A CELLULAR SIMPLEX WITH PRESCRIBED NUMBERS OF POINTS IN REGIONS DETERMINED BY ITS FACETS

Shin-ichi TOKUNAGA

(Received November 9, 1995)

Abstract. Let P be a finite set of points in the 3-dimensional Euclidean space \mathbb{R}^3 in general position. For $x_0, x_1, x_2, x_3 \in P$, let $H^+(x_0; x_1, x_2, x_3)$ (resp. $H^-(x_0, x_1, x_2, x_3)$) denote the open half space containing x_0 (resp. not containing x_0) and bounded by the plane containing x_1, x_2, x_3 . Further let

$$P(x_0; x_1, x_2, x_3) := P \cap H^+(x_1; x_0, x_2, x_3) \cap H^+(x_2; x_0, x_1, x_3) \cap H^+(x_3; x_0, x_1, x_3).$$

In this paper, we show the following statement: if $|P| \ge 4$, and if k_1, k_2, k_3, k_4 are integers with $k_1 + k_2 + k_3 + k_4 = |P| - 4$, $0 \le k_1, k_2, k_3, k_4 \le \frac{|P| - 2}{2}$ and $k_1 + k_2 \le \frac{|P| - 2}{2}$, then for any $p_1, p_2 \in P$ ($p_1 \ne p_2$), there exist $q_1, q_2 \in P$ such that the convex hull of $\{p_1, p_2, q_1, q_2\}$ is a 3-simplex (tetrahedron) containing no point of P in its interior and such that

```
|P(p_1; p_2, q_1, q_2)| \le k_1 \le P \cap H^-(p_1; p_2, q_1, q_2)|, 
|P(p_2; p_1, q_1, q_2)| \le k_2 \le P \cap H^-(p_2; p_1, q_1, q_2)|, 
|P(q_1; q_2, p_1, p_2)| \le k_3 \le P \cap H^-(q_1; q_2, p_1, p_2)|, 
|P(q_2; q_1, p_1, p_2)| \le k_4 \le P \cap H^-(q_2; q_1, p_1, p_2)|.
```

AMS 1991 Mathematics Subject Classification. 52A37.

Key words and phrases. Finite set of points in the Euclidean space, simplex, affine flat.

§1. Introduction.

For a subset V of the d-dimensional Euclidean space \mathbb{R}^d , let $\operatorname{conv}(V)$ denote the convex hull of V, and let $\operatorname{aff}(V)$ denote the affine flat spanned by V. For d+1 points x_0, x_2, \dots, x_d not lying in the same (affine) (d-1)-flat in \mathbb{R}^d ,

let $H^+(x_0; x_1, \dots, x_d)$ (resp. $H^-(x_0; x_1, \dots, x_d)$) denote the open half-space which is bounded by aff $(\{x_1, \dots, x_d\})$ and contains x (resp. does not contain x). Now let P be a fixed set of points in \mathbb{R}^d . We say that P is in general position if no d+1 points of P lie in the same (d-1)-flat. For d+1 points x_0, x_1, \dots, x_d not lying in the same (d-1)-flat, let

$$P(x_0; x_1, \dots, x_d) := P \cap \bigcap_{1 \le i \le d} H^+(x_i; x_0, x_1, \dots, x_{i-1}, x_{i+1}, \dots, x_d).$$

If a subset V of \mathbb{R}^3 contains no point of P in its interior, V is said to be vacuum. Further, following Kupitz[2], we call a polyhedron D cellular if D is vacuum and all vertices of D are points of P. In this paper, we show the following theorem as a 3-dimensional version of Lemma 3 in [1]:

Theorem 1. Let P be a finite set of points in \mathbb{R}^3 in general position. Suppose that $|P| \geq 4$, and let k_1, k_2, k_3, k_4 be integers such that $k_1 + k_2 + k_3 + k_4 = |P| - 4$, $0 \leq k_1, k_2, k_3, k_4 \leq \frac{|P|-2}{2}$ and $k_1 + k_2 \leq \frac{|P|-2}{2}$. Further let p_1, p_2 be specified points of P with $p_1 \neq p_2$. Then there exist two points q_1, q_2 of P such that $\operatorname{conv}(\{p_1, p_2, q_1, q_2\})$ is a cellular 3-simplex and the following inequalities hold:

$$(1.1) |P(p_1; p_2, q_1, q_2)| \le k_1 \le |P \cap H^-(p_1; p_2, q_1, q_2)|,$$

$$(1.2) |P(p_2; p_1, q_1, q_2)| \le k_2 \le |P \cap H^-(p_2; p_1, q_1, q_2)|,$$

$$(1.3) |P(q_1; q_2, p_1, p_2)| \le k_3 \le |P \cap H^-(q_1; q_2, p_1, p_2)|,$$

$$(1.4) |P(q_2; q_1, p_1, p_2)| \le k_4 \le |P \cap H^-(q_2; q_1, p_1, p_2)|.$$

§2. Proof of Theorem 1.

Let $P, k_1, k_2, k_3, k_4, p_1, p_2$ be as in Theorem 1. Let $\pi : \mathbb{R}^3 \to \mathbb{R}^2$ be the orthogonal projection in the direction of $\overline{p_1p_2}$. We use the following result in the plane case (a slight modification of Claim 1 in [1]):

Proposition 1. Let P' be a finite set of points in \mathbb{R}^2 , and let r'_0 be a specified point of P'. Suppose that $P' \geq 3$ and any line passing through r'_0 contains at most one point of P' other than r'_0 . Let k'_1, k'_2, k'_3 be integers satisfying $0 \leq k'_1, k'_2, k'_3 \leq \frac{|P'|-1}{2}$ and $k'_1 + k'_2 + k'_3 = |P'|-3$. Then there exist $x' \in \mathbb{R}^2 - P$ and $r'_1, r'_2 \in P' - \{r'_0\}$ such that

$$P' \ = \ \{r'_0, r'_1, r'_2\} \cup P'(r'_0; x', r'_1) \cup P'(r'_0; r'_1, r'_2) \cup P'(r'_0; r'_2, x')$$

and

$$|P'(r_0';x',r_1')|=k_1',\ |P'(r_0';r_1',r_2')|=k_2',\ |P'(r_0';r_2',x')|=k_3'.$$

Proposition 1 is essentially the same as Claim 1 in [1], so we omit the proof. Since $k_1 + k_2 \leq \frac{|P|-2}{2}$, we can apply Proposition 1 to $\pi(P) = \{\pi(p) \mid p \in P\}$ with $r'_0 = \pi(p_1) = \pi(p_2)$ and $k'_1 = k_3$, $k'_2 = k_1 + k_2$, $k'_3 = k_4$. Let x', r'_1, r'_2 be as in the conclusion of the Proposition 1. We use the same technique as in the proof of Lemma 3 in [1]. Let l_0 be a line passing through r'_0 and x'. Take $s'_1, s'_2 \in P'(r'_0; r'_1, r'_2) \cup \{r'_1, r'_2\}$ so that for $i = 1, 2, s'_i$ lies in the same side of l_0 as r'_i , and

(2.5) the line segment
$$\overline{s_1's_2'}$$
 is an edge of $\operatorname{conv}(P'(r_0'; r_1', r_2') \cup \{r_1', r_2'\})$ satisfying $\operatorname{conv}(\{r_0', s_1', s_2'\}) \cap H^-(r_0'; s_1', s_2') = \emptyset$.

Now we return to \mathbb{R}^3 . Let x, r_i, s_i (i = 1, 2) be the points of P such that $x, \pi(r_i) = r'_i, \pi(s_i) = s'_i$, respectively. Let

$$K_1 := H^+(x; r_1, p_1, p_2) \cap H^+(r_1; x, p_1, p_2),$$

$$K_2 := H^+(r_1; r_2, p_1, p_2) \cap H^+(r_2; r_1, p_1, p_2),$$

$$K_3 := H^+(r_2; x, p_1, p_2) \cap H^+(x; r_2, p_1, p_2).$$

Then the conclusion of Proposition 1 implies that $K_i \cap K_j = \emptyset$ if $i \neq j$, and

$$(2.6) |P \cap K_1| = k_1' = k_3,$$

$$(2.7) |P \cap K_2| = k_2' = k_1 + k_2,$$

$$(2.8) |P \cap K_3| = k_3' = k_4.$$

Let $H_0 := \pi^{-1}(l_0)$ and let $S = (P \cap K_2) \cup \{r_1, r_2\}$. By (2.5),

