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Abstract. The approximate upper percentile of Hotelling’s T2-type statistic
is derived in order to construct simultaneous confidence intervals for pairwise
multiple comparisons and comparisons with a control under elliptical popula-
tions. The accuracy and conservativeness of the first and the modified second
order Bonferroni approximations are evaluated via a Monte Carlo simulation
study.
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8§1. Introduction

Simultaneous confidence intervals for pairwise multiple comparisons and com-
parisons with a control among mean vectors are considered under k£ indepen-
dent elliptical populations with unequal sample sizes. In order to construct
them, it is necessary to obtain the upper percentile of T I%ax which is Hotelling’s
T?%-type statistic. T2, is reduced to the multivariate Studentized range statis-
tic under the normal distribution and equal sample sizes, see Roy and Bose
[6]. However, it is difficult to obtain upper percentiles exactly even when pop-
ulations have the multivariate normal distribution. In order to obtain conser-
vative approximate simultaneous confidence intervals, Bonferroni’s inequality
is applied to T2-type statistic. Under elliptical populations with equal sample
sizes, the first and the modified second order Bonferroni approximations are
discussed by Seo [7]. For unequal sample sizes, the first order Bonferroni ap-
proximation is discussed by Okamoto and Seo [5]. The first order Bonferroni
approximation becomes conservative too much when the number of popula-
tions or the kurtosis parameter is large. In this paper, the modified second

205



206 NAOYA OKAMOTO

order Bonferroni approximation is discussed for unequal sample sizes. In Sec-
tion 2, simultaneous confidence intervals for pairwise multiple comparisons and
the first order Bonferroni approximation are discussed. The modified second
order Bonferroni approximation is derived in Section 3. In Section 4, simul-
taneous confidence intervals for comparisons with a control and the first and
the modified second order Bonferroni approximations are also obtained as well
as preceding section. Finally, the accuracy and conservativeness of the first
and the modified second order Bonferroni approximations are evaluated via a
Monte Carlo simulation study in Section 5.

For the j-th population, a p x 1 random vector () is said to have an
elliptical distribution with parameters u() (px 1) and AU (px p) if its density
function is

F(@)) = ci)|AD)| -2 {(w@)_“<j>)/A(j>—1(w<j)_“@))}

for some non-negative function g;, where c(J Visa normalizing constant and AU)
is a positive definite. The characteristic function of the vector x\9) is ¢;(t) =
exp(it' 9 )ah; ( AU)E) for some function v, and E[z0)] = pU) and %0 =
Cov[zV)] = —247(0 JAU) | if they exist. Throughout this paper, we assume
» =30 = =X k), E[||z%)||®] < co and Cramér’s condition is satisfied.
We define the kurtosis parameter as x; = {1,&}’(0)/(%(0))2} — 1. Elliptical
distributions include the multivariate normal, the e-contaminated normal, the
multivariate ¢, the symmetric Kotz type and many other distributions, see e.g.
Muirhead [4], Fang, Kotz and Ng [1], Kotz and Nadarajah [3].

82. A first order Bonferroni approximation

Consider simultaneous confidence intervals for pairwise multiple comparisons
among k independent p-dimensional mean vectors under elliptical populations.
Let ng), e (J), (j =1,...,k) be N; independent observations on () that

has an elliptical distribution with mean vector p¥) and common covariance
matrix 3. Let the j-th sample mean vector, the j-th sample covariance matrix
and the pooled sample covariance matrix be

Nj
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. _ k )
respectively, where v =3 0| N; — k.
The simultaneous confidence intervals for pairwise multiple comparisons
among mean vectors are given by

(2.1) a(p — pm™)y e ld @D -z £t dlma’Sa] ,
VacRP — {0}, 1 <i<m<k,

where dj,;, = 1/N;+1/N,,, RP—{0} is the set of any nonnull real p-dimensional
vectors and the value ¢ (> 0) satisfies as follows:

