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Abstract. The paper deals with extended pseudo projective curvature tensor
P¢ of contact metric manifolds. We prove that (k, u)-manifold with vanishing
extended pseudo projective curvature tensor P is a Sasakian manifold. Several
interesting corollaries of this result are drawn. Non-Sasakian (k, x)-manifold
with pseudo projective curvature tensor P satisfying P(¢, X) - S = 0, where S
is the Ricci tensor, are classified.
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§1. Introduction

The unit tangent sphere bundle of a Riemannian manifold of constant sec-
tional curvature admits a contact metric structure (¢,&,7,¢g) such that the
characteristic vector field £ belongs to the (k, u)-nullity distribution for some
real numbers k£ and p. This means that for any vector fields X and Y the
curvature tensor R satisfies the condition

(1.1) R(X,Y)¢ = (kI 4+ ph)Ro(X,Y)E,
where
(1.2) Ro(X,Y)E =n(Y)X —n(X)Y

and h denote Lie derivative of the structure tensor field ¢ in the direction of &.
The class of contact metric manifolds which satisfies (1.1) has been classified
in all dimensions at least locally (see [7] and [8]).
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Recently, B.Prasad[15]introduced a new type of curvature tensor which is
known as pseudo projective curvature tensor. A K-contact manifold is always
a contact metric manifold, but the converse is not true in general. Thus, it
is worthwhile to study pseudo projective curvature tensor P and E-pseudo
projective curvature tensor P€¢ in contact metric manifold. Here we prove
that a (k,p)-manifold with vanishing E-pseudo projective curvature tensor
is a Sasakian manifold. Then, we draw several corollaries of this result to
N (k)-contact metric manifolds [16], the unit tangent sphere bundles [7], N (k)-
contact space forms [10] and (k, u)-space forms [11].

In [13] and [14] contact metric manifolds satisfying R(X,£) - S = 0 and in
([1], [2] and [3]) Kenmotsu and 3-dimensional trans-Sasakian manifolds satis-
fying some curvature conditions are studied. From these studies, we classify
non-Sasakian (k, u)-manifolds with pseudo projective curvature tensor P sat-
isfying P(£, X) - S = 0 and obtain some interesting results.

§2. Preliminaries

A (2n + 1)-dimensional differentiable manifold M is called an almost contact
manifold if either its structural group can be reduced to U(n) x 1 or equiva-
lently, there is an almost contact structure (¢, &, n) consisting of a (1, 1) tensor
field ¢, a vector field &, and a 1-form 7 satisfying

(2.1) <p2:—I+77®§,
(2.2) nE) =1, ¢¢=0, noyp=0.

An almost contact structure is said to be normal if the induced almost complex
structure J on the product manifold M x R defined by

5 (xa) = (s e )

is integrable, where X is tangent to M, t the coordinate of R and A a smooth
function on M x R. The condition for being normal is equivalent to vanishing
of the torsion tensor [, ¢| + 2dn ® £, where [p, ] is the Nijenhuis tensor of ¢.
Let g be a compatible Riemannian metric with (¢, &, n), that is,

(2.3) 9(pX,0Y) = g(X,Y) = n(X)n(Y)
or equivalently,
9(X,0Y) = —g(pX,Y) and g(X,§) =n(X)

for all vector fields X, Y. Then, M become an almost contact metric manifold
equipped with an almost contact metric structure (¢,&,1, g).
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An almost contact metric structure become a contact metric structure if
9(X, oY) =dn(X,Y), for all vector fields X, Y.

In a contact metric manifold, the (1,1)-tensor field A is symmetric and
satisfies

(24) hE=0, hp+ph=0, V= —p—ph, trace(h) = trace(ph) =0,

where V is the Levi-Civita connection.
A normal contact metric manifold is a Sasakian manifold. An almost con-
tact metric manifold is Sasakian if and only if

(2.5) Vxp = Ro(&, X),
while a contact metric manifold M is Sasakian if and only if
(2.6) R(X,Y)¢{ = Ro(X,Y)¢, for all vector fields X,Y on M.

