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Abstract. Let A be a basic self-injective Nakayama algebra over an alge-
braically closed field. In this paper, we investigate the ring structure of the
orbit algebra A(τAe ; A) =

⊕
i≥0 HomAe

(
τ i

Ae(A), A
)
, where Ae is the envelop-

ing algebra of A and τAe is the Auslander-Reiten translation for Ae.
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§1. Introduction

Let K be an algebraically closed field, and let R be a finite dimensional self-
injective algebra over K. We denote by Rop the opposite algebra of R, and by
mod(R) the category of finitely generated left R-modules. Recall from [ASS]
that the projectively stable category mod(R) of mod(R) is defined to be the
category whose objects are the same as those of mod(R) and the morphism set
HomR(M, N) for M , N in mod(R) is the factor space HomR(M, N)/P(M, N),
where P(M, N) is a subspace of HomR(M, N) consisting of all morphisms
which factor through a projective module in mod(R). Dually, the injectively
stable category mod(R) of mod(R) is also defined. However, since R is self-
injective, we obtain mod(R) = mod(R).

Let M be a module in mod(R), and let P1
ρ1−→ P0

ρ0−→ M −→ 0 be a mini-
mal projective presentation of M . Applying the functor (−)t := HomR(−, R),
we have the exact sequence of right R-modules:

0 −→ M t ρt
0−→ P t

0

ρt
1−→ P t

1 −→ Coker ρt
1 −→ 0.
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Then, by setting TrR(M) := Coker ρt
1, we obtain the duality TrR : mod(R) −→

mod(Rop) called the transpose duality. Moreover, we have the self-duality
τR := DTrR : mod(R) −→ mod(R) called the Auslander-Reiten translation
(see [ARS], [ASS]), where D denotes the usual duality HomK(−,K). In this
paper, we study a graded algebra over K induced by τR in the case where R
is the enveloping algebra of a self-injective Nakayama algebra.

Let s be a positive integer and K an algebraically closed field, and let Γ be
the cyclic quiver with s vertices e0, e1, . . . , es−1 and s arrows a0, a1, . . . , as−1,
where each at (0 ≤ t ≤ s − 1) starts at et and ends at et+1. Here, we regard
the index t of et modulo s. We denote by KΓ the path algebra of Γ over K,
and by X the sum of all arrows in KΓ : X = a0 + · · · + as−1. Moreover, we
denote the K-algebra KΓ/(Xk) (k ≥ 2) by A. It is known that A is a basic
self-injective Nakayama algebra (see [ASS]). Note that the enveloping algebra
Ae := A ⊗K Aop is also a self-injective algebra. Recall that the τAe-orbit
algebra of A, denoted by A(τAe ; A) as in [P], is a graded K-algebra defined as
follows: A(τAe ; A) is the direct sum of the K-vector spaces

A(τAe ; A) =
⊕
i≥0

HomAe(τ i
Ae(A), A).

The multiplication f · g of homogeneous elements f ∈ HomAe(τm
Ae(A), A) and

g ∈ HomAe(τn
Ae(A), A) is the composition f ◦ τm

Ae(g) ∈ HomAe(τm+n
Ae (A), A).

In [P], Pogorza ly describes the ring structure of A(τAe ; A) by using a Galois
covering of Ae in the case where the τAe-period of A equals one, that is,
k ≡ 2 (mod s). See Remark 2.6 for k ≡ 1 (mod s). In this paper, under
the condition that s ≥ 2 and k ≡ 0 (mod s), we find a basis of the K-space
HomAe(τ i

Ae(A), A) (i ≥ 0) by using an injective hull of τ i
Ae(A) and determine

the ring structure of A(τAe ; A).

This paper is organized as follows: In Section 2, we will define an auto-
morphism of categories (−)αn : mod(Ae) −→ mod(Ae) for any integer n and
an automorphism α of A, and prove that A(τAe ; A) is isomorphic to the orbit
algebra

⊕
i≥0 HomAe(Aαi(k−2) , A) induced by (−)αk−2 (Lemma 2.1). Next, we

explicitly give a K-basis of HomAe(Aαi(k−2) , A) (Proposition 2.3). Moreover,
in the case s ≥ 2 and k ≡ 0 (mod s), we find a K-basis of P(Aα−2i , A) (i ≥ 0)
by means of the injective hull of Ae-module Aα−2i given in [F], and we give a
K-basis of HomAe(τ i

Ae(A), A) (i ≥ 0) (Theorem 2.5). In Section 3, we give a
presentation of A(τAe ; A) by the generators and the relations in the case s ≥ 2
and k ≡ 0 (mod s) (Theorems 3.2, 3.3).
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§2. The stable homomorphisms

Let s be a positive integer, and let Γ be the cyclic quiver with s vertices
e0, e1, . . . , es−1 and s arrows a0, a1, . . . , as−1, where each ai starts at ei and
ends at ei+1. Here, we regard the index i of ei modulo s. Denote by X the
sum of all arrows in the path algebra KΓ , and by A the algebra KΓ/(Xk)
(k ≥ 2) as in Section 1. Furthermore, for simplicity, we denote a coset in A
by one of its representative elements in KΓ . Then clearly the set {Xjeℓ | 0 ≤
ℓ ≤ s − 1, 0 ≤ j ≤ k − 1} is a K-basis of A, and so dimK A = ks.