Pr {Tr%lax > t2} = q,
where

2 _ 2
Tnax = 1§?23{§k Tim}

Tity = dypn (y(” — y(m)>/5’1 (y(” - y(m)) :

y ) =z0) -y =1, k.
By Bonferroni’s inequality for Pr {Téax > tQ}:

k—1 k
Pr{Th. >t} <> > Pr{TZ, >},

=1 m=Il+1

the approximate upper percentile t3 of T2, is given by

o

-1

k
(2.2) S Pr{T, >t} =0
=1 m=Il+1

Without a loss of generality, we assume ¥ = I, and N; < Ny = N for
j=2,....,k. Putr; = N;j/N for j =1,...,k, s = 1/(2?:17“]-) and wy, =

VTm /(e + Tm).

Letting
7D = 0 L0,
VA
N
W) — NL S (@) — p) (@ — plily
J =1
I+ L A
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we have

2 / -1
Tlm = TlmS Tim,

where

l
Tim = wlmz() _wmlz(m)7

k
1 - 1
-1 _ 7 - E o AY) B
S p %NS ‘:1\/7“] +N

k

k
s> 2@ 0) | &2 3 r; 20)°
7=1

Jj=1

+ 0p(N7H).

Z Z \/W(Z@ +Z<J>Z<>) — skl

=1 j=i+1

Expanding and inverting the characteristic function, We have the first or-
der Bonferroni approximate upper 100 percentiles of T2, that is, t% s =

t%.xg(a) and 7 . = t? (), which are derived by Okamoto and Seo [5 ] as

follows:
1
23 e = % (%) - avi % (%)
K zk: lo 1 22 (L)
P p(p+2) K [

vp o 1 5/«
24) B = e (2) - (2)
(24) tir V—p—l-l pr=pti\) T oNK P K

X Z Z {(clm + sp) <p(pl+2)cl(72n) - 3> X?g (;)} )

=1 m=I+1

where K = k(k—1)/2, x;(a/K) and F, ,_p41(a/K) are the upper 100(or/K)
percentile of the x? distribution with p degrees of freedom and that of the
F-distribution with p and v — p + 1 degrees of freedom, respectively, and

0 1
e = —sp*+ SP(p+2)
/1 1 i
X (w?m — 25w12m> Ky + <wfnl - 2sw72nl> K — 82 Z rik;| ,
Tl T'm =

1
cl(f,f = sp(p+2)+ 529(17 +2)

k

1 1
X <rlw?m — 6swl2m> K] + <Tw:lnl — 68w72nl> Km + 352 erlij
m

j=1
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83. A modified second order Bonferroni approximation

In this section, a modified second order Bonferroni procedure is described
to improve the first order Bonferroni approximation. Let y; = wipz® —
w122, Yy = wlsz( ) —ws12®) Yg = Wk—1 kz(kfl) - wk,kflz(k)a Wiy, =
\/Tm/(r; + 7). Then Bonferroni’s inequality for Pr{T?2,. > t?} is given by

K
ZPr {y;S~ 1y, > t2} B(t?) < Pr{T2, > t’} < ZPr {y;Sflyi >},
i=1

where
K-1 K
t2 = Z Z {y;S 1yz > 2 y;S_lyj > tz}.

The first order Bonferroni approximation ¢2, which uses the first term of
Bonferroni’s inequality, is defined as a critical value that satisfies the equality

T2(t3) = ZPr{y;S yl>t2} = a.
=1

Note that TZ(t?) is equal to the left side in (2.2). The second order Bonferroni
approximation t%, which uses the first and the second terms of Bonferroni’s
inequality, is defined as a critical value that satisfies the equality

T3 (£5) ZPT {viS™ 'y, > 13} — B(13) =

The modified second order Bonferroni approximation t%\/l is defined as a critical
value that satisfies the equality

ZPr{y/S y; >t} =a+BH).

