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1. Introduction.
Let 1 < p < ∞ and 0 < q < ∞. It is well-known in [Op-Ku] that the

weighted Hardy inequality
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]q

u(x)dx
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holds for p ≤ q if and only if
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) 1

q
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Here −∞ ≤ a < b ≤ ∞ and throughout the paper p′ = p
p−1 , q′ = q

q−1 and
r = pq

p−q . The positive constant C does not depend on a, b and f .
The discrete weighted Hardy inequality
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plays as well as (1) an important role in analysis. Here F(n), U(n) and V(n)
are sequences of non-negative numbers.

A characterization of U(n) and V(n), for which (2) holds, can be found in
the work of K. Andersen and H. Heinig [An-He], [He], G. Bennet [Be] and M.
Braverman and V. Stepanov [Br-St]. In [An-He], [He] and [Be], the inequality
(2) for p ≤ q and 1 ≤ q < p was treated by adapting the proofs for the integral
inequality (1). The case q < 1 < p is more difficult to handle. Indeed in
[Be] a Maurey’s factorization result was needed, and in [Br-St] the key was to
discretize a Halperin’s result on level functions (which is used in [Si] to solve
the integral inequality (1) for the same range of p and q). However the level
function of Halperin is a complicated object to construct. For this reason, G.
Sinnamon and V. Stepanov [Si-St] have recently given a new proof of (1) for
q < 1 < p.

All of these situations raise the question of obtaining direct proofs for the
discrete inequality (2) from the integral inequality (1) without doing any adap-
tation of the methods used in the proofs of (1).

The purpose of this note is to show that inequality (2) can be immediately
deduced from the integral inequality (1).

It is not difficult to see, as for the case of (1), that a necessary condition
for (2) is

(2.1)
( ∞∑

n=N

U(n)
) 1

q
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V1−p′
(n)

) 1
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≤ A for all integers N ≥ 1.

The positive constant A does only depend on p, q, U and V. For the case q < p
(see for instance [Br-St] for q < 1) one can show that a necessary condition
for (2) is
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Now, we are going to prove the converse.

2. Theorem.
For p ≤ q, condition (2.1) implies the discrete Hardy inequality (2). And

for q < p, condition (2.2) is sufficient to ensure (2).

In each case the inequality (2) holds with C = cA where the positive con-
stant c depends only on p and q. The constant C we get for (2) is in general
greater than that obtained from a direct method as in [Be] and [Br-St].

The idea used in this paper can be exploited to treat weighted inequalities

for more general (discrete) operators as (TF)(n) =
n∑

m=1

K(n,m)F(m), and

will be developed by the second author in a forthcoming paper.
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3. Proof of the Theorem.
First we deal with the case p ≤ q. To benefit from the integral inequality

(1) it is convenient to introduce the weight functions

(3.0) u(x) =
∞∑
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U(n)χ[n,n+1)(x) and v(x) =
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Here χE denotes the characteristic function of the measurable set E.
By the definition of u and v and condition (2.1)
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Here N is the positive integer such that N ≤ R < N +1. Invoking (1.1) (with
a = 1, b = ∞ and p ≤ q) it appears that

(3.2)
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1
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for all f ≥ 0. The constant C does only depend on p and q as C = (1 +
q
p′ )

1
q (1 + p′

q )
1
p′ (see Theorem 1.14 in [Op-Ku]).

Let F(n) be a non-negative sequence. Define

f(x) :=
∞∑

k=1

F(k)χ[k,k+1)(x).

Then
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Now we are in position to get the discrete inequality (2). Indeed
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Next we consider the case q < p. For u and v as in (3.0), the preceding
estimate leads to
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To estimate S2, observe that p
q > 1 and (p
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The Hölder inequality together with (3.5) yield
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So, by (1.2) (with a = 1, b = ∞ and q < p) we have
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