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Abstract. Let t, k be integers with ¢ > 3 and k > 1. For a graph G, a subset S
of V(@) with cardinality k is called a (¢, k)-shredder if G—.S consists of ¢ or more
components. In this paper, we show that if t > 3, 2(t—1) < k < 3t—5and G is
a k-connected graph of order at least k%, then the number of (¢, k)-shredders of
G is less than or equal to ((2t —1)(|V(G)| — f(IV(G)])))/(2(t —1)?), where f(n)
denotes the unique real number z with > k—1 such that n = 2(t—1)*(}) +=.
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§1. Introduction

In this paper, we consider only finite, undirected, simple graphs with no loops
and no multiple edges.

Let G = (V(G),E(G)) be a graph. Let ¢,k be integers with ¢ > 3 and
k > 1. A subset S of V(G) with cardinality k is called a (t,k)-shredder if
GG — S consists of ¢ or more components. In this paper, we are concerned with
the number of (¢, k)-shredders in k-connected graphs.

Before stating our result, we make the following definitions. For a real

number xz, we let
(‘Z’) = I] @9 /k!.
0<i<k—1

For a real number n with n > k — 1, we let f;;(n) denote the unique real
number z with x > k — 1 such that

n=2(t— 1)2<”Z> +.

We start with known results concerning (3, k)-shredders. For 1 < k < 3,
the following result was proved by T. Jordédn in [4].
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Theorem 1. Let k be an integer with 1 < k < 3, and let G be a k-connected
graph. Then unless k =3 and G = K33, the number of (3, k)-shredders of G
is less than or equal to (|V(G)| —k —1)/2.

Subsequently the following two results were proved in [2].

Theorem 2. Let G be a 4-connected graph of order n > 2200. Then the
number of (3,4)-shredders of G is less than or equal to 5(n — f34(n))/8.

Theorem 3. Let k be an integer with k > 5, and let G be a k-connected graph.
Then the number of (3, k)-shredders of G is less than 2|V (G)|/3.

In Theorems 1 and 2, the upper bound on the number of (3, k)-shredders
is best possible; as for Theorem 3, the bound itself is not best possible, but
the coefficient 2/3 of |V (G)| in the bound is best possible (see [2], [4], [5]).

In [6], Theorem 1 was generalized to (t, k)-shredders as follows.

Theorem 4. Let t, k be integers witht > 3 and 1 < k < 2t — 3, and let G be
a k-connected graph of order n > 2k + 1. Then the number of (t, k)-shredders
of G is less than or equal to (n —k —1)/(t —1).

Similarly the following generalization of Theorem 3 was proved by G. Liber-
man and Z. Nutov in [5].

Theorem 5. Let t, k be integers with t > 3 and k > 3t — 4, and let G be
a k-connected graph. Then the number of (t,k)-shredders of G is less than
21V(G)|/(2t — 3).

The bound (n —k —1)/(t — 1) in Theorem 4 is best possible. Also modifi-
cations of examples constructed in [2] show that in Theorem 5, the coefficient
2/(2t — 3) of |V(G)| in the bound is best possible. The purpose of this paper
is to generalize Theorem 2 to (¢, k)-shredders as follows.

Main Theorem. Let t, k be integers with t > 3 and 2(t — 1) < k < 3t — 5,
and let G be a k-connected graph of order n. > k®. Then the number of (t,k)-
shredders of G is less than or equal to

(2t = 1)(n— fer(n))) / (20t = 1)%).

We here include a discussion concerning the condition 2(t —1) < k < 3t—5
on k. In view of Theorem 4, it is natural to assume k > 2(t — 1). On the
other hand, the fact that the coefficient 2/(2¢t —3) in Theorem 5 is sharp shows
that the conclusion of the Main Theorem does not hold if & > 3t — 4. Thus
the upper bound 3t — 5 on k in the assumption of the Main Theorem is best
possible.

The organization of the paper is as follows. In Section 2, we discuss the
sharpness of the bound ((2¢t—1)(n— f; x(n)))/(2(t—1)?). Section 3 and Section
4 contain preliminary results. We prove the Main Theorem in Section 5.
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§2. Examples
In the Main Theorem, the bound ((2¢t — 1)(n — fx(n)))/(2(t — 1)?) is best

possible in the sense that there are infinitely many graphs which attain the
bound. To see this, let m > k 4+ 1 be an integer, and let W be a set of
cardinality m. Let & denote the set of all subsets of cardinality k of W, and
write 2 = { Ry, .. .,R(ZL)}. For each p with 1 < p < (ZL), write R, = U, UV,
with |Up| = |V,| = k —t + 1. Define a graphs G of order

(W |+ 2(t —1)%|2| =m +2(t — 1)2 (”;)

V(G)zWU( U {a,,,i,jugi,jgt_u)

1<p<(7)

u( U {bpis 1§i,j§t—1}>,
1<p< ()
E(G) — U {ap,h,ibp,h,ja ap,h,iua bp,h,jv ‘ 1 S h’a i? .] S t— 17

L<p<(Y)
welUpveV}U{zy |z, yeW, z#y}.

