesic if ∇ċ(t) = γ(t)P (ċ(t)), where ċ(t) is
the velocity vector field of c(t) and γ is a suitable smooth function along c.
The parameter s of c such that ∇c′(s) = 0 is called an affine parameter of c,
where c′(s) denotes the velocity vector field of c(s). A Γ-geodesic c with affine
parameter s is said to be complete if c can be defined for −∞ < s < +∞.

Proposition 4.3. Let (M, g) be a space-time given an ω-conformal general
connection Γ(ω) = (R,∇). Then null Γ(ω)-geodesics can be defined.
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Proof. Let c be Γ(ω)-geodesic with affine parameter s. Then we have

d

ds
g(R(c′(s)), R(c′(s))) = 2g(∇c′(s), R(c′(s))) = 0.

Let now g(c′(s0), c′(s0)) = 0 for some value s0. Since

g(R(c′(s0), R(c′(s0))) = ω(s0)g(c′(s0), c′(s0)),

g(R(c′(s)), R(c′(s))) = 0 along c. This implies g(c′(s), c′(s)) = 0, since ω is
positive-valued. Thus c is null for all values of its affine parameter if c is null
for some value of its affine parameter, hence we obtain the assertion. 2

Definition 4.4. A future-directed Γ-geodesic in M∗ is said to be future-
incomplete (resp., past-incomplete) if it can not be extended to arbitrarily
large positive (resp., negative) values of an affine parameter.

We now prove the following criterion for null Γ(ω)-geodesic incompleteness
of M∗ equipped with an ω-conformal general connection Γ(ω). Throughout
the rest of this section, let τ be an interior point of (−∞, +∞).

Theorem 4.5. Let M∗ be given an ω-conformal general connection Γ(ω) =
(R,∇) such that R is symmetric with respect to g∗. Assume that both TL
and TH are R-invariant and ω depends only on L. If

lim
θ→−∞

∫ τ

θ

√
ψωdt

is finite, then every future-directed null Γ(ω)-geodesic in M∗ is past-
incomplete. Similarly, if

lim
θ→+∞

∫ θ

τ

√
ψωdt

is finite, then every future-directed null Γ(ω)-geodesic in M∗ is future-
incomplete.

Proof. Let σ be a future-directed null Γ(ω)-geodesic and we may put as
follows:

σ(t) = (t, c(t)) ∈ L × H, σ̇(t) =
∂

∂t
+ ċ(t),

and g(
∂

∂t
,

∂

∂t
) = −1.
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Using the formula of Theorem 1.6 (§2) and g(R(ċ(t)), R(ċ(t))) =
ωg(ċ(t), ċ(t)) = ω, we have

(4.1) ∇σ̇(t) = ∇1
∂/∂t

∂

∂t
+ ∇2ċ(t) +

∂ log ψ

∂t
R(ċ(t)) − 2−1ωS(grad(log ψ)),

(4.2) ∇ċ(t) = ∇2ċ(t) − 2−1ωS(grad(log ψ)),

where S denotes the inverse endomorphism of R.
On the other hand, since σ is Γ(ω)-geodesic, there exists a smooth function

ζ along σ such that

(4.3) ∇σ̇(t) = ζR(σ̇(t)) = ζR(
∂

∂t
) + ζR(ċ(t)).

Noticing that R is symmetric with respect to g∗, we have

(4.4) R = ωS.

Thus from (4.1)-(4.4), we obtain

(4.5) ∇1
∂/∂t

∂

∂t
− 2−1R(grad(log ψ)) = ζR(

∂

∂t
),

and ∇2ċ(t) +
∂ log ψ

∂t
R(ċ(t)) = ζR(ċ(t)).

Now we also obtain

(4.6) g(∇∂/∂t
∂

∂t
,R(

∂

∂t
)) = −2−1 ∂ω

∂t
,

since
g(R(

∂

∂t
), R(

∂

∂t
)) = −ω.

And also we have

(4.7) grad(log ψ) = −ψ−1 ∂ψ

∂t

∂

∂t
,

because ψ depends only on (L,−dt2). Thus using (4.5) and (4.6), we obtain

−ζω = g(ζR(
∂

∂t
), R(

∂

∂t
))

= g(∇1
∂/∂t

∂

∂t
,R(

∂

∂t
)) − 2−1g(R(grad(log ψ)), R(

∂

∂t
))

= −2−1 ∂ω

∂t
− 2−1ωg(grad(log ψ),

∂

∂t
).
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From this and (4.7), it follows that

(4.8) ζ = 2−1 ∂ log(ωψ)
∂t

.

Let s be the following integral:

s :=
∫ τ

t

√
ωψdt.