$$\Delta := H^+(r_1'; r_0', r_2') \cap H^+(r_2'; r_0', r_1') \cap H^+(r_0'; r_1', r_2')$$

is vacuum. Since $K_2 \cap H^+(p_1; p_2, s_1, s_2) \cap H^+(p_2; p_1, s_1, s_2) \subset \pi^{-1}(\Delta)$, this implies that $S \cap H^+(p_1; p_2, s_1, s_2) \cap H^+(p_2; p_1, s_1, s_2) = \emptyset$. Thus by (2.7), $|S \cap H^+(p_2; p_1, s_1, s_2)| \leq k_1 + 2$ or $|S \cap H^+(p_1; p_2, s_1, s_2)| \leq k_2 + 2$ holds. By symmetry, we may assume

$$(2.9) |S \cap H^+(p_2; p_1, s_1, s_2)| \le k_1 + 2.$$

For a plane H and a point $x \notin H$, let $H^+(x)$ (resp. $\bar{H}^+(x)$) denote the open (resp. closed) half-space which is bounded by H and contains x, and let $H^-(x)$ (resp. $\bar{H}^-(x)$) denote the open (resp. closed) half-space which is bounded by H and does not contain x. Let H_1 be a plane containing p_1 such that

$$(2.10) |S \cap \bar{H}_1^+(p_2)| = k_1 + 2,$$

(2.11)
$$S \cap \bar{H}_1^+(p_2) \cap H_0^+(r_i) \neq \emptyset \text{ for } i = 1, 2.$$

Note that by (2.9), there exists a plane satisfying (2.10) and (2.11). We choose H_1 so that the angle between $H_0 \cap H_1 \cap K_2$ and $\overrightarrow{p_1p_2}$ is as small as possible. Take q_1, q_2 so that

$$(2.12) q_1 \in S \cap \bar{H}_1^+(p_2) \cap H_0^+(r_1),$$

$$(2.13) q_2 \in S \cap \bar{H}_1^+(p_2) \cap H_0^+(r_2),$$

and

(2.14)
$$\triangle p_2 q_1 q_2 \text{ is a facet of } \operatorname{conv} \left((S \cup \{p_2\}) \cap \bar{H_1}^+(p_2) \right) \text{ satisfying } \\ \operatorname{conv} (\{p_1, p_2, q_1, q_2\}) \cap H^-(p_1; p_2, q_1, q_2) = \emptyset.$$

By (2.14), $conv(\{p_1, p_2, q_1, q_2\})$ is vacuum. We now proceed to verify the inequalities in the conclusion of Theorem 1. By (2.12) and (2.13),

$$P(q_1; q_2, p_1, p_2) \subseteq P \cap K_1 \subseteq P \cap H^-(q_1; q_2, p_1, p_2)$$
 and $P(q_2; q_1, p_1, p_2) \subseteq P \cap K_3 \subseteq P \cap H^-(q_2; q_1, p_1, p_2)$

hold, and hence (2.6), (2.8) imply (1.3), (1.4), respectively. Similarly by (2.14),

$$P(p_1; p_2, q_1, q_2) \subseteq S \cap \bar{H_1}^+(p_2) - \{q_1, q_2\} \subseteq P \cap H^-(p_1; p_2, q_1, q_2)$$

holds, and hence (2.10) implies (1.1). Further, it also follows from the choice of q_1, q_2 that

$$P(p_2; p_1, q_1, q_2) \subseteq S \cap H_1^-(p_2).$$

Since

$$|S \cap H_1^-(p_2)| = (k_1 + k_2 + 2) - (k_1 + 2) = k_2$$

by (2.7) and (2.10), this immediately implies the first inequality in (1.2).