Then G is k-connected and, in addition to the members of %2, G has 2(t—1)|%|
(t, k)-shredders

{apij |1<j<t—1}UV, (1<i<t—1,1<p<(})),
{bpij|1<j<t—1}UU, (1<i<t—-1,1<p<(})).

Hence the total number of (¢, k)-shredders of G is

m

2=+ (7}) = (@ = DAVE) - FulVIEN) / (200~ 1)

§3. Preliminary results

Throughout this section, let ¢, k be integers with t > 3 and k > 2(t — 1), let
G be a k-connected graph, and let . denote the set of (¢, k)-shredders of G.

For each S € ., we define .7 (S), #(S) and L(S) as follows. Let S €
. We let #(S) denote the set of components of G — S. Write #(S) =
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{Hi,...,Hs} (s = |#(5)]). We may assume |V (H;)| > |[V(Hg)| > -+ >
|V(Hs)| (any such labeling will do). Under this notation, we let £(S) =
H(S) — {H1} and L(S) = Uy<;<s V(H); thus L(S) = Uge »(s) V(C). Now
let ¥ = USey Z(S). A member F of & is said to be saturated if there exists
a subset ¢ of ¥ — {F'} such that V(F) = Jcc, V(O).

Let S, T € . with S # T. We say that S meshes with T if S intersects
with at least two members of 7 (T'). It is easy to see that if S meshes with T,
then T intersects with all members of J#(S), and hence T' meshes with S and
S intersects with all members of #(T') (see [1; Lemma 4.3 (1)]). We define
an auxiliary graph ¢ by

Vig)=2,
E(@)={ST|S,Te.¥, S#T, S and T mesh with each other}.

We start with easy observations.

Lemma 3.1. Let S € .#. Then for each x € S and each C € #(S), there is
an edge of G joining x and a vertex of C.

Proof. If xy ¢ E(G) for any y € C, then G — (S — {z}) is disconnected, which
contradicts the assumption that G is k-connected. O

Lemma 3.2. Let S, T € . with S # T, and suppose that ST € E(4). Then
the following hold.

(i) For each C € #(S) and each D € ¢ (T), there is an edge of G joining
a vertex of C and a vertex of D.

(ii) The subgraph of G induced by L(S) U L(T') is connected.

Proof. Since ST € E(¥), we have S N V(D) # 0. Hence (i) follows from
Lemma 3.1, and (ii) follows from (i). O

Lemma 3.3. Let S, T € . with S # T, and suppose that ST € E(4). Then
ISNL(T)|>t—1and |[L(S)NT| >t —1.

Proof. Since ST € E(¢), SNV(D) # 0 for all D € #(T). Since |.Z(T)| >
t—1, this implies [SNL(T)| > [.£(T)| > t—1. Similarly |[L(S)NT| >t—-1. O

Note that a (t,k)-shredder is a (3,k)-shredder. Thus the following five
lemmas follow from [4; Lemmas 2.1 and 3.1] (see also [2; Lemmas 3.2 through
3.6]).

Lemma 3.4. Let S, T € . with S # T, and suppose that ST € E(¥4). Then
the following hold.
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(i) S 2 L(T) or T 2 L(S).
(i) L(S) NL(T) = 0.

Lemma 3.5. Let S, T € . with S # T, and suppose that ST ¢ E(4). Then
one of the following holds:

(i) L(ISYNL(T) =0, (L(S)UL(T)) N
a vertex in L(S) and a vertex in L

—

SUT) =0, and no edge of G joins
T);

—

(ii) there exists C € £(S) such that V

—~

C) 2 L(T) (so L(S) 2 L(T)); or

(iii) there exists D € £(T') such that V

—

D) D L(S) (so L(T) 2 L(S)).
Lemma 3.6. Let S, T € . with S # T, and suppose that ST ¢ E(4) and
L(S) Z L(T). Then SN L(T) = 0.
Lemma 3.7. Let C, D € ¥. Then one of the following holds:

(i) V(C)nV(D) =0;

(i) V(C) 2 V(D); or

(iii) V(D) 2 V(C).
Lemma 3.8. Let F' € . Suppose that F is saturated, and let € be a subset

of & —{F} with minimum cardinality such that V(F) = Ugey V(C). Then
the following hold.