Noticing that ω and ψ are positive-valued smooth functions, which depends
only on t, we can easily obtain

(4.9)
d2t

dt ds
= −ζ

dt

ds
.

On the other hand, a direct calculation implies

(4.10) ∇σ′σ′(s) =
dt

ds
(

d2t

dt ds
+ ζ

dt

ds
)R(σ̇(s)),

where σ′(s) denotes the velocity vector field of σ(s).
From (4.9) and (4.10), we see that s is an affine parameter of σ, conse-

quently, if limt→−∞ s(t) is finite, then σ is past-incomplete. This completes
the proof of the first assertion. Similarly it is easy to see that the second
assertion is also valid. 2

Remark 4.6. J.K.Beem, P.E.Ehrlich and T.G.Powell have obtained the cri-
terion for null geodesic incompleteness of M∗ in the case of the Levi-Civita
connection (Theorem 2.57; [5]).

As applications of Theorem 4.5, we states null Γ(ω)-geodesic incompleteness
theorems relative to space-times admitting time functions. The following is
an immediate consequence of Theorem 3.9 and Theorem 4.5.

Theorem 4.7. Let (M, g) be a simply connected space-time admitting a
time function Φ of dimension (n + 1) and Γ(ω) = (R,∇) an ω-conformal
general connection of (M, g). Now suppose that (a) the quasi-Hessian tensor
Hω

Φ of Φ is proportional to g, (b) the SΦ-distribution is involutive, where
S denotes the inverse endomorphism of R and (c) every timelike geodesic in
(M, g) is complete in the sense of the Levi-Civita connection.

Under (M, g) isometrically decomposed as the Lorentzian twisted product
(L × H,−dt2 + (ωβ)−2du2) in Theorem 3.9, assume that (d) TL and TH be



REGULAR GENERAL CONNECTIONS 55

R-invariant, (e) ω and β depend only on L and (f) R is symmetric with respect
to g, i.e. g(RX,Y ) = g(X,RY )(X,Y ∈ V M). If

lim
θ→−∞

∫ τ

θ
ω−1/2β−1dt (resp., lim

θ→+∞

∫ θ

τ
ω−1/2β−1dt)

is finite, then every future-directed null Γ(ω)-geodesic is past incomplete (resp.,
future incomplete).

In particular, we have the following theorem if the principal endomorphism
is a scalar-multiple of identity endomorphism:

Theorem 4.8. Let (M, g) be an (n+1)-dimensional, simply connected space-
time admitting a time function Φ and (R,∇) an ω-conformal general connec-
tion such that R = λI and ω = λ2, where λ ∈ FM is positive-valued and I
denotes the identity endomorphism of TM . Suppose Hω

Φ is proportional to
g and every timelike geodesic in (M, g) is complete in the sense of the Levi-
Civita connection. Then (M, g) is globally isometric to the Lorentzian warped
product (L × H,−dt2 + λ−4β−2du2), and if

lim
θ→−∞

∫ τ

θ
λ−1

∣∣∣∣∂Φ
∂t

∣∣∣∣ dt (resp., lim
θ→+∞

∫ θ

τ
λ−1

∣∣∣∣∂Φ
∂t

∣∣∣∣ dt)

is finite, then every future-directed null Γ(ω)-geodesic is past incomplete (resp.,
future incomplete).

Proof. Let HΦ denote the quasi-Hessian tensor of Φ with respect to Γ(ω) =
(R,∇), R = λI, ω = λ2. Using Lemma 2.9 (§2.), we have for every X,Y ∈
V M ,

HΦ(X,Y ) = g(∇X(λ−1 gradΦ), λY ) − (X(log λ))g(gradΦ, λY )
= Xg(gradΦ, λY ) − g(gradΦ,∇XY ) − (Xλ)(Y Φ)
= X(λ(Y Φ)) − (Xλ)(Y Φ) − (∇XY )Φ
= λX(Y Φ) − (∇XY )Φ,

while ∇XY −∇Y X = λ[X,Y ], therefore HΦ is symmetric. Now let S be the
inverse endomorphism of R. Then it is easy to verify that SΦ-distribution is
involutive. Thus, from Theorem 3.9 (and also the proof of Theorem 3.5), it
turns out that (M, g) is globally isometric to the Lorentzian warped product
(−∞,+∞) × H with the metric −dt2 + λ−4β−2du2. In fact, from the proof
of Theorem 3.5, we see that Φ and λ depend only on t ∈ (−∞,+∞), hence,
λ−4β−2 is a warping function. Noticing that (d) and (e) in Theorem 4.7 are
clearly satisfied and gradΦ = −∂Φ

∂t ∂/∂t, from Theorem 4.7, we also obtain the
last assertion. 2
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