Our purpose in this section is to give a K-basis of HomAe(τ i
Ae(A), A) for

i ≥ 0 in the case k ≡ 0 (mod s) (Theorem 2.5). However, the discussion in
the subsections 2.1 and 2.2 are valid for arbitrary k ≥ 2.

2.1. The algebra A(τAe;A) and an automorphism α of A

Let α : A −→ A be an algebra automorphism defined by α(et) = et−1, α(at) =
at−1 for 0 ≤ t ≤ s − 1. Then clearly αs = idA holds. For any integer
n and M in mod(Ae), we denote by Mαn the left Ae-module, equivalently,
the A-bimodule defined as follows: Mαn has the underlying K-space M , and
the operation · of A from the right is given by m · a = mαn(a) for a ∈ A,
m ∈ Mαn , and the operation of A from the left is the usual one. Moreover, for
any left Ae-homomorphism f : M −→ N , we define the Ae-homomorphism
fαn : Mαn −→ Nαn by fαn(m) = f(m) for m ∈ Mαn . Then we have the
automorphism of categories (−)αn : mod(Ae) −→ mod(Ae) with the inverse
(−)α−n : mod(Ae) −→ mod(Ae) (see [H]). It is easy to see that φ is in
P(M, N) if and only if φαn is in P(Mαn , Nαn). Hence the functor (−)αn

induces the automorphism of mod(Ae). We also denote this functor by (−)αn .
It is shown in [F, Theorem] that τ i

Ae(A) ≃ Aαi(k−2) as left Ae-modules for
each i ≥ 0. So, we immediately have an isomorphism HomAe(τ i

Ae(A), A) ∼−→
HomAe(Aαi(k−2) , A) of K-spaces. In the following, we show that, in fact, there
is an isomorphism HomAe(τ i

Ae(A), A) ∼−→ HomAe(Aαi(k−2) , A) for each i ≥ 0
which provides an isomorphism of algebras between A(τAe ; A) and the orbit
algebra

⊕
i≥0 HomAe(Aαi(k−2) , A) induced by (−)αk−2 .

Lemma 2.1. There exists an isomorphism of K-spaces

θi : HomAe(τ i
Ae(A), A) ∼−→ HomAe(Aαi(k−2) , A)

for each i ≥ 0 such that⊕
i≥0

θi : A(τAe ; A) ∼−→
⊕
i≥0

HomAe(Aαi(k−2) , A)

is an isomorphism of graded K-algebras.
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Proof. First note that τAe ≃ N Ω2
Ae as functors, where ΩAe : mod(Ae) −→

mod(Ae) is the syzygy functor and N : mod(Ae) −→ mod(Ae) is the Nakayama
functor DHomAe(−, Ae) (see [ARS]). Moreover ΩAe and N are commutative
as functors, and so τ i

Ae ≃ N iΩ2i
Ae for all i ≥ 0 as functors.

We show the following statement from which the lemma easily follows: For
each integers i, j ≥ 0, there exists an isomorphism ηi,j : N iΩ2i

Ae(Aαj ) −→
Aαi(k−2)+j in mod(Ae) such that, for any integers ℓ, p, q ≥ 0 and a morphism
f : Aαp −→ Aαq in HomAe(Aαp , Aαq), the square

N ℓΩ2ℓ
Ae(Aαp)

N ℓΩ2ℓ
Ae (f)

−−−−−−−→ N ℓΩ2ℓ
Ae(Aαq)

∼

yηℓ,p ∼

yηℓ,q

Aαℓ(k−2)+p

(f)
αℓ(k−2)−−−−−−→ Aαℓ(k−2)+q

in mod(Ae) commutes.
It is shown in [EH, Section 4] that Ω2ℓ

Ae(A) ≃ Aα−ℓk for ℓ ≥ 0 as left
Ae-modules, and then we easily have an isomorphism of Ae-modules µt,r :
Ω2t

Ae(Aαr) −→ Aα−tk+r for t, r ≥ 0 such that the following square in mod(Ae)
commutes for any ℓ, p, q ≥ 0 and f ∈ HomAe(Aαp , Aαq):

Ω2ℓ
Ae(Aαp)

Ω2ℓ
Ae (f)

−−−−→ Ω2ℓ
Ae(Aαq)

∼

yµℓ,p ∼

yµℓ,q

Aα−ℓk+p

(f)
α−ℓk−−−−−→ Aα−ℓk+q .

Since ν := α1−k ⊗ αk−1 : Ae −→ Ae is a Nakayama automorphism of Ae

(see [F, Appendix]), we have N ≃ Fν as functors, where Fν : mod(Ae) −→
mod(Ae) is the functor defined as follows: For M in mod(Ae), Fν(M) has the
underlying K-space M , and the operation · of Ae is given by (a ⊗ bop) · m =
ν(a ⊗ bop)m = α1−k(a)mαk−1(b) for a ⊗ bop ∈ Ae and m ∈ Fν(M). Also,
for f ∈ HomAe(M, N), Fν(f) is the coset νf ∈ HomAe(Fν(M), Fν(N)), where
νf ∈ HomAe(Fν(M), Fν(N)) is given by νf(m) := f(m) for m ∈ Fν(M).