(i) ¢ =Ugecy £L(S) for some subset 7 of 7 (so V(F) = Ugec s L(S)).
(ii) | 7| > 2, and the subgraph induced by 7 in & is connected.

We can prove the following lemma by arguing as in the proof of [3; Lemma
2.12).

Lemma 3.9. Let S, T € ., and suppose that ST € E(9) and L(T) € S.
Then |SNL(T)| > 2t — 3.

Proof. Since L(T) Z S, it follows form Lemma 3.4 (i) that L(S) C T which,
in particular, implies L(S) N L(T) = 0. Hence (V(G) — S — L(S)) N L(T) #
0. Write £(T) = {F1,....,F,} (a = |£2(T)] > t —1). We may assume
(V(G) =S —=L(S))NV(Fy) # 0. Then (SNV(Fy))U (T — L(S)) separates
(V(G)—S—L(S))NV(F}) from the rest. Hence [(SNV (F1))U(T —L(95))| > k,
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which implies |[SNV(Fy)| >k —|T — L(S)| = |T| — |T — L(S)| = |L(S) N T|.
Therefore

(3.1) ISAV(F)| >t-1

by Lemma 3.3. Since S NV (F;) # () for each i by the definition of meshing,
we now obtain [SNL(T)| = 31« [SNV(E)| =[SOV (F)|[ + D 9cica 1SN
V(F)|>t—1+a—-12>2t-3. O

Lemma 3.10. Suppose that 2(t—1) < k < 3t—5 and |[V(G)| > (k*+6k+1)/4.
Let S, T € .7, and suppose that ST € E(¥4). Then the following hold.

(1) If we write # (S) — £(S) = {C} and #(T) — £(T) = {D}, then
V(C)NnV(D) #0.

(ii) L(S) C T, L(T) C S.

(i) t — 1< |[L(S)| <k —t+1,t—1<|L(T)| <k—t+1.

Proof. In view of Lemma 3.4, we may assume L(S) C T. Then L(S)NV (D) =
(. To prove (i), suppose that V(C) NV (D) = (. Then V(D) C S, and hence
V(D) = |SNnV(D)| < |S|—|SNL(T). By the definition of meshing,
| 2(T)| < |SNL(T)|. Since D is the largest component in .# (1), we obtain
IL(T)| < | 2(D[V(D)] < [SNLT)|(k —[S N L(T)[), and hence [V(G)| =
[V(D)|+|T|+|L(T)| < =|SNL(T)|*+ (k—1)|SNL(T)| + 2k = —(|SNL(T)| -
(k—l)/2)2+(k2+6k+1)/4 < (k*46k+1)/4. This contradicts the assumption
that |V (G)| > (k? + 6k +1)/4. Thus (i) is proved. To prove (ii), suppose that
L(T) € S. By Lemma 3.9, |[SNL(T)| > 2t — 3. Since V(C) NV (D) # 0 by
(1), we get

(3.2) ISNV(D)| >t —1

by arguing as in the proof of (3.1). Consequently k > |SNL(T)|+|SNV(D)| >
3t — 4, which contradicts the assumption that & < 3t — 5. Thus (ii) is proved.
Now by (ii) and (3.2), t—1 < | 2(T)| < |L(T)| < |S|=|SNV(D)| < k—(t—1).
Similarly t —1 < |L(S)| < |T|—|V(C)NT| < k—(t—1), which proves (iii). O

Lemma 3.11. Suppose that 2(t—1) < k < 3t—5 and |[V(G)| > (k*+6k+1)/4.
Let T € .7, and suppose that deg,(T) > 1, i.e., there exists T' € . —{T'}
such that TT' € E(4). Then there is no S € . —{T'} such that L(S) C L(T).
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Proof. Suppose that there exists S € . —{T'} such that L(S) C L(T). Then
ST ¢ E(¢4) by Lemma 3.4, and hence it follows Lemma 3.5 that there exists
M € % (T) such that L(S) C V(M). This implies

Yo VBNV

Fex(T)-{M}
(|2(T)] - 1)+ [L(5)]
(t—1—1)+(t—1)=2t—3.

[L(T)|

>
>

On the other hand, since deg,(T") > 1, |L(T)| < k—t+1 by Lemma 3.10 (iii).
Consequently 2t — 3 < |L(T")| < k —t + 1, which contradicts the assumption
k <3t—5. O

84. Numerical results

In this section, we state preliminary lemmas, most of which are Numerical
results. Throughout this section, we let ¢, k be as in the Main Theorem. Also
for simplicity, we write f(n) for f; x(n). The following lemma is easily verified,
and we omit its proof (see the proof of Lemma 4.2):

Lemma 4.1. Let a, x, ' be real numbers such that a < k+2 and k +1 <

xz < z'. Then
(i) o< (i) o
L) ax < v ) ax’.