Approximate values t2, t3, t?w and an exact upper percentile t? are shown
as Figure 1. If an error due to the asymptotic expansion is not taken into
consideration, then 3 < t? < t3 and t3 < t3, < t}.

In order to obtain the modified second order Bonferroni approximation t?\/j,
we discuss the evaluation of 3(t7). Consider two cases of joint probabilities to
evaluate the B(t3); that is, B1.i.(t3) = Pr{sz > 12, T2 > 3} (i,4, k., are all
distinct) and Bo.;1(3) = Pr{TZ%- > 12, T2 > 3} (i, 4,k are all distinct) under
the elliptical distribution setup.
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Figure 1: Exact and approximate upper percentiles.

Consider an asymptotic expansion for fBy.iju(t ) For convenience, we dis-
cuss the joint characteristic function of T2, and T%,, that is,

1 (itl, itg) = E[exp(itlT& + it2T324)].

Let
20—y 4 L0 wo = Lz
VN VN
for j =1,2,...,k. The joint characteristic function C(it1,it2) can be written
as

1 1
Ci(ity, ity) = B |exp(iti T + itoT)) (1 bt NBQH +o(N7Y,

where
By = ity TP + it, TSP,
2)

2
W 0@ + (i) i) T,

By = ity T + (22” (TD)? + it TS

and

1 _ 1) _
Ty = 119712, T3y = T34T34,

k k
T3 = 7y | 5D i ZW |ty T = —7iy | Y 529 | 74,
j=1 j=1
k Kk

12 =Th Zz ZZmz(i)Z(J’) — skI, | 712,

i=1 j=1
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¥ = 1, ZZJ) J)+S2ZZWZUZ<J>—5M T34,

i=1 j=1

and

1 2 — —
T12 = wlz( ) ’U)QZ( ), w1 = W12 = , W2 = w21 = ,
r1+ 12 r1+ 12

T34 = W z(3) —w z(4) W3 = W34 = ™ Wy = Wy3 = 3
34 3 4 ) 3 34 ) 4 43 .
T3+ T4 3+ T4

Some results of the expectation with respect to Z@) and the joint density
function of z) and ZU) are given by Iwashita [2]. Some results of the ex-
pectation with respect to z(9) are given by Okamoto and Seo [5]. Using these
results, the expectation Elexp(iti T2, + itaT3,)] with respect to 2U) and Z0),
j=1,...,k is calculated as follows:

p

. ‘ p 1 _
Elexp(iti T3 + itaTh)] = (uiug) §+N(U1U/2) 2

x{ay + (agruy’ + agpuy )
+(CL31U1_2 + CL32U2_2) + a4(U1U2)71} + O(Nfl),

where uy = 1-— 2’it1, U = 1-— Q’itg, 7 = \/—1,

—1(1)+1(+2)“ﬁ42 +—44
a1 = 23p D 8p D - swy | K1 . sw2
wi wy
+ <3 — 4sw§> K3 + ( — 4swz) /4;4} ,
r3 T4
1
as, = —sp+ ZP(P +2) [_28’% +s(wiry +wiky + wiks + wika)
4 4
— { <w1 — 4810%) K1+ ( — 45w2> ﬁ2}:| )
r1 T2
1 2 2 2 2
asy = —sp+ Zp(p +2) | =25k, + s(wik1 + wiky + w3k3 + Wika)

4 4
— { <w3 — 48w§> K3 + <w4 — 4swi> /@4}} ,
3 T4

1 wil 2 w% 2
as = gp(p +2) |25+ 3sk, + | — — 6sw] | kK1 + | —= — 6sw3 | ke,
1 T2

1 w§ 2 wi
azs = ~p(p+2) |25+ 3sk, + — 6sw3 | k3 + — Gswj | Kal
8 T3 T4

1
a; = Zsp [2 +(p+2)k — (p+ 2)(w%/€1 + w%/ﬁg + w%n;:, + me)] ,
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Ky = 52?:1 rik;j and a1 + a2 + a9 + azy + aze +aqg = 0.
Inverting this characteristic function C1(ity,it2), the following results are
obtained.