Applying N ℓ to the square above yields the following commutative square
in mod(Ae):

N ℓΩ2ℓ
Ae(Aαp)

N ℓΩ2ℓ
Ae (f)

−−−−−−−→ N ℓΩ2ℓ
Ae(Aαq)

∼

yξℓ,p ∼

yξℓ,q

F ℓ
ν (Aα−ℓk+p)

ν(f
α−ℓk)

−−−−−−→ F ℓ
ν (Aα−ℓk+q).
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Moreover there exists the following commutative square in mod(Ae):

F ℓ
ν (Aα−ℓk+p)

ν(f
α−ℓk)

−−−−−−→ F ℓ
ν (Aα−ℓk+q)

∼

yαℓ(k−1) ∼

yαℓ(k−1)

Aαℓ(k−2)+p

f
αℓ(k−2)

−−−−−→ Aαℓ(k−2)+q .

In the above square, the left vertical map αℓ(k−1) is defined by

αℓ(k−1)(x) = αℓ(k−1)(x) for x ∈ F ℓ
ν (Aα−ℓk+p),

and it is verified that αℓ(k−1) is an Ae-homomorphism between the Ae-modules
F ℓ

ν (Aα−ℓk+p) and Aαℓ(k−2)+p . Similarly the right vertical map αℓ(k−1) is defined
and it is also an Ae-homomorphism.

We will show the commutativity of this square. Let q − p ≡ z (mod s)
(0 ≤ z ≤ s − 1). Let f(et) =

∑k−1
u=0

∑s
v=1 k

(t)
u,vXuev for each t (1 ≤ t ≤ s),

where k
(t)
u,v ∈ K. Then we have

f(et) =
nt∑

jt=0

k
(t)
z+jts,wt

Xz+jtsewt ,

where t+p−q ≡ wt (mod s) (1 ≤ wt ≤ s), because f(et) = f((et⊗eop
t+p) ·et) =

(et ⊗ eop
t+p) · f(et) = etf(et)et+p−q. Furthermore, α(X) = X implies Xf(et) =

f(et+1)X. Hence it follows that k
(1)
z+rs,w1

= k
(2)
z+rs,w2

= · · · = k
(s)
z+rs,ws

for each

r (0 ≤ r ≤ n) and k
(t)
z+r′s,wt

= 0 for r′ > n, where n = min{n1, . . . , ns}.
Therefore we have

f(1) =
s∑

t=1

f(et) =
n∑

i=0

k
(1)
z+is,w1

Xz+is.

Hence we have αj(f(1)) = f(1) for any j. Finally, for x ∈ F ℓ
ν (Aα−ℓk+p), we get

(fαℓ(k−2) ◦ αℓ(k−1))(x) = fαℓ(k−2)(αℓ(k−1)(x))

= fαℓ(k−2)(αℓ(k−1)((αℓ(k−1)(x) ⊗ 1op) · 1))

= fαℓ(k−2)((αℓ(k−1)(x) ⊗ 1op) · 1)

= (αℓ(k−1)(x) ⊗ 1op) · fαℓ(k−2)(1)

= αℓ(k−1)(x)f(1)

and

(αℓ(k−1) ◦ ν (fα−ℓk))(x) = αℓ(k−1)(ν (fα−ℓk)(x))
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= αℓ(k−1)(ν (fα−ℓk)((αℓ(k−1)(x) ⊗ 1op) · 1))

= αℓ(k−1)((αℓ(k−1)(x) ⊗ 1op) · ν (fα−ℓk)(1))

= (αℓ(k−1)(x) ⊗ 1op) · αℓ(k−1)(ν (fα−ℓk)(1))

= αℓ(k−1)(x)f(1).

So the square is commutative.

Combining the last two squares, we have the desired isomorphism ηi,j .

2.2. The spaces of homomorphisms

Next we will give a K-basis of HomAe(τ i
Ae(A), A) for i ≥ 0. We will use the

following lemma, which is an analogue of [EH, Lemma 2.1]. The proof is
straightforward.

Lemma 2.2. Let n be any integer. Then the map

HomAe(Aαn , A) −→ αnZ := {x ∈ A | xy = αn(y)x for any y ∈ A}

given by f 7−→ f(1) is an isomorphism of K-spaces.

If s = 1, then we easily see that the τAe-period of A equals one by [F, Corol-
lary 3.7], and so the ring structure of A(τAe ; A) is described in [P]. Therefore,
in the rest of this paper, we assume s ≥ 2. Also, for any integer z, denote by
z the unique integer r (0 ≤ r ≤ s − 1) such that z ≡ r (mod s), and let m be
the unique integer such that k = ms + k.

First we consider the K-space HomAe(Aαi(k−2) , A) for each i ≥ 0. We
identify HomAe(Aαi(k−2) , A) with αi(k−2)Z via the isomorphism in Lemma 2.2.
Then we have the following proposition.