Let a denote the real number with k42 < a < k+3 such that (}) = (k+1)cv.
The existence of a follows from the fact that we have

(1) <t () st

Lemma 4.2. Let z, ' be real numbers with o < x < x’. Then

(t—1) (i) —((E+1)(t =12t —1) + 1)

l'/

< (t— 1)<k> —((k+1DE-1)(2t—1)+1)a".

Proof. We define h(z) by h(z) = (t—1)(}) — ((k+1)(t—1)(2t—1)+1)z. Then
W(a) = (t=1)(k+1)a Y gcicpi (1/(a—i)) = ((k+1)(t—1)(2t—1)+1). We show
that h/(«) > 0. Since o/(av—14) > (k+3)/(k+3—1i) foreach 0 <i < k—1 and
since 2(t—1) <k, b (a) > (t—=1)(k+1)(k+3) Y ocicp_y (1/(k+3—1)) — ((k+
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12t =1)+1) > (t=1)((k+1)(k+3) Xoicpr (1/(k+3—1)) = ((k+1)*+1)).
Thus it suffices to show

(4.1) S Y(k+3—i)> (k+1)/(k+3)+1/((k+1)(k+3)).
0<i<k—1

It is easy to verify (4.1) for 4 < k < 6. On the other hand, if & > 7,

Zogigk—1(1/(l‘3 +3—1)) > Yacici0(1/i) > 1> (k+1)/(k+3) + 1/((k +
1)(k + 3)). Hence (4.1) holds, and we therefore obtain 4'(a) > 0. Since we
clearly have h'’(z) > 0 for all z > a, we now see that h'(z) > 0 for x > «, and
hence the desired inequality holds. O

For convenience, we restate Lemma 4.1 in the following form:

Lemma 4.3. Let a, m, b, b’ be real numbers such that a < k+2, b < b and
(t—1)b<m—(k+1). Then

R T (P

Lemma 4.4. Let n > k® be a real number. Then the following hold.

(i) (a) f(n) >k+6.
(b) If k=4, f(n) > 11.

(i) f(n) <n/((2(t —1)%(k+1)+1)(2t —1)).

Proof. Statement (i) (a) follows from the inequality 2(¢ — I)Q(k:(j) +k+6<
(k*("19))/2+k+6 < k®. Similarly (i) (b) follows from the fact that 8(*})+11 <
48. Note that n/((2(t — 1)2(k + 1) + 1)(2t — 1)) — f(n) = ((2(t — 1)) /((2(t —
D2(k+1) +1)2t — 1)) ((t = 1) (") = ((k + 1)(t = 1)(2t — 1) + 1) f(n)). Thus
(ii) is equivalent to the inequality

(4.2) (t—1) (f(;)) —((k+1)(t—-1)(2t—1)+ 1) f(n) > 0.

Assume for the moment that £ > 5. By (i) (a) and Lemma 4.2, (4.2) follows
if we prove (t—1) (") — ((k+1)(t—1)(2t — 1) +1)(k+6) > 0. In view of the
assumption that 2(t—1) < k, it suffices to show (kZG) —((k+1)2+1)(k+6) > 0,
which holds because (kzﬁ) = (k+1)(k+2)(k+6)((k+5)(k+4)(k+3)/720) >
(k+1)(k +2)(k+6). Similarly if k£ = 4, then by (i) (b) and Lemma 4.2, (4.2)
follows from the fact that (141) —(4+1*+1)-11>0. O
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Lemma 4.5. Let n, m, b; (0 < j <t—1) be nonnegative real numbers with
n > k8 such that

0< Y (t—1-jb<m—(k+1),

0<j<t—2
m— —1— 5)b;
> b]é( osJ‘zs:t—2(t 7 J>+(k'+1) > t—1-5)b
1<j<t-1 k 0<j<t—2
2t—1) Y jbj<n—m.
1<j<t-1
Then
(n—m)/(t=1)+ Y b <(2t—1)(n—f(n)/2(t—1).

0<j<t—1

Proof. If we let cg = Y geicpo((t =1 —10)/(t —1))b;, ¢; =0 (1 < j <t —2),
Ct—1 = ) 1<j<y_1(ib;)/(t—1), then the ¢; (0 < j < t—1) satisfy the assumptions
of the lemma, and > 0<j<i—1 05 = 2o<j<i—1¢j- Thus we may assume b; = 0
for every 1 < j <t — 2. Then we have

(4.3) 0< (t—1)by <m— (k+1)
(4.4) by < (m - (tk 1)b0> + (k + 1)(t — 1)bg
(4.5) 2(t —1)%h 1 <n—m

Case 1. m < f(n).
By (4.4),
m— (tk— 1>bﬂ> 4 (t—1)(k+1+1/(t—1))bo.