Theorem 1. For large N, an asymptotic expansion for the joint probability
Br.ijri(t3) is given by

Pr{Tj > 17, T} > 1} = Gi (m) + {Clgp(ﬁl)Gg(m) +eag% (M)} + o (N7,

where
Lo > | Y -
m=gth Gylm) =/m 500t 95(0) = gyt
and
s
= [4(p+ 2m) +2(p + 611 + 2)kr

1
—(p-2m+ DK +2(p—6m +2)KV |,

2
2= L2+ (o D — (p+ 29KD)

KW = w?m + w?/sj + w,%nk + wlzm,

4 4 4 4
w; w; w w

K® = g L+ —Lpp+ —Lgy,
r; T’j Tk T

Wi = Wij, W5 = Wji, Wk = Wk, W] = Wik-
Secondly, consider an asymptotic expansion for ,Bz.ijk(t%). The joint char-

acteristic function Cy(ity,its) = E[exp(it1T5 + itaTh)] can be written as

1 1
Cyity, ity) = B |exp(iti T + it T\S)) <1 +o=Dit ND2>] +o(N Y,

where

D1 = ZtlTl(g) + itQTl(g),

. it 2 o
Dy =it + @@y it 4 @ 4 i) 1 DT

and

1 _ 1) _
Tyy = T19T12, Ti3" = T13T13,

k k
15 = —thy |3 iz | mia, T = 1y (s> vz | 1,
j=1 j=1
k Kk

12 =Th Zz ZZmz(i)Z(J’) — skI, | 712,

i=1 j=1
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T® 7, Zz” a>+52§;§;wz<>zm_sm -

i=1 j=1
and
— (1) (2) = — 2 = — "
T2 = W12 — w2z, W1 =wW12 = , W2 = w21 = )
1+ 7o 1+ T2
— (1) (3) = — 3 = — [}
T13 — W3z — Wy z , W3 = w13 = , W4 = W31 = .
1+ 73 L+ T3
Let
(D) (1) 2,92
T3 = exp(iti T}y + itaTy3’), vy = wjws,
2 2
A1 = Uy — (u1 — 1)w1, A2 = Uy — (UQ — 1)’[03,
A1y = up — (w1 — 1)vo, Agy = ug — (ug — 1L)vg

If 20, 2@ and 20 are random vectors from the multivariate normal
distribution, we obtain some results as follows:

E[T23] = U~s,
E[(rh,2™M) Tias] = pU ™52 As[(p + 2)w} As + wdl],
B[(h520) T3] = pU~5241((p + 2)wi Ay + wil],
E[(T152®) Tias] = pU~ 2 *[(p + 2)wdul + widsU),
E[(7452®) Tizs] = pU~ 2 [(p + 2wiul + w3 AU,
E[(rh52®) T12s) = pU-g 2[(p+2)(ur — 1)?uow}

+{1+ (u1 — Dwiwi}U],
2
E[(T152®)) Tis] = pU~272[(p + 2)(ug — 1)%vow?
+{1+ (ug — 1)w§w§}U],

E[(T/12T12)(Z(1)/Z(1))T123] = prgJAz[(P + 2)w? Ay + pwal],
E[(r)5m13) (21 20)Tg5] = pU~ 37241 [(p + 2)wd Ay + puwiU],
E[(r5712) (2 2P\ T1a5] = pU~52[(p + 2)wdu3 + pwiAsU),
E[(r15713) (2 2 T1a5] = pU~52[(p + 2)wdud + pwdAU),
E[(mh5713) (2 22 Thas] = pU~ 5 2[(p + 2) (w1 — 1)%vow}