Proposition 2.3. Let i be any non-negative integer, and set d = −i(k − 2).
Then we have the isomorphism of K-spaces
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HomAe(Aα−d , A) = α−dZ

=



m⊕
j=0

KXjs+d if k − 1 ̸= d < k,

(m−1⊕
j=0

KXjs+k−1
)
⊕
(s−1⊕

ℓ=0

KXms+k−1eℓ

)
if k − 1 = d,

m−1⊕
j=0

KXjs+d if k ≤ d ̸= s − 1,

m−1⊕
j=0

KXjs+s−1 if d = s − 1 and k ̸= 0,

(m−2⊕
j=0

KXjs+s−1
)
⊕
(s−1⊕

ℓ=0

KXms−1eℓ

)
if d = s − 1 and k = 0.

Proof. Take any x ∈ α−dZ and let x =
∑k−1

j=0

∑s−1
ℓ=0 kj,ℓX

jeℓ, where kj,ℓ ∈ K.
Then we have xet = xetet = α−d(et)xet = et+dxet for each t (0 ≤ t ≤ s − 1).
Furthermore, if j (0 ≤ j ≤ k−1) satisfies j ̸≡ d (mod s), then since et+d−jet =
0 we get et+dX

jet = Xjet+d−jet = 0. Thus we have

k−1∑
j=0

kj,tX
jet =

∑
0≤j≤k−1,
j≡d (mod s)

kj,tX
jet for each t (0 ≤ t ≤ s − 1),

and hence kj,t = 0 for every t (0 ≤ t ≤ s − 1) and j (0 ≤ j ≤ k − 1) such that
j ̸≡ d (mod s). Then we have

x =



m∑
j=0

s−1∑
ℓ=0

kjs+d,ℓX
js+deℓ if d < k,

m−1∑
j=0

s−1∑
ℓ=0

kjs+d,ℓX
js+deℓ if k ≤ d.

Next, note that xX = α−d(X)x = Xx holds. We consider the case d < k.
If d ̸= k − 1, then since xX = Xx we have

m∑
j=0

s−1∑
ℓ=0

kjs+d,ℓX
js+d+1eℓ−1 =

m∑
j=0

s−1∑
ℓ=0

kjs+d,ℓX
js+d+1eℓ.

So, for every 0 ≤ j ≤ m and 0 ≤ ℓ ≤ s − 1, we obtain kjs+d,ℓ+1 = kjs+d,ℓ,
where we put kjs+d,s := kjs+d,0. Hence kjs+d,0 = kjs+d,ℓ for 0 ≤ j ≤ m and
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0 ≤ ℓ ≤ s − 1. This yields

x =
m∑

j=0

s−1∑
ℓ=0

kjs+d,0X
js+deℓ =

m∑
j=0

kjs+d,0X
js+d ∈

m⊕
j=0

KXjs+d.

Therefore α−dZ ⊆
⊕m

j=0 KXjs+d. Conversely, Xjs+d belongs to α−dZ, be-

cause Xjs+deu = eu+dX
js+d = α−d(eu)Xjs+d and Xjs+dX = Xjs+d+1 =

XXjs+d = α−d(X)Xjs+d for any 0 ≤ j ≤ m and 0 ≤ u ≤ s − 1. This shows⊕m
j=0 KXjs+d ⊆ α−dZ. Therefore α−dZ =

⊕m
j=0 KXjs+d. On the other hand,

if d = k − 1, then since xX = Xx we have
m−1∑
j=0

s−1∑
ℓ=0

kjs+k−1,ℓX
js+keℓ−1 =

m−1∑
j=0

s−1∑
ℓ=0

kjs+k−1,ℓX
js+keℓ.

So, for every 0 ≤ j ≤ m − 1 and 0 ≤ ℓ ≤ s − 1, we obtain kjs+k−1,ℓ+1 =
kjs+k−1,ℓ, where we put kjs+k−1,s := kjs+k−1,0. Hence kjs+k−1,0 = kjs+k−1,ℓ

for 0 ≤ j ≤ m − 1 and 0 ≤ ℓ ≤ s − 1. Then it follows that

x =
m−1∑
j=0

s−1∑
ℓ=0

kjs+k−1,0X
js+k−1eℓ +

s−1∑
ℓ=0

kms+k−1,ℓX
ms+k−1eℓ

=
m−1∑
j=0

kjs+k−1,0X
js+k−1 +

s−1∑
ℓ=0

kms+k−1,ℓX
ms+k−1eℓ

∈
(m−1⊕

j=0

KXjs+k−1
)
⊕
( s−1⊕

ℓ=0

KXms+k−1eℓ

)
.

Thus α−dZ =
α−k+1Z ⊆ (

⊕m−1
j=0 KXjs+k−1) ⊕ (

⊕s−1
ℓ=0 KXms+k−1eℓ). Con-

versely, it is easy to check that the equations Xjs+k−1eu = α−k+1(eu)Xjs+k−1

and Xjs+k−1X = α−k+1(X)Xjs+k−1 hold for every 0 ≤ j ≤ m − 1 and
0 ≤ u ≤ s − 1. Hence Xjs+k−1 is in

α−k+1Z for 0 ≤ j ≤ m − 1. More-
over, it follows that Xms+k−1eℓ is in

α−k+1Z for 0 ≤ ℓ ≤ s − 1. Actually, for
0 ≤ ℓ ≤ s − 1 and 0 ≤ u ≤ s − 1, we easily obtain the equations

(Xms+k−1eℓ)eu =
{

0 if u ̸= ℓ

Xms+k−1eℓ if u = ℓ

}
= α−k+1(eu)(Xms+k−1eℓ)

and
(Xms+k−1eℓ)X = 0 = α−k+1(X)(Xms+k−1eℓ),

which mean that Xms+k−1eℓ is in
α−k+1Z for each 0 ≤ ℓ ≤ s−1. Accordingly, it

follows that (
⊕m−1

j=0 KXjs+k−1)⊕ (
⊕s−1

ℓ=0 KXms+k−1eℓ) ⊆ α−k+1Z. Therefore,
we get the desired equation in this case.
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The desired equations in the case k ≤ d are shown in the similar way
above.