Since k+1+1/(t—1) < k+2 and since 0 < (t —1)bp < m — (k+1) by (4.3),
we get

by +bi—1 < <

by applying Lemma 4.3 witha =k + 1+ 1/(t — 1), b = by and &’ = 0. Hence
bo+ b1 < (T:) Therefore we obtain

(n—m)/(t—1)+bo+b_1 <n/(t—1)+ <7:> —m/(t—1)

<nfte=1+ (1) < e -

= (2t = D(n— f(n)))/(2(t - 1))
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by Lemma 4.1.
Case 2. m > f(n).
Subcase 2.1. by—1 < ((k+ 1)n)/(2(t — 1)*(k + 1) + 1).
By (4.3),
(n—m)/(t —1) +bo + b1
S(n—m)/(t—1)+( k—l—l)/t—l
(k+1)n)/(2(t —1)?(k+ 1) + 1)
<n/(t—1)+(<k+1) )/(2 (t—1>2< +1)+1)
Since ((k+1)n)/(2(t—1)%*(k+1)+1) < ((n—(2t—1)f(n))/(2(t—1)?) by Lemma
4.4 (ii), this implies (n—m)/(t—1)+bg+bi—1 < ((Qt 1)(n— f(n)))/(Q(t 1)2).
Subcase 2.2. by—1 > ((k+ 1)n)/(2(t — 1)*(k + 1) + 1).

Let « be as in the paragraph preceding Lemma 4.2. By (4.5) and the
assumption of this subcase, m < n/(2(t — 1)2(k + 1) + 1), and hence b; 1 >
(k + 1)m, which implies

(m_(:j_a))+(k+1)(m—0¢)—(k+1)m

< b1

< <m - (tk_ l)bo) + (k+1)(t = 1)bo.

We here consider the function g(z) = (mf(fﬂ*l)ﬁ) + (t —1)(k + 1)z. Then the
above inequality is written in the form

(4.6) g((m = a)/(t = 1)) < b1 < g(bo);
in particular,
(4.7) g((m —a)/(t = 1)) < g(bo)-

Since a > k + 2 by the definiton of «, we have
(4.8) m—a<m-—(k+1).

Since the function g(x) is monotonely decreasing in the interval z < (m —
(k+1))/(t — 1) by Lemma 4.3, it follows from (4.7), (4.8) and (4.3) that
by < (m — a)/(t —1). Hence it follows from (4.6) that there exists bj, with
by < by < (m —a)/(t — 1) such that g(bj) = bi—1, i.e.,

b1 = (m - (tk_ 1)%) 4 (k+1)(t — 1)b).
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Thus by replacing the number by in the statement of the lemma by b, we may
assume that equality holds in (4.4); that is to say, we have

(4.9) bi_1 = <m B <tk_ 1)b0> + (k + 1)(t — 1)50
and
(4.10) m— (t—1)by > a.

Since m > f(n), by—1 < (n — f(n))/(2(t —1)%) = () by (4.5), and hence

()< (0

by (4.9), which implies
(4.11) m— (t—1)by < f(n).
Now by (4.9) and (4.5),

) +(k+1)(t—1)bo+ (k+1)(n—m)

k: > —(k+1)(m—(t—1bo) + (k+ 1)n,

and hence

by < <<m - (tk_ 1)b°> ~ (k4 1)(m — (t — 1)bo)

+ (k + 1)n> /2t -1)>%k+1)+1),
which implies

(n—m)/(t 1) + by + by
<=m/e-n+u( (")

—(k+1)(m—(t—1)by) + (k + 1)n> / (20t = 1)%(k +1) + 1)
= (((k + D)t —D2t—1) +Dn+(t—1) <m - (tk— 1)bo)

—((k+1)(t—-1)@2t—1)+1)(m — (t— 1)b0)> /(2@ —1)2(k+1)+ 1)t —1)).
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Consequently it follows from Lemma 4.2 and (4.10) and (4.11) that
(n—m)/(t=1) 4 bo + br1

< <((k +1)(t-1)(2t— 1)+ 1)n+(t— 1)<f(kn)>

—((k+D@E-1)(2t—1)+ 1)f(n)>/((2(t —1)*(k+1)+1)(t—1))
= (2t =1)(n—f(n)))/20t—1)). O

Lemma 4.6. Let z, y, ', ¥ be real numbers such that k < 1’ <x <y <y
and x +y=2a"+1vy'. Then

(o) () <G+ ()

