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Abstract. Let P be a finite set of points in the 3-dimensional Euclidean
space IR® in general position. For zo,x1,z2,23 € P, let HT (z0;21,22,23)
(resp. H ™ (zo,z1,22,x3)) denote the open half space containing xg (resp. not
containing xo) and bounded by the plane containing x1, 2, z3. Further let

P(zo;21,22,23) := P N H+($1;$0,$27I3)
n H+(£L'2;ZL‘0,ZL‘1,$3)
N H* (z3; 20,71, 73).

In this paper, we show the following statement: if |P| > 4, and if k1, ko, k3, ka
are integers with ki + ko + ks + ka = |P| — 4 ,0 < ki, ko, ks, ks < |P\T*2 and
k1 + ke < |P|2_2, then for any p1,p2 € P (p1 # p2), there exist ¢1,q2 € P such
that the convex hull of {p1,p2,q1,¢2} is a 3-simplex (tetrahedron) containing
no point of P in its interior and such that

[P(p1;p2,q1,92)| < “(p1;P2,q1, G2
|P(p2;pr, 1, q2)| < k2 < POVH™ (p2; p1, 1, 2
[P(q15G2,p1,p2)| < ks < PN H™(
[P(g2; q1,p1,p2)| < ~(

)|7
)|’
q1; g2, 1, p2)|,
q2; q1,p1,P2)|-
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§1. Introduction.

For a subset V of the d-dimensional Euclidean space IR, let conv(V) denote
the convex hull of V, and let aff(V') denote the affine flat spanned by V. For
d + 1 points xg,xa,---,zq not lying in the same (affine) (d — 1)-flat in R?,
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let HY(zo;1,--+,2q) (resp. H (xg;x1,---,24)) denote the open half-space
which is bounded by aff({z1,---,z4}) and contains x (resp. does not contain
z). Now let P be a fixed set of points in R?. We say that P is in general
position if no d + 1 points of P lie in the same (d — 1)-flat. For d + 1 points
xo, 1, ,2Tq not lying in the same (d — 1)-flat, let

P(zo; 1, wq) == PN [ HY(2520,21, i1, Tig1, -+, Ta).
1<i<d

If a subset V of IR contains no point of P in its interior, V is said to be
vacuum. Further, following Kupitz[2], we call a polyhedron D cellular if D
is vacuum and all vertices of D are points of P. In this paper, we show the
following theorem as a 3-dimensional version of Lemma3 in [1]:

Theorem 1. Let P be a finite set of points in IR® in general position. Sup-
pose that |P| > 4, and let ki, ko, k3, k4 be integers such that ki + ko +ks+ky =
[P| — 4,0 < ki, ko, ka, ks < P22 and ky + ke < P20 Further let py,pa be
specified points of P with p1 # p2. Then there exist two points q1, g2 of P such
that conv({p1,p2,q1,q2}) is a cellular 3-simplex and the following inequalities
hold:

ki <|PNH (p1;p2,q1,92)],
ko <|PNH™ (p2;p1,q1,92)],
= )l

q1592,P1,DP2
k: <[P N H (g2;q1,p1,p2)|-

|P(p1;p2, 915 G2
|P(p2; p1,q15 G2
|P(q1; 42,1, P2
P(QQ;(h,pl,pg

~— ~— ~—

)
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§2. Proof of Theorem 1.

Let P, ki, ko, k3, k4, p1,p2 be as in Theorem1. Let m : R®> — IR? be the or-
thogonal projection in the direction of pips. We use the following result in the
plane case (a slight modification of Claim 1 in [1]):

Proposition 1. Let P’ be a finite set of points in IR?, and let ) be a specified
point of P'. Suppose that P’ > 3 and any line passing through r{ contains
at most one point of P’ other than r. Let ki,k5, ki be integers satisfying
0 < kp, k5 K5 < ‘Pl2|_1 and Kk} +kb+ky = |P'|—3. Then there exist 2’ € IR*— P
and ry,rh € P’ — {r(} such that

P = {rg, 1y, ra U P (rg3a’,r1) U P/ (rgs v, 1) U P (g g, @)

and
|P'(ro; !, r))| = ky, [P/ (rgiry,my)| = Ky, |P'(rg;ry,a”)| = ks.
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Proposition 1 is essentially the same as Claim1 in [1], so we omit the proof.
Since k1 + ko < |P|272, we can apply Proposition1 to n(P) = {n(p) | p € P}
with ry = 7(p1) = w(p2) and k] = ks, kb = k1 + ko, k§ = k4. Let 2/, 7,75
be as in the conclusion of the Proposition 1. We use the same technique as in
the proof of Lemma3 in [1]. Let Iy be a line passing through r{, and 2/. Take
sh, s € P'(ry;ry,ry) U{r], 5} so that for i = 1,2, s} lies in the same side of
lo as r}, and

the line segment s/ s, is an edge of conv(P’(r(; ], ry) U {r],r5})

2.
(25) satisfying conv({r(, s, s5}) N H~(r{; 84, s5) = 0.

Now we return to IR3. Let z, 74, s; (i = 1,2) be the points of P such that z,
w(ri) = ri, w(s;) = s}, respectively. Let

Kl = H+(IL’, Tl,pl,pQ) mH+(T1;$7p17p2)a
K2 = H+(T1;T27p17p2) N H+(T2;T1’p1’p2)7
K3 = H" (ro;2,p1,p2) VH (2579, p1,p2)-

Then the conclusion of Proposition 1 implies that K; N K; = 0 if ¢ # j, and

(2.6) |IPNK| =k = ks,
‘PﬂKQ‘Zké = ki + ko,
‘Pﬂ Kg‘ = ké = ky.