2.3. Factor through projectives

Next we will give a basis of the K-space P(Aα−2i , A) for i ≥ 0 in the case
k = 0. Until the end of this paper, we assume k = 0, i.e., k = ms.

Let i be an integer. Then, from [F, Lemma 4.5], we can describe an injective
hull of the left Ae-module Aαi(k−2) = Aα−2i as follows:

0 −→ Aα−2i
ι−→

s−1⊕
ℓ=0

Aeℓ+1 ⊗ eℓ−2iA,

where ι is given by

ι(eu) = eu

(ms−1∑
j=0

Xj ⊗ Xms−j−1
)
eu−2i for 0 ≤ u ≤ s − 1.

In the following lemma, we regard P(Aα−2i , A) as a subspace of α−2iZ by
means of the isomorphism in Lemma 2.2.

Lemma 2.4. Let i be any non-negative integer.

(1) If −2i ̸≡ 1 (mod s), then we have P(Aα−2i , A) = 0.

(2) If −2i ≡ 1 (mod s), then we have
(a) if char K | m, then P(Aα−2i , A) = 0; and
(b) if char K - m, then the set {Xms−1} is a basis of P(Aα−2i , A).

Proof. Let φ be in P(Aα−2i , A). Then, we easily obtain an Ae-homomorphism
h :
⊕s−1

ℓ=0 Aeℓ+1 ⊗ eℓ−2iA −→ A such that φ = hι. Hence, for each u (0 ≤ u ≤
s − 1), we have

φ(eu) = hι(eu) =
ms−1∑
j=0

Xjh(eu−j ⊗ eu−2i−j−1)Xms−j−1.

Case −2i ̸≡ 1 (mod s): Since u − j ̸≡ u − 2i − j − 1 (mod s) for j (0 ≤
j ≤ ms − 1), we obtain eu−j ̸= eu−2i−j−1 for j (0 ≤ j ≤ ms − 1). Then it is
easy to see that h(eu−j ⊗ eu−2i−j−1) is in the radical (X)/(Xms) of A, and so
φ(eu) = 0 for each 0 ≤ u ≤ s − 1. This means P(Aα−2i , A) = 0.

Case −2i ≡ 1 (mod s): Since u − j ≡ u − 2i − j − 1 (mod s) for j (0 ≤
j ≤ ms − 1), we have eu−j = eu−2i−j−1 for j (0 ≤ j ≤ ms − 1). Thus
h(eu−j ⊗ eu−2i−j−1) = h(eu−j ⊗ eu−j) holds. We write h(ew ⊗ ew) = bwew +
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∑m−1
i=1 bw,iX

isew with bw, bw,i ∈ K (1 ≤ i ≤ m − 1) for each 0 ≤ w ≤ s − 1.
Then it follows that

φ(eu) =
ms−1∑
j=0

Xj
(
bu−jeu−j +

m−1∑
i=1

bu−j,iX
iseu−j

)
Xms−j−1

=
ms−1∑
j=0

Xjbu−jeu−jX
ms−j−1

=
(ms−1∑

j=0

bu−j

)
euXms−1 = m

( s−1∑
j=0

bj

)
euXms−1.

So we get

φ(1) =
s−1∑
u=0

φ(eu) = m
( s−1∑

j=0

bj

)( s−1∑
u=0

eu

)
Xms−1 = m

( s−1∑
j=0

bj

)
Xms−1.

Conversely, take any c ∈ K, and let φ : Aα−2i −→ A be the Ae-homomorphism
given by φ(1) = mcXms−1. Then φ factors through ι. In fact, let η :⊕s−1

ℓ=0 Aeℓ ⊗ eℓA −→ A be the Ae-homomorphism given by

η(eℓ ⊗ eℓ) =

{
ce0 if ℓ = 0,
0 if 1 ≤ ℓ ≤ s − 1.

Then, for every u (0 ≤ u ≤ s − 1), we obtain

ηι(eu) = η

(
eu

(ms−1∑
j=0

Xj ⊗ Xms−j−1
)
eu+1

)

=
ms−1∑
j=0

Xjη (eu−j ⊗ eu−j) Xms−j−1

=
m−1∑
ℓ=0

Xu+ℓsce0X
ms−u−ℓs−1

= mceuXms−1.

So one have ηι(1) =
∑s−1

u=0 ηι(eu) =
∑s−1

u=0 mceuXms−1 = mcXms−1 = φ(1),
which shows φ = ηι. Consequently, we obtain

P(Aα−2i , A) = {φ ∈ HomAe(Aα−2i , A) | φ(1) = mcXms−1 for c ∈ K}.