The (k, p)-nullity distribution N (k, i) of a contact metric manifold M for
the pair (k, ) € R?, is a distribution (see [7] and [13])

N(k,u) : P Np(k,p)
= {UeTpM|R(X,Y)U = (kI + ph)Ro(X,Y)U,V X,Y € TpM}.

A contact metric manifold with £ € N(k, ) is called a (k, u)-manifold. For a
(k, p)-manifold it is known that h? = (k — 1)@?. This class contains Sasakian
manifolds for ¥ = 1 and h = 0. In fact, for (k,u)-manifold the condition
of being Sasakian manifold, K-Contact manifold, ¥ = 1 and h = 0 are all
equivalent. If 4 = 0, the (k, pu)-nullity distribution N (k, p) is reduced to the
k-nullity distribution N (k) (see [16]). Further if £ belongs to N(k), then we
call a contact metric manifold M an N (k)-contact metric manifold.

We recall the following theorem due to D.E. Blair [5]:

Theorem 1. A contact metric manifold M?*" 1 satisfying R(X,Y)¢ = 0 is
locally isometric to E"1(0) x S™(4) for n > 1 and flat for n = 1.

We also need the following definition:

Definition 1. A contact metric manifold M is said to be n-Einstein if the
Ricci operator @) satisfies

(2.7) Q=al +0n®E,

where a and 3 are smooth functions on the manifold. In particular if 3 = 0,
then M is an Einstein manifold.
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§3.

(k, n)-manifold with vanishing E-pseudo projective curvature
tensor

In [15], pseudo projective curvature tensor in an almost contact metric mani-
fold is defined as follows:

(3.1)  P(X,Y)Z =aR(X,Y)Z +b[S(Y,Z)X — S(X, Z)Y]

- 5 Lo + ] 8 )X — g(x, 2)Y],

where a and b are constants such that a, b # 0 and r denote scalar curvature
of the manifold. For a (2n+1)-dimensional (k, y)-manifold M, we have

(3.2) R(X,Y)¢ = (kI + puh)Ro(X, Y )¢,

which is equivalent to

(3.3) R(&, X) = Ro(¢, (kI + puh)X) = —R(X, ).

In particular, one can get

(3.4) R(E, X)E = k(n(X)é — X) — phX = —R(X, )E.

From (3.1), (3.2) and (3.3), it follows that

T
2n(2n + 1)
T
2n(2n + 1)

(35) P(X,Y)¢ = [(a + 2nb)(k — )+ auh] Ro(X,Y)E,

(3.6) P(&X) = [(a + 2nb)(k — )] Ro(&, X) + apRo (&, hX).

Consequently, we have

(7)) PEX)E = |(a+ 2mb)(k - m{ (1(X)E - X) — auhX,
38 o(POCYIE =0, _
39 0(PE V) = [+ 2k - T )] (xY)

—n(X)n(Y)] + apg(hX,Y).

The E-pseudo projective curvature tensor P¢ of pseudo projective curvature
tensor P is defined as follows:

(3.10)

PYX,Y)Z = P(X,Y)Z —n(X)P(¢,Y)Z
—n(Y)P(X,8)Z —n(Z)P(X,Y)E.
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Let M be a (2n+1)-dimensional (k,u)-manifold. If E-pseudo projective
curvature tensor of M vanishes, then from (3.7) and (3.10) we have

(3.11) 0= P°(X,€)¢
::Pa+2m0<k—§5@%:j5>]WQXK——X)—auhX
= _P(X? 5)57

which in view of h? = (k — 1)p?, gives

(3.12) P2 @ [ 2n(2n + 1)

kE — 1)uh.
a+ 2nb r—%m@n+lﬂ( n
Taking the trace of (3.12), we obtain

(3.13) trace(h?) = 2n(1 — k) = 0,

which gives k = 1. Thus M becomes Sasakian. Hence we state the following:

Theorem 2. A (k, pu)-manifold with vanishing E-pseudo projective curvature
tensor is a Sasakian manifold.

From Theorem 2 we derive

Corollary 1. An N(k)-contact metric manifold with vanishing E-pseudo pro-
jective curvature tensor is a Sasakian manifold.