We are now left with the verification of the second inequality in (1.2). Suppose

$$|P \cap H^{-}(p_2; p_1, q_1, q_2)| < k_2.$$

Then clearly

$$(2.15) |S \cap H^{-}(p_2; p_1, q_1, q_2)| < k_2.$$

On the other hand, by (2.7) and (2.9),

$$(2.16) |S \cap H^{-}(p_2; p_1, s_1, s_2)| \ge (k_1 + k_2 + 2) - (k_1 + 2) = k_2$$

holds. Let y, z be the intersection points of the line passing through s_1, s_2 and aff($\{p_1, p_2, r_1\}$), aff($\{p_1, p_2, r_2\}$), respectively. Then (2.15) and (2.16) imply that $S \cap H^-(p_2; p_1, s_1, s_2) \not\subseteq S \cap H^-(p_2; p_1, q_1, q_2)$, which implies that at least one of y, z belongs to $H^+(p_2; p_1, q_1, q_2)$. We may assume

$$(2.17) y \in H^+(p_2; p_1, q_1, q_2)$$

without loss of generality. We now show the existence of a plane containing p_0 which gives rise to a contradiction to the choice of H_1 . Toward this end, we divide the situation into two cases according to the location of q_2 .

Case 1 $q_2 = s_2$ or $q_2 \in H^+(p_2; p_1, s_1, s_2)$ In this case,

$$S \cap H^{-}(p_2; p_1, y, q_2) \supseteq S \cap H^{-}(p_2; p_1, s_1, s_2)$$

holds and hence by (2.16),

$$(2.18) |S \cap H^{-}(p_2; p_1, y, q_2)| \ge |S \cap H^{-}(p_2; p_1, s_1, s_2)| \ge k_2.$$

Let l_1 be the line passing through p_1, q_2 , and let H be a (movable) plane containing l_1 . If we gradually rotate H with l_1 as the axis, the value of $|S \cap H^-(p_2)|$ changes by one at each moment when H hits a point of P. Therefore by (2.15) and (2.18), there exists $H_2 \in l_1 \cup H^+(p_2, p_1, q_1, q_2) \cup H^+(p_2, p_1, y, q_2)$ such that $l_1 \in H_2$ and $|S \cap H_2^-(p_2)| = k_2$, or equivalently, $|S \cap \bar{H_2}^+(p_2)| = k_1 + 2$. Now to get a contradiction, we let $K'_2 := H^+(q_1; q_2, p_1, p_2) \cap H^+(q_2; q_1, p_1, p_2)$ (note that by (2.12) and (2.13), H_0 intersects with K'_2). Then by (2.17), it is easy to see that

$$H_0 \cap K_2' \cap H_2^+(p_2) \subset H_0 \cap K_2' \cap H^+(p_2; p_1, q_1, q_2)$$

 $\subseteq H_0 \cap K_2' \cap H_1^+(p_2),$

which yields a contradiction to the minimality of the angle between $H_0 \cap H_1 \cap K_2$ and $\overrightarrow{p_1p_2}$.

Case 2 $q_2 \in H^-(p_2; p_1, s_1, s_2)$

If (2.18) holds, a contradiction can be derived in the same way as in Case 2. Thus we may assume

$$(2.19) |S \cap H^{-}(p_2; p_1, y, q_2)| < k_2.$$

Let l_2 be the line passing through p_1, y . Then again as in Case 1, (2.16) and (2.19) imply that we can find a plane $H_3 \in l_2 \cup H^+(p_2, p_1, y, q_2) \cup H^+(p_2, p_1, s_1, s_2)$ such that $l_2 \in H_3$ and $|S \cap \bar{H_3}^+(p_2)| = k_1 + 2$ by considering the rotation of a plane containing l_2 with l_2 as the axis. Thus again it is easy to see that

$$H_0 \cap K_2' \cap H_3^+(p_2) \subset H_0 \cap K_2' \cap H^+(p_2; p_1, q_1, q_2)$$

 $\subseteq H_0 \cap K_2' \cap H_1^+(p_2),$

which yields a contradiction.

Acknowledgment

The author is grateful to Professor Yoshimi Egawa for his valuable remarks and helpful advice.

References

- [1] S. Tokunaga, On a straight-line embedding problem of graphs, to appear in Discrete Mathematics.
- [2] Y. S. Kupitz, Separation of a finite set in $I\!\!R^d$ by spanned hyperplanes, Combinatorica~13(3) pp.249-258.

Shin-ichi Tokunaga Department of Applied Mathematics, Science University of Tokyo 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162, Japan