Thus, if char K | m, then P(Aα−2i , A) = 0; and if char K - m, then by identi-
fying P(Aα−2i , A) with a subspace of α−2iZ via the isomorphism in Lemma 2.2
we obtain a K-basis {Xms−1} of P(Aα−2i , A). This completes the proof.
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2.4. The spaces of stable homomorphisms

Finally, we will find a K-basis of HomAe(τ i
Ae(A), A) (i ≥ 0). If, for each i ≥ 0,

we denote by α−2iZpr the image of P(Aα−2i , A) under the isomorphism in
Lemma 2.2, then we have the isomorphism of K-spaces

(2.1) HomAe(Aα−2i , A) ∼−→ α−2iZ/α−2iZpr; f 7−→ f(1) + α−2iZpr.

In the following theorem, we regard HomAe(Aα−2i , A)
(
≃ HomAe(τ i

Ae(A), A)
)

as α−2iZ/α−2iZpr for i ≥ 0 by using the isomorphism above.

Theorem 2.5. Let k = ms for m ≥ 1 and s ≥ 2. Then, for any non-negative
integer i, we have the following:

(1) If −2i ̸≡ 1 (mod s), then the set

{X2i+js | 0 ≤ j ≤ m − 1}

is a K-basis of HomAe(τ i
Ae(A), A).

(2) If −2i ≡ 1 (mod s), then we have

(a) if char K | m, then the set

{Xjs+s−1, Xms−1eℓ | 0 ≤ j ≤ m − 2, 0 ≤ ℓ ≤ s − 1}

is a K-basis of HomAe(τ i
Ae(A), A); and

(b) if char K - m, then the set

{Xjs+s−1, Yℓ | 0 ≤ j ≤ m − 2, 0 ≤ ℓ ≤ s − 2}

is a K-basis of HomAe(τ i
Ae(A), A) where Yℓ :=

∑ℓ
j=0 Xms−1ej for

0 ≤ ℓ ≤ s − 2.

Proof. Since k = 0 and −i(k − 2) = 2i, it follows from Proposition 2.3 that, if
2i ̸= s − 1, that is, −2i ̸≡ 1 (mod s), then the set

(2.2)
{
X2i+js

∣∣ 0 ≤ j ≤ m − 1
}

is a K-basis of HomAe(Aα−2i , A); and if 2i = s − 1, that is, −2i ≡ 1 (mod s),
then the set

(2.3)
{
Xjs+s−1, Xms−1eℓ

∣∣ 0 ≤ j ≤ m − 2, 0 ≤ ℓ ≤ s − 1
}

is a K-basis of HomAe(Aα−2i , A). So, if −2i ̸≡ 1 (mod s), then by Lemma 2.4
(1) we have a K-basis {

X2i+js
∣∣ 0 ≤ j ≤ m − 1

}
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of HomAe(Aα−2i , A); and if −2i ≡ 1 (mod s) and char K | m, then by Lemma
2.4 (2)(a) we obtain a K-basis{

Xjs+s−1, Xms−1eℓ

∣∣ 0 ≤ j ≤ m − 2, 0 ≤ ℓ ≤ s − 1
}

of HomAe(Aα−2i , A). On the other hand, if −2i ≡ 1 (mod s) and char K - m,
then by Lemma 2.4 (2)(b) we have a K-basis{

Xjs+s−1, Yℓ

∣∣ 0 ≤ j ≤ m − 2, 0 ≤ ℓ ≤ s − 2
}

of HomAe(Aα−2i , A), where we put Yℓ :=
∑ℓ

j=0 Xms−1ej ∈ HomAe(Aα−2i , A)
for 0 ≤ ℓ ≤ s − 2.

Remark 2.6. We consider the case k ≡ 1 (mod s). Then, A is exactly a
symmetric algebra (see [T, Lemma 3.1]), and hence Ae is also a symmetric al-
gebra (see [EN, Proposition 2]). So τ i

Ae(A) ≃ Ω2i
Ae(A) for i ≥ 0 as Ae-modules,

which yields HomAe(τ i
Ae(A), A) ≃ HomAe(Ω2i

Ae(A), A) as K-spaces for each
i ≥ 0. Moreover, since A is self-injective, we have HomAe(Ω2i

Ae(A), A) ≃
Ext2i

Ae(A,A) for each i ≥ 1. Therefore HomAe(τ i
Ae(A), A) is isomorphic to the

2ith Hochschild cohomology group HH2i(A) := Ext2i
Ae(A,A) for each i ≥ 1. In

[H], Holm computes the dimension of HH2i(A) (i ≥ 0) and describes the even
Hochschild cohomology ring HHev(A) =

⊕
i≥0 HH2i(A) (see also [EH]).

§3. The ring structure of A(τAe;A)

Throughout this section, we keep the notation from Section 2, and assume
that k = 0, i.e., k = ms (m ≥ 1, s ≥ 2). The purpose in this section is to
give the generators and the relations of A(τAe ; A) =

⊕
i≥0 HomAe(τ i

Ae(A), A)
as K-algebra, explicitly, in the similar way in [EH] and [H].