The unit tangent sphere bundle T3 M equipped with the standard contact
metric structure is a (k, p)-manifold if and only if the base manifold M is of
constant curvature ¢ with £k = ¢(2 — ¢) and p = —2¢ ([7]). In case of ¢ # 1,
the unit tangent sphere bundle is non-Sasakian. Denote the unit tangent
sphere bundle of a space of constant curvature ¢ with standard contact metric
structure as T3 M (c). Applying Theorem 2 to T1M(c), one can obtain

Corollary 2. InT)M(c) if the E-pseudo projective curvature tensor vanishes,
then ¢ = 1.

In an almost contact metric manifold if a unit vector X is orthogonal to &,
then X and ¢X span a p-section. And if the sectional curvature ¢(X) of all
p-sections is independent of X, then M is of pointwise constant y-sectional
curvature. Further an N (k)-contact metric manifold M with pointwise con-
stant @-sectional curvature c is called an N (k)-contact space form M (c). The
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curvature tensor of M (c) is given by [10]:

(3.14) 4R(X,Y)Z
=(c+3)[9(Y,Z2)X — g(X,Z)Y]

+ (e = D(X)(Z2)Y —n(Y)n(2)X +n(Y)g(X, Z)§
—n(X)g(Y, 2)¢ + g(¢Y, Z)pX — g(pX, Z)pY — 29(pX,Y ) Z]
4k = D)[n(Y)n(Z2)X —n(X)n(Z2)Y +n(X)g(Y,Z)§

= 9(X, Z)RY +n(X)n(Z)hY —n(Y)n(Z)hX +n(Y)g(hX, Z)§
—n(X)g(hY, Z)¢&] + 2[g(hY, Z)hX — g(hX, Z)hY
+ g9(phX, Z)phY — g(phY, Z)phX],

+4(
—n(Y)g(X, 2)¢] +4lg(hY, 2)X — g(hX, 2)Y +g(Y, Z)hX
(
(X

for all vector fields X, Y and Z, where c is constant on M if dim (M) > 3.
Now, applying Theorem 2 to an N (k)-contact space form, we state the
following:

Corollary 3. An N(k)-contact space form with vanishing E-pseudo projective
curvature tensor is a Sasakian space form.

Let M be a (2n+1)-dimensional (k, u)-manifold (n > 1). Next, if M has
a constant p-sectional curvature ¢ then it is called a (k, u)-space form. The
curvature tensor of (k, u)-space form is given by [11]:

(3.15)

= 9(Y, 2)X - g(X, 2)Y]

(C ; 1) [29(){’ @Y)(pZ + g(X, (pZ)QOY — Q(Ya SOZ)(PX]

N (c+ 34 4k)

g(Y, Zn(X)E] + 1[g(hy, Z\hX — g(hX, Z)hY + g(phX, Z)phY

g(phY, Z)ohX| + g(@Y, pZ)hX — g(0 X, 0Z)hY

9(hX, )Y — g(hY, 26X + pln(Y In(Z)hX
X)m(Z)hY + g(hY, Z)n(X)€ — g(hX, Z)n(Y )],

for all vector fields X, Y and Z, where c+2k=—-1=k—pifk < 1.
Applying Theorem 2 to a (k, )-contact space form, we obtain the following:

M(X)n(Z2)Y —n(Y)n(Z2)X + g(X, Z)n(Y)§

/-\/-\/-\/-\

-n

Corollary 4. A (k,u)-contact space form with vanishing E-pseudo projective
curvature tensor is a Sasakian space form.
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Remark 1. Theorem 2 and its Corollaries 1 to 4 are valid for vanishing of
pseudo projective curvature tensor P also.

§4. (k,u)-manifold satisfying P({,X)-S =0
For a (2n+1)-dimensional (k, u)-manifold M, it is well known that
(4.1) S(X,€) = 2nkn(X).
In view of (3.8) and (3.9), (4.1) gives

r

(4.2) S(P(&, X)E,Y) = 2nk(a + 2nb) (k: - m) n(X)n(Y)

— (a + 2nb) <k - %(27:7“)) S(X,Y)
— auS(hX,Y)

and

(4.3) S(P(£, X)Y, €) = 2nk(a + 2nb) (k - m> [g(X,Y)
= n(X)n(Y)] + 2nkapg(hX,Y)

respectively.