Proof. The function ¢(x) = (i) is strictly convex in the interval > k. Hence

((i) — (“’Z))/(a:/—a:’) /< ((32,) — (Z))/(y’ —y). Since z — 2’ = y' — y, this implies
(o) + (1) < () + (%) O
Repeated applications of Lemma 4.6 yield:

Lemma 4.7. Let z1,...,xp11 be real numbers such that x; > k + 1 for all
1<i<b+1, and let x = Zlgingrl xz;. Then

1§§+1 <:;:> < b<k‘ —]: 1> N <:U - (12—1- 1)b> _ <:L‘ - (724— 1)b> A,

Proof. We proceed by induction on b. If b = 0, the lemma clearly holds. We
may assume b > 1. Then by the induction hypothesis,

= ()= ()=o)
+ <1§§b$i - (Z+ o= D) + <xbk“>

Note that k +1 < > ;mi — (k+1)(b—-1) <z —(k+1)band k +1 <
Zp+1 < x — (k 4+ 1)b. Hence, whether 219’9 xi— (k+1)(b—1) < zpyq or
Tpp1 < Z1§i§b z; — (k+1)(b— 1), we obtain

(lggbmi - (];;-i- 1)(b - 1)) N <x,,k+1> - <k;r1> N <:r - (12+ 1)b>
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by Lemma 4.6. Therefore

12{)("’;) + (””’,{“) S(b—1)<k7€_1> n <k21> N (x—(kl;ﬂ)b)
<i< :b<k_]:1>+<a:—(lz+1)b>' .

Lemma 4.8. Let b > 0 be an integer (we allow the possibility that b = 0).
Let W be a finite set. Let Zy,...,Zy; Q1,...,Qp be subsets of W such that
ZinZj =0 for all i, j with 1 < i < j < b and such that |Q;| < k for all
1 < i <b Let # be a family of subsets of cardinality k of W such that
for each R € @ and for each 1 < i < b, we have either RN Z; = 0 or
RN (W = (Ui<j<i Zj) — Qi) = 0. Then the following hold.

3 <|ZZ-|k+k>)+ W -

1<i<b

U 2
1<i<b
k
(i) If Zi # 0 for all 1 <i < b and |W| — |Uy<ij<p Zil > k+ 1, then

%) < <|W|k_ b> + (k+1)b.

(i) |z| < <

Proof. We first prove (i). If b = 0, (i) clearly holds. Thus we may assume
b > 1. We proceed by induction on b. Set
% ={Rex|RNZ =0},
T={ReZ|RN(W —Z1 - Q1) =0}
By assumption, %2 = %' U 7. Hence

Z1+ k Wl —|Z

which shows that (i) holds for b = 1. Thus we may assume b > 2. Set
W'=W — Zy, and set Z, = Z;j1 and Q; = Qi1 — Zy for each 1 <7 <b— 1.
Then %', W', the Z! and the @/ satisfy the assumptions of the lemma with b
replaced by b — 1. Hence by the induction hypothesis,

Z'N+k w'| — Z!
| %' | < ( Z <| Z|k )) + Wl 1§¢L§Jb—1
1<i<b—1 k
_ (Z <\Zi|+k>) (W2l Uz
= 1 2<i<b
2<i<b k
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Therefore
% < |7+ |%|
) () (o
2<i<b k

This proves (i). Since (321<;<,(|Zi| + k) + (W] = [Ui<i<p Zil) = W] + kb,
(ii) follows from (i) and Lemma 4.7. O

85. Proof of the main theorem

In this section, we let ¢, k, G, n be as in the Main Theorem, and follow the
notation introduced in Section 3. Also as in Section 4, we write f(n) for
fee(n). Since ((2t —1)(n — f(n)))/(2(t — 1)*) > n/(t — 1) by Lemma 4.4 (i),
we may assume |.& | > n/(t —1).

Let s#1,..., ./, be the nontrivial components of ¢. For each 1 < p < a,
write V(5¢p) = {Tpa,- .. ’Tple(pr)l} (here V(%) denotes the vertex set of
), so V(i) C . by the definition of ¢), and let F), denote the subgraph
of G induced by Ulgig\\/(%’pﬂ L(T};). Let W =V(G) — Uy<pe, V(Fp).

The following claim follows immediately from Lemma 3.2.

Claim 5.1. F), is connected for all p with 1 <p < a.