Since, by Lemma 2.1, the algebra A(τAe ; A) is isomorphic to the orbit alge-
bra

⊕
i≥0 HomAe(Aα−2i , A) induced by the functor (−)α−2 , it suffices to con-

sider the algebra
⊕

i≥0 HomAe(Aα−2i , A). As in Theorem 2.5, for each i ≥ 0,
we identify HomAe(Aα−2i , A) with α−2iZ/α−2iZpr via the isomorphism (2.1).

The following lemma says that the multiplication · in
⊕

i≥0 α−2iZ/α−2iZpr =⊕
i≥0 HomAe(Aα−2i , A) is induced by that of A. Here, for simplicity, we set

Ai := α−2iZ/α−2iZpr (i ≥ 0) and denote a coset x + α−2iZpr in Ai (i ≥ 0) by
[x].

Lemma 3.1. Let i and j be any non-negative integers. Then xy = yx in A
for x ∈ α−2iZ and y ∈ α−2jZ. Furthermore, for [x] = x + α−2iZpr ∈ Ai and
[y] = y + α−2jZpr ∈ Aj , the multiplication [x] · [y] in

⊕
i≥0 Ai is given by

[x] · [y] = [xy] ∈ Ai+j . Consequently, [x] and [y] are commutative.
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Proof. For each ℓ ≥ 0, α−2ℓZ has K-basis (2.2) if −2ℓ ̸≡ 1 (mod s), and has
K-basis (2.3) if −2ℓ ≡ 1 (mod s). Therefore, we easily see that x ∈ α−2iZ and
y ∈ α−2jZ are commutative.

Now, by Lemma 2.2, there exist Ae-homomorphisms f ∈ HomAe(Aα−2i , A)
and g ∈ HomAe(Aα−2j , A) satisfying f(1) = x and g(1) = y. Moreover the
multiplication f · g in the orbit algebra

⊕
i≥0 HomAe(Aα−2i , A) is given by

f · g = f ◦ (g)α−2i = f ◦ gα−2i = f ◦ gα−2i ∈ HomAe(Aα−2(i+j) , A).

Then, since

[f ◦ gα−2i(1)] = [f ◦ g(1)] = [f(g(1))] = [f(g(1)1)] = [g(1)f(1)] = [yx] = [xy] ,

it follows that [x] · [y] = [xy].

Now we give the generators and the relations of the algebra
⊕

i≥0 Ai (≃
A(τAe ; A)). Note that

⊕
i≥0 Ai is a commutative graded K-algebra by Lemma

3.1.
First we consider the case when s is even. We put s = 2t for an integer

t ≥ 1. Then, for each i ≥ 0, since −2i ̸≡ 1 (mod 2t), by Theorem 2.5 (1) we
obtain the K-basis

{X2i+2tj | 0 ≤ j ≤ m − 1}

of Ai. It is easy to see that, if we set i = qt + r (0 ≤ r ≤ t− 1), then this basis
can be written as

{X2r+2tj | 0 ≤ j ≤ m − 1}.

Here note that Ai+t = Ai holds for each i ≥ 0. We set y0 := X2t ∈ A0. Then,
by Lemma 3.1, we have

yj
0 = X2tj for 0 ≤ j ≤ m − 1

in A0, and we have the following relation:

(1) ym
0 = 0.

Next, we put y1 := X2 ∈ A1. Then, for 1 ≤ i ≤ t − 1, we obtain

yj
0 · y

i
1 = X2jt+2i for 0 ≤ j ≤ m − 1

in Ai. Furthermore, we set yt := 1 ∈ At(= A0). Then, for any ℓ ≥ t, by letting
ℓ = qt + r (0 ≤ r ≤ t − 1), we have

yj
0 · y

r
1 · y

q
t = X2jt+2r for 0 ≤ j ≤ m − 1

in Aℓ, and we have the following relation:
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(2) y0 · yt = yt
1.

Summarizing these results, we have the following theorem.

Theorem 3.2. Let k = ms and s = 2t (t ≥ 1). Then A(τAe ; A) is isomor-
phic to the commutative graded K-algebra K[y0, y1, yt]/(ym

0 , y0 ·yt−yt
1), where

deg yi = i (i = 0, 1, t).

Next we consider the case when s is odd. We put s = 2t + 1 for an integer
t ≥ 1. For each i ≥ 0 with i ̸≡ t (mod 2t + 1), since −2i ̸≡ 1 (mod 2t + 1), by
Theorem 2.5 (1) we obtain the K-basis

{X2i+(2t+1)j | 0 ≤ j ≤ m − 1}

of Ai. It is easy to see that, if we set i = q(2t + 1) + r (0 ≤ r ≤ 2t, r ̸= t),
then this basis can be written as follows:

{X2r+(2t+1)j | 0 ≤ j ≤ m − 1} if 0 ≤ r ≤ t − 1,

and
{X2r−(2t+1)+(2t+1)j | 0 ≤ j ≤ m − 1} if t + 1 ≤ r ≤ 2t.

On the other hand, for each i ≥ 0 with i ≡ t (mod 2t + 1), by Theorem 2.5
(2) we have the following K-basis of Ai:

{X2t+(2t+1)j , X(2t+1)m−1eℓ | 0 ≤ j ≤ m − 2, 0 ≤ ℓ ≤ 2t} if char K | m,

and

{X2t+j(2t+1), Yℓ | 0 ≤ j ≤ m − 2, 0 ≤ ℓ ≤ 2t − 1} if char K - m,

where Yℓ :=
∑ℓ

j=0 X(2t+1)m−1ej ∈ Ai for 0 ≤ ℓ ≤ 2t − 1.
First assume char K | m. We put

z0 := X2t+1 ∈ A0.