In a (2n+1)-dimensional (k, p)-manifold, the condition P(§,X)-S = 0 is
equivalent to

(4.4) S(P(E, X)Y, &) +S(Y, P(€, X)§) = 0.
Substituting (4.2) and (4.3) in (4.4) followed by a simple calculation gives,

(4.5) [ a + 2nb) <k >] [S(X,Y) — 2nkg(X,Y)]

2n +1)
+au[S(hX,Y) — 2nkg(hX,Y)] = 0.

It is well known that in a (2n+1)-dimensional non-Sasakian (k, u)-manifold
M the Ricci operator @) is given as follows [7]:

(4.6) Q=02n-1)—nu) I+ 2(n—-1)+ph
+ (21 —n) +n2k + p))n @ E.
Consequently, the Ricci tensor S and the scalar curvature r are given by
(4.7) S(X,Y)=(2(n—1) —nu)g(X,Y) + (2(n — 1) + p)g(hX,Y)
+ (2(1 = n) +n(2k + 1))n(X)n(Y),
(4.8) r=2n2n —-2+k—np).
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By virtue of (2.3) and (4.7), we also have

(4.9) S(hX,Y)=(2(n—-1)—nu)g(hX,Y)
= (k=1D2n = 1) + W)X, Y) = n(X)n(Y)],
where noh =0, h? = (k—1)p°.

From(2.7) and (4.7), one can see that a non-Sasakian (k, yt)-manifold M is

n-Einstein if and only if g = —2(n — 1). In this case the Ricci tensor is given
by
(4.10) S =2(n?—1)g—2(n*—-nk—-1nen.

Putting = —2(n — 1) in (4.8), we obtain
(4.11) r=2n(k+2(n—-1)(n+1)).
Now by considering p = —2(n — 1) in (4.3), then it takes the form

on(2n + 1)> l9(X,Y)

—n(X)n(Y)] +4n(1 — n)kag(hX,Y).

(4.12) S(P(¢, X)Y, &) = 2nk(a + 2nb) <k -

In view of (4.2) and (4.10), we get

(4.13) S(P(&,X)E,Y) =4a(n —1)(n? — 1)g(hX,Y)

) G(X.Y) — n(X)n(¥)].

.
C2n(2n+ 1)

If M satisfies P(£,X) - S =0, from (4.4), (4.12) and (4.13) we get

+2(1 — n?)(a + 2nbd) (k;

S(P(&,X)Y,€) +5(Y, P(§, X)E) =0,
which is equivalent to

on(2n + 1)> l9(X, Y)

—n(X)n(Y)] — 4(n — 1)(1 + nk — n?)ag(hX,Y) = 0.

2(1 + nk — n?)(a + 2nb) (k: —

Contracting the above equation and then by taking account of (2.4), we have

4n(1 + nk — n2)(a + 2nb) (k . m) —0

This implies
r

k—————=0.
2n(2n + 1)
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Using (4.11) in above, we obtain

(4.14) k= ,

which is equivalent to (1 + nk — n?) = 0. Thus in view of (4.10), M reduces
to Einstein manifold. Hence we state the following:

Theorem 3. In a (2n+1)-dimensional non-Sasakian n-Einstein (k, u)-manifold
M if the pseudo projective curvature tensor P satisfies P(§,X) - S = 0, then
M reduces to an Einstein manifold.

From (4.14), we have k = (n?> — 1)/n < 1. So n = 1 is the only case. This
gives p = 0 which with n = 1 gives kK = 0. Thus substituting k = 0 = p in
(1.1), we state the following:

Theorem 4. In a (2n+1)-dimensional non-Sasakian n-Einstein (k, p)-manifold
M if the pseudo projective curvature tensor P satisfies P(§,X) - S = 0, then
M s flat and 3-dimensional.