+p{1 + (w1 — Dwiwi}U],
E[(755712) (2™ 2O Tiag] = pU~52[(p +2) (uz — 1)?v0w}
+p{1 + (uz — wiw3}U],
E[(Th7T12) 23] = pU~ 3 2[AssU],
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E[(T15713)Thas] = pU~ 2 2[A14U],
B[(T)y712)*Ti23] = pU~ 5 2[(p + 2) A3,
B[(T5T13)*T123] = pU 5 2[(p + 2) A},
E[(T15713)*T123] = pU ™2 %[(p + 2)vo + (1 — vo)U]

E[(T12712)(T13713)T123] = pU—g ?[(p+ 2)vo + p(1 — vo)U]

where U = ujug — (ug — 1)(ug — 1)vp.
Therefore, we obtain the asymptotic expansion for the expectation of
exp(it; T 1(21) + ithl(é)) in elliptical distributions.

Elexp(iti T}y + it2T)3))]
1
=U2+ p(p+2)U 272

8N
1
X - —{(u1 — 1)qu1 + (u2 l)ulwg —2(up — 1) (ug — 1)v0}2/@1
1 1 u? 2 4 -1
+7" (u1 — 1)2udwiky + —ul(us — 1)2wiks| + o(N7L).
2 r3

Let )\1 =1- 2(1 - Uo)’itl, )\2 =1- 2(1 - Uo)itg, then

7/\1—’[)0 7)\2—1)() 7)\1)\2—’00
Uy = —— U2 = ————, U_i
1—1)0 1—1)0 1—’[)0

Calculating the expectation Elexp(it; T3 +itoT%)] with respect to z) and
Z0), 7 =1,...,k by using above results, we have

D
2

1
Cz(itl, itQ) =U" + N(blU_l + bQU_Q) + O(N_l)

with the coefficients b; and by given by

bl {64 P+ )S’U%bn + 8(p + 2)81)1[)12 — (p + 2)b13} s

128 3

by — (p+2)(

S 128507bg1 + 32501bga + 192507 bag + 4bay),

where v1 = vg — 1, v3 = w? + w3,

bii = 3MA2—2(A1 + X)) + 1,
bia = (—4MA2 + A1+ Ao+ 2)k1 + (—4A A2 + A1 — 2X9 + 5) kKo
+(—=4MA2 — 2\ + A2 + 5)k3 + 4(1 — v) (A1 + A2 — 2)ky,
bis = 4(Mda — Dkt + (4Aida —A1 — 2Xa — D)ra + (A1 e — 201 — Ao — 1)k,
bar = (M1 + A2 — 2\ 2)?,
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ba3
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(12w3w2)A? + (12wiw]) N3 — 4(dvg — 209 + 1)A3N3

+ {4 (4wz — 10w3 +5) wi — 4wi + 1} A A3
+{—4 (4w} — 10w} + 5) w3 — dwi + 1} ATXy
+ug {8w} — 28vs + vg (—8wi +32) +23} Ny
+vg {8wg — 28vs + vg (—8wj + 32) + 23} A,
+2{—2vp(8vy — 11vg + 15) 4+ 2vy + 1} A1 A2

+2vg {41}0(’1}2 — 4) + 4vy — 1} K1

4+ 12v0w3N? + 1203 N3 — 4 (Qw% - 1) N2

+2 (10wf — 11) MA3 + {4 (wi — dvgw3) — 3} AfAs
+ug {4 (5w} — 2vgw3) — 21} Ay + 2vp (14w] — 13) Ay
+ {—4w} — dvo (11w} — 12) + 9} A As

+vg { =8 (vo + w}) wi + 3} | Ko

+ [ 12w AT + 1200wiA3 — 4 (2wi — 1) ATA3

+ {4 (w§ — dvowy) — 3} MA3 + 2 (10wg — 11) ATA,
+2vg (14w3 — 13) Ay + vg {4(5w3 — 2vpw}) — 21} Ay
+{—4w] — 4vg (11ws — 12) + 9} A1 Xo