Let Hy:=7n"1(lp) and let S = (PN K2) U {r1,m2}. By(2.5),
A= H ¥ (ri5m,m9) N H T (ryrg,7h) VH T (r;77,75)

is vacuum. Since Ko N H(py;p2, s1,52) N HT (pa;p1,51,52) C 71 (A), this
implies that S N H'(p1;p2,s1,82) N H (p2;p1,s1,82) = 0. Thus by (2.7),
1SN HT(pa;p1,81,82)| < k1 +2or |SNHT(p1;p2,s1,82)| < ko + 2 holds. By
symmetry, we may assume

(2.9) 1SN H (p2;p1, 81,82)| < k1 + 2.

For a plane H and a point = ¢ H, let H* () (resp. H*(x)) denote the open
(resp. closed) half-space which is bounded by H and contains z, and let H ™ (x)
(resp. H~(x)) denote the open (resp. closed) half-space which is bounded by
H and does not contain . Let H; be a plane containing p; such that

(2.10) |S N ﬁ1+(p2)| =k1+ 2,

(2.11) SN H " (p2) N H (r;) # 0 for i = 1,2.



158 S. TOKUNAGA

Note that by (2.9), there exists a plane satisfying (2.10) and (2.11). We choose
H; so that the angle between Hy N Hy N Ky and pyps is as small as possible.
Take g1, g2 so that

(2.12) q € SN H " (p2) N Hy (r1),
(2.13) g2 € SN Hy " (p2) N H (ra),
and

Apaqiqe is a facet of conv((S U{p2}) N H'1+(p2)) satisfying

conv({p1,p2,q1,q2}) N H™ (p1:p2, q1,q2) = 0.

By (2.14), conv({p1,p2,q1,q2}) is vacaum. We now proceed to verify the
inequalities in the conclusion of Theorem 1. By (2.12) and (2.13),

(2.14)

P(qi592,p1,p2) € PNEK1C PNH (q1592,p1,p2) and
P(q2;q1,p1,p2) € PNK3C PN H (g2;q1,p1,P2)
hold, and hence (2.6), (2.8) imply (1.3),(1.4), respectively. Similarly by (2.14),

P(p1;p2,q1,q2) © SNH (p2) — {q1,q2} € PO H (p1;p2,q1,q2)

holds, and hence (2.10) implies (1.1). Further, it also follows from the choice
of q1, go that
P(p2;p1,a1,02) © SN HL (pa).
Since
ISNHy (p2)| = (ki+ke+2)—(k14+2) = ko

by (2.7) and (2.10), this immediately implies the first inequality in (1.2).

We are now left with the verification of the second inequality in (1.2).
Suppose

[P N H™ (p2;p1, a1, 42)| < ko

Then clearly
(2.15) 1SN H™ (p2;p1, a1, a2)| < ka.
On the other hand, by (2.7) and (2.9),

(216)  [SNH™ (p2ip1,s1,82)] = (ki+ka+2)— (k1 +2) = ko

holds. Let y, z be the intersection points of the line passing through s1, so and
aff({p1,p2,r1}), aff({p1,p2,7r2}), respectively. Then (2.15) and (2.16) imply
that SN H™ (p2; p1,81,52) £ SN H™ (p2; p1,q1,q2), which implies that at least
one of y, z belongs to H™ (p2; p1,q1,q2). We may assume

(2.17) y € H" (p2;p1, q1, ¢2)

without loss of generality. We now show the existence of a plane containing
po which gives rise to a contradiction to the choice of H;. Toward this end,
we divide the situation into two cases according to the location of ¢o.
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Casel q2 = sy or g2 € H (p2;p1,51,52)
In this case,

SNH™ (p2;p1,Y,q2) 2 SN H™ (p2;p1, 51, 52)
holds and hence by (2.16),
(2.18) IS N H™ (p2;p1,Y,q2)| > [SNH™ (p2;p1, 51, 82)| > ka.

Let 1 be the line passing through pi,¢2, and let H be a (movable) plane
containing [y. If we gradually rotate H with [ as the axis, the value of |SN
H~ (p2)| changes by one at each moment when H hits a point of P. Therefore
by (2.15) and (2.18), there exists Hy € l; UH ™ (p2,p1,q1,92) UH T (p2, 01, Y, q2)
such that [; € Hy and [SNHy (p2)| = ka2, or equivalently, ]SDH2+(p2)] = k1+2.
Now to get a contradiction, we let K} := HT(q1; g2, p1,p2) N HV(q2; q1, p1,02)
(note that by (2.12) and (2.13), Hy intersects with K%). Then by (2.17), it is
easy to see that

HoN K5N Hy (p2) C HyN Ky N HY (p2; p1, 1, 42)
C HoN KN Hf (p2),

which yields a contradiction to the minimality of the angle between HoN Hy N
K5 and pips.

Case2 ¢z € H™ (p2;p1,51,52)
If (2.18) holds, a contradiction can be derived in the same way as in Case 2.
Thus we may assume

(2.19) |S N H™ (p2; p1, Y, 42)| < ko

Let Iy be the line passing through p;,y. Then again as in Casel, (2.16)
and (2.19) imply that we can find a plane H3 € lo U H'(p2,p1,¥y,q2) U
H*(p2, p1,51,82) such that Iy € H3 and |S N ﬁ3+(pg)\ = k1 + 2 by consid-
ering the rotation of a plane containing lo with Iy as the axis. Thus again it
is easy to see that

HoN Ky N Hy (p2) € HoN Ky N HY (p2;p1, a1, q2)
C Ho N K5 N Hf (p2),

which yields a contradiction. a
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