Next, let M be a (2n+1)-dimensional (k, u)-manifold satisfying P(§, X) -
S = 0. Then we have the following four possible cases.
Case-1: Suppose k =0 = p.
From (1.1) we have R(X,Y){ = 0. Thus, in view of Theorem 1, M is flat and
3-dimensional or it is locally isometric to E™*1(0) x S™(4).
Case-2: Suppose k # 0 = pu.
Using ¢ = 0 in (4.5), we have S(X,Y) = 2nkg(X,Y). Thus M reduces to an
Einstein Sasakian manifold.
Case-3(i): Suppose k =0 # p and n > 1.
Using k =0 in (4.5), (4.7) and (4.9) we get

rS(X,Y)=2n(2n+1) (a—l— 2nb) uwS(hX,Y),

S(X,Y) = (2(n — 1) — m)lg(X, ) — n(X)n(¥)]
+(2(n —1) 4+ p)g(hX,Y) and
S(hX,Y)=(2(n—-1)—nu)g(hX,Y)
+ 2 =1+ p)[g(X,Y) = n(X)n(Y)]

respectively. From the above three equations, we get S(X,Y) = C[g(X,Y) —
n(X)n(Y)], for some suitable C. Now in view of Theorem 4, we see that the
Case-3(i) is not possible.

Case-3(ii): Suppose k =0 # p and n = 1.
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Using k=0 and n = 1 in (4.5), (4.7) and (4.9) we get

rS(X,Y)=6 (a—{— an> uwS(hX,Y),

S(X,Y) = —plg(X,Y) = n(X)n(Y)] + pg(hX,Y) and
S(hX,Y) = —pug(hX,Y) + plg(X,Y) — n(X)n(Y)]

respectively.

a

This gives either (#£222) (£)+1 = 0or S(X,Y) = 0. If (#222) () +1 =0,

a a

From the above three relations, we get [(M) (é) + 1} S(X,Y)=0.

then r = —6p <a+a2nb) . Putting £k = 0 and n = 1 in (4.8), we get r = —2pu.

Thus (%Z"b)(é) + 1 =0 is not possible.

If S(X,Y) =0, then taking X =Y = ¢ we have
S, &) =2nk =0,

which implies that £ = 0. Using £ = 0 in (4.8), we get nu = 2(n — 1). But we
have n = 1, this implies 4 = 0, which is a contradiction. Thus, Case-3(ii) is
also not possible.

Case-4(i): Suppose k # 0, u # 0 and n > 1. After eliminating g(hX,Y)
and S(hX,Y) from (4.5), (4.7) and (4.9) we get S(X,Y) = ag(X,Y) +
Bn(X)n(Y)), for some suitable o and S. Thus M reduces to an n-Einstein
manifold.

(ii): Suppose k # 0, p # 0 and n = 1.

Putting n = 1 in (4.5), (4.7) and (4.9) we get

a

(k: . %) S(X,Y) = 2k (k - %) g(X,Y) + <m> 2%hug(hX,Y)

- <a f2b> uS(hX,Y),
S(X)Y) = —pg(X,Y) 4+ pg(hX,Y) + (2k + p)n(X)n(Y) and
S(hX.Y) = —pug(hX,Y) — (k — ug(X,Y)
+ (k= Dpn(X)n(Y)

respectively. Eliminating g(hX,Y) and S(hX,Y") from the above three equa-
tions, we have S(X,Y) = ag(X,Y) + On(X)n(Y), for some suitable a and g.
Thus, M is a n-Einstein manifold and in this case p = —2(n — 1). But n =1,
implies ¢ = 0 which is a contradiction. Hence this case is not possible. Thus
from the above four possible cases, we can able to state the following:
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Theorem 5. Let M be a (2n+1)-dimensional non-Sasakian (k,p)-manifold
satisfying the condition P(§,X)-S = 0 such that a+2nb # 0. Then the man-
ifold M s either flat and 3-dimensional or is locally isometric to E"1(0) x
S™(4) or is an n-Einstein manifold or is a 3-dimensional Einstein manifold.
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