Then by Lemma 3.1 we have

X(2t+1)j = zj
0 for 1 ≤ j ≤ m − 1

in A0, and we obtain the following relation:

(1) zm
0 = 0.

We set

z1 := X2 ∈ A1 and zt,ℓ := Xm(2t+1)−1eℓ ∈ At for 0 ≤ ℓ ≤ 2t.

Then for each 1 ≤ i ≤ t we have

X2i+(2t+1)j = zj
0 · z

i
1 for 0 ≤ j ≤ m − 1

in Ai, and we obtain the following relations:
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(2) zm−1
0 · zt

1 =
∑2t

ℓ=0 zt,ℓ,

(3) z0 · zt,ℓ = 0 for 0 ≤ ℓ ≤ 2t,

(4) z1 · zt,ℓ = 0 for 0 ≤ ℓ ≤ 2t,

(5) zt,u · zt,v = 0 for 0 ≤ u, v ≤ 2t.

Next we set zt+1 := X ∈ At+1. Then for each t + 1 ≤ i ≤ 2t we have

X2i−(2t+1)+(2t+1)j = zj
0 · z

i−(t+1)
1 · zt+1 for 0 ≤ j ≤ m − 1

in Ai, and we obtain the following relations:

(6) zt+1
1 = z0 · zt+1,

(7) zt+1 · zt,ℓ = 0 for 0 ≤ ℓ ≤ 2t.

Furthermore, we set z2t+1 := 1 ∈ A2t+1(= A0). Then, for any ℓ ≥ 2t + 1, let
ℓ = q(2t + 1) + r (0 ≤ r ≤ 2t). If 0 ≤ r ≤ t − 1, then

X2r+(2t+1)j = zj
0 · z

r
1 · z

q
2t+1 for 0 ≤ j ≤ m − 1.

If r = t, then

X2t+(2t+1)j = zj
0 · z

t
1 · z

q
2t+1, Xm(2t+1)−1eℓ = zt,ℓ · zq

2t+1 for 0 ≤ j ≤ m − 2.

If t + 1 ≤ r ≤ 2t, then

X2r−(2t+1)+(2t+1)j = zj
0 · z

r−(t+1)
1 · zt+1 · zq

2t+1 for 0 ≤ j ≤ m − 1.

So we obtain the following relations:

(8) z0 · z2t+1 = zt
1 · zt+1,

(9) z2
t+1 = z1 · z2t+1.

Next we assume char K - m. As in the above we put z0 := X2t+1 ∈ A0,
z1 := X2 ∈ A1, zt+1 := X ∈ At+1, and z2t+1 := 1 ∈ A2t+1. Moreover, we set
z′t,ℓ := Yℓ for 0 ≤ ℓ ≤ 2t − 1. Then these elements are generators of

⊕
i≥0 Ai.

Thus we obtain the relations (1), (6), (8) and (9) above and the following
relations:

(2′) zm−1
0 · zt

1 = 0,

(3′) z0 · z′t,ℓ = 0 for 0 ≤ ℓ ≤ 2t − 1,

(4′) z1 · z′t,ℓ = 0 for 0 ≤ ℓ ≤ 2t − 1,
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(5′) zt,u · zt,v for 0 ≤ u, v ≤ 2t − 1,

(7′) zt+1 · z′t,ℓ = 0 for 0 ≤ ℓ ≤ 2t − 1.

Summarizing these results, we have the following theorem.

Theorem 3.3. Let k = ms and s = 2t + 1 (t ≥ 1). If char K | m, then
A(τAe ; A) is a commutative graded algebra with generators z0, z1, zt,ℓ (0 ≤ ℓ ≤
2t), zt+1, z2t+1 where deg zi = i (i = 0, 1, t + 1, 2t + 1) and deg zt,ℓ = t, and
relations

zm
0 = 0, z2

t+1 = z1 · z2t+1, zt+1
1 = z0 · zt+1, z0 · z2t+1 = zt

1 · zt+1,

zm−1
0 · zt

1 =
∑2t

ℓ=0 zt,ℓ, zt,u · zt,v = 0 for 0 ≤ u, v ≤ 2t,

zj · zt,ℓ = 0 for j = 0, 1, t + 1 and 0 ≤ ℓ ≤ 2t.

And if char K - m, then A(τAe ; A) is a commutative graded algebra with
generators z0, z1, z

′
t,ℓ (0 ≤ ℓ ≤ 2t− 1), zt+1, z2t+1 where deg zi = i (i = 0, 1, t +

1, 2t + 1) and deg z′t,ℓ = t, and relations

zm
0 = 0, z2

t+1 = z1 · z2t+1, zt+1
1 = z0 · zt+1, z0 · z2t+1 = zt

1 · zt+1,

zm−1
0 · zt

1 = 0, z′t,u · z′t,v = 0 for 0 ≤ u, v ≤ 2t − 1,

zj · z′t,ℓ = 0 for j = 0, 1, t + 1 and 0 ≤ ℓ ≤ 2t − 1.
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