Claim 5.2. V(F,) N V(F,) = 0 and E(V(Fy),V(Fy)) = 0 for all p, q with
I<p<g<a

Proof. Take Tp,; € s and T,; € ;. Then T,,T,; ¢ E(%), and hence
L(T,;) N L(Ty,;) = 0 and E(L(Tp;),L(Ty;)) = ® by Lemmas 3.5 and 3.11.
Since T}, ; and T ; are arbitrary, this means

V(E,) NV (F,) =0 and E(V(F,),V(F,)) = 0. O

For each 1 < p < aq, |V(F,)| = Zlgig‘v(%ﬂp)l |L(T},;)| by Lemmas 3.4, 3.5
and 3.11, and hence (t — 1)|V(54)| < |V(F},)| by Lemma 3.10 (iii).
Consequently

(5.1) (t=1) > Vel < Y V()

1<p<a 1<p<a
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By Claim 5.2,

(5.2) Wi=n= 3 V(5

By (5.1) and (5.2),

(5.3) . V) < (n— W/ -1).

1<p<a
Since |V (#p)| > 2 for each p, it follows from (5.3) that
(5.4) a < (n—[W[)/(2(t-1)).
Set # = .7 — Ui<p<a V().

Claim 5.3. Let S € .7 — V(). Then SNV(F,) = 0.

Proof. Let T € V(p). Then ST ¢ E(%). Hence SN L(T) = 0 by Lemmas
3.6 and 3.11. Thus SNV(F,) = S0 (Urey ) L(T)) =0 O

Claim 5.4. Let Se€¢ . Then S C W.
Proof. This is because S NV (F,) = for each 1 < p < a by Claim 5.3. O

Claim 5.5. Let S € %, and let C € ¢ (S)—{F1,...,F,}. Then the following
holds.

(i) If C € £(S), then C is not saturated.

(i) If we let A= {p | V(F,) NV(C) # 0}, then V(C) = W = Upea V(Fp).

Proof. Let A be as in (ii). Then by Claims 5.1 and 5.3, V(F,) C V(C) for
each p € A, and hence (J,c o V(Fp) € V(C) — W. Thus (ii) is proved. Now
let C € j(S) and suppose that C' is saturated. By Lemma 3.8, there exists
7 C . with | 7| > 2 such that V(C) = Uysec,» L(M) and such that the
subgraph induced by .7 in ¢ is connected. Then there exists p such that
T C V(4), and hence V(C) C V(F,). By (ii), this implies V(C) = V(F}),
which contradicts the assumption that C' ¢ {F1,..., Fy}. O

Set

Qz:{SG%H%(s)ﬂ{FD7Fa}|:Z} (0§i§t—2)’
Qt712{56%| ’L%/(S)Q{Fl,...,FaHZt*l}
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and let b; = |2;| for each i. Since # (S) N . #(T) =0 for any S,T € . with
S # T, we have
(5.5) > i <a.

1<i<t—1
By (5.4) and (5.5)

(5.6) 2t—1) > ibi<n—|W].

1<i<t—1

If [W] < k, then (W) < |W|/k < [W|/(t — 1), and hence it follows from
(5.3) and Claim 5.4 that || < (n — [W|[)/(t — 1) + (")) < n/(t - 1), which
contradicts the assumption that | .| > n/(t — 1). Thus

(5.7) W[ >k+1.

Now label the members of | Jy<;<;_9 2 as Q1,...,Qn (h =) gcici_o bi) 5O
that o o

(5.8) L(Q;) € L(Q;) for any i, j with 1 <i<j<h

(it is possible that A = 0). In the case where h > 2, if possible, we choose our
labeling so that L(Qp—1) € L(Qp). For each 1 <i < h,let 5; (0 <j; <t—2)
be the index such that Q; € 2;, and take Cj1,...,Cit—1-j, € L(Qi) —
{F1,...,F,} (the existence of such components follows from the definition of
2;,). Let Wy = (0. For ¢ with 1 < i < h, we define X;; (1 <1 <t—1-j)
and W; inductively as follows: X;; = (V(Ci;) N W) — Wiy, Wy = W, U
(Ur<i<t—1—j; Xip)- Then

(5.9) wWow,= < U X,,l> (disjoint union).

1<i<h M<I<t—1-7;

Arguing as in [2; Claims 6.3 and 6.4 and 6.5], we obtain the following three
claims. We include sketches of their proofs for the convenience of the reader.

Claim 5.6. X;; # 0 for every i,l with1 <i<hand1<1<t—1-j.

Proof. Set A ={p | V(F,) NV (C;;) # 0}. By Claim 5.5 (ii), V(C;;) — W =
Upea V(Fp). Set J ={j[1<j<i—1,LQ;) C V(Ci1)}. Suppose that
X1 =10. Then (V(Ci;) "W) —W;_1 =0, and hence V(C;;) NW C W;_; C
Ulgjgi—l L(Q;). On the other hand, for each 1 < j < i — 1 with j & J,
L(Q;)NV(C;;) = 0 by (5.8) and Lemma 3.5 (note that {Q, | 1 < a < h} C %,
and thus Q;Q; ¢ E(¥) by the definition of %). Consequently V(C;;) N W C
Ujes L(Qj) € V(Ciy), and hence V(Ciy) = (Uyea V(Fp)) U (Ujes L(Q5))-
Since V(F,) = UTeV(‘%gp) L(T) for each p € A, this means that V(C;;) is
saturated, which contradicts Claim 5.5 (i). O
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Claim 5.7. Suppose that either h > 2 and L(Qn—1) € L(Qp), orh =1, and let
Cecx(Qn)—{Chs- -, Chyi—1—j,, F1,..., Fo}. Then (V(C)NW) = W), # 0.

Proof. Since C' and the Cp; (1 <1 < t—1— jj) are distinct members of
H(Qp), (V(C)YNW)N (W, — Wy_q1) = (. Thus it suffices to show that
(V(C)NW) — Wj_1 # 0. Suppose that

(5.10) (V(C)NW) — Wiy = 0.

If C € #(Qn), we can get a contradiction by arguing as in the proof of Claim
5.6. Thus we may assume C ¢ £(Qp). Then

(5.11) V(C) N L(Qy) = 0.

Assume for the moment that h > 2 and L(Qp—1) € L(Qp). Then by the choice
of our labeling mentioned immediately after (5.8), we have L(Q},_;) € L(Q})
for any labeling Q1, ..., Q}, of Uy<;<;_o 2i which satisfies (5.8). This implies
L(Q;) € L(Qp) for all 1 <4 < h — 1. Hence by (5.11), V(C) N L(Q;) = ( for
all 1 <i < h — 1 which, in view of (5.10), implies that

(5.12) ViC)nW =WV C)NW) =Wy =0.

Note that if h = 1, then (5.10) immediately implies (5.12). Thus (5.12) holds.
But in view of Claim 5.5 (ii) and Claim 5.2, (5.12) implies that C' = F}, for some
pwith 1 < p < a, which contradicts the assumption that C' ¢ {Fy,..., F,}. O

Claim 5.8. |[W,| < |W| - (k +1).

Proof. If h = 0, the claim immediately follows from (5.7). Thus we may
assume h > 1. By (5.8) and Lemma 3.6, Qp N L(Q;) = 0 for all 7, and hence

(5.13) QnnNW, = .

Assume first that A > 2 and L(Qp—1) € L(Qr). Then by (5.8) and Lemma
3.6, we obtain Qn,_1 N W), = 0. Since Qn_1,Q, € W by Claim 5.4, this
together with (5.13) implies that |[Wj| < |[W| —|Qnr U Qpr_1| < W] — (k+1).
Assume now that h > 2 and L(Qn—1) € L(Qp) or h = 1. Let C be as in
Claim 5.7. Then since @, € W by Claim 5.4, Claim 5.7 and (5.13) imply that
Wil < W] = Qnl — |(V(C) N W) = Wy| < [W] = (k+1). 0

Claim 5.9. Y, o(t — 1 — j)b; < [W| — (k + 1).
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Proof. Recall that for each 1 <14 < h, j; denotes the index such that Q; € 2;,,
and thus b; = [{i | 1 < i < h,j; = j}| for each 0 < j <t — 2. Therefore by
(5.9) and Claims 5.6 and 5.8,

dot=1=5b= > (t-1-j)

0<j<t—2 1<i<h
<> (% )
1<i<h M<ZI<t—1—j;
= U < U Xz',l>
1<i<h M<I<t—1—j;
= |Wp| < |W| = (k+1). O

Claim 5.10. For anyi,l with1 <i<h and1 <[ <t—1-—j;, no member of
U0§j§t—1 2; intersects with both X;; and W — W;_1 — X;; — Q.

Proof. Recall that {Q, | 1 < a < h} = U0§j§t72 2; C U[)gjgtfl 2, =R.
Also note that a vertex in X;; and a vertex in W — W;_; — X;; — @Q; belong
to distinct components of G — ;. Since no two members of % mesh with
each other by the definition of 42, this means that no member of Uog j<t—1 2;
intersects with both X;; and W — W;_1 — X;; — Q;. O

In view of Lemma 4.8 (ii), Claim 5.10 together with Claims 5.6 and 5.8
implies

(5.14) 3 bj§<|W’_0Sj2§:t—2(t_1_j)bj>+(k+l) ST (t—1—4)b;

0<j<t—1 k 0<j<t—2

We now obtain

= Vpl+ Y b
1<p<a 0<i<t—1
<S(m—W)/t-1)+ > b (by(53))
0<i<t—1

< (@t =1)(n—f(n) / (2(t-1)%)
(by (5.6), (5.14), Claim 5.9 and Lemma 4.5).

This completes the proof of the Main Theorem.
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