+vg {—8 (vo + w3) w3 + 3} | K3,

= (—2)\1)\2 + M+ /\2)<—2’U0 + M+ )\Q)K,T,

4
— [dw3wiA] + dwwiA3 + {4(vs — 200)> — 11} AN

™

1
+— [16v5wiAT + 16wiA3 + 4 (4ws — 72) ATAS — 2 (16w) — 72) M A3

+8(2vp — v2) (va — w3) Wil A3 + 8(2v9 — v2)wawINI A

—8up (v — 2)wawiA; — 8vg(va — 2)wiwiAe

215

+ [r1(vo + 1) + 8uvp { (wi + 2w] — 1) w3 — 2wiwiw] — wi}] Aido

+ {42}(2)(1}2 - 2)2 — T‘lvo} K1

T2

—(321)()1[);1 — 7’2))\%/\2 — V0 (321)()71)12’L + TQ) )\1 — 21)0 (16103L + 7’2) )\2

+ {4’00 (1621);1 + TQ) + 7"2} A1 A2 + vg (16’00’[1)31 — ’I“Q) K9
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+— |16wiAT + 16v3wiA3 + 4 (dw) — r3) ATA3
3

— (320w} — 13)A1A3 — 2 (16w] — r3) ATAo
—2vg (1671)3 + 7”3) A1 — g (327)()1021 + Tg) Ao

+ {41}0 (16wi‘ + 7”3) + 7“3} Ao + g (16U0w3 - 7“3) R3.

We also note that

where

(), - "fa =G+ G-

Therefore, we obtain the following theorem.

Theorem 2. For large N, an asymptotic expansion for the joint probability
Ba.ijk(t3) is given by

Pr{T} > #],T, >t1}

X [ Brm(12) + % {d19g+m(772)Gg+m(772) + d29%+m(772)}} +o(N7h),

where
Gp - p P (t) = ¥tg+m_1€_t
o) = ], om0t 9o = gyt
and
dy = 32 2 {32507 (p — 2m + 2m2) + 8svidyy + dio}
2
dy = . m {323qv%(2m + 1) + 8svida + d22} )

16qvi(p + 2m)
di1 = 2[3(m — novo) + v1ive {2n2(2v1 — 1) + ¢}] k1
+ [2v1w%(4v1772 +q)+9m+n {v1 4w% —13) — 9}] Ko
[2v1w4 dvine + q) + 9m + o {v1 4w3 —13) — 9}] K3
+ [201 {p + 6m — 612(201 + 1) + 2}] Ay,
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1
dips = 8 [1"1(2772 — q)v%(v% —2v9) +m — n2(vy + 1)] K1

8
+ [7“2(2772 — q)fu%w;l + 5m — bna(v1 + 1)] Ko

+ [2(2772 — @)viwy + 5m — 5na(vy + 1)] K3,
do1 = [dvon; {4vo(va — 4) + dvy — 1} + {—8vg + 2(vo + 1)vg + 1} ¢°
—{p — 2vona(4v2(vo — 4) +21) + 2} g k1
+ [2vom3 {—8(vo + 1)wi + 8vg + 3}
+vone { —8(vo — 4)wi + 8vg — 41} g + 5m* + 2(p + 2)*(vo + 1w
+(p+m+2)m {—8(vo + L)wi + 8vg + 13}] k2
+ [2v0m3 {—8(vo + 1)w3 + 8vg + 3}
+vn2 {—8(vo — 4)w3 + 8vg — 41} g + 5m? +2(p + 2)*(vo + 1)w]
+(p+m +2)m {—8(vy + 1)w3 + 8vy + 13}] k3
+ [201(p + 6m — 12v9m2 + 2)q] K,

dyy = [4 {(m — 2vom2)q — 27}0775}
+8;10 [{(2}2 — 2)2 + v (2U1 — U% + 4)} q2

+4n2(2v1 — vo + 2)(ve — 2)q + 41}07)%(1)2 — 2)2 ]}Iﬁl

Sugw4
+ [ ;’2 2 (2m2 — q) {2vom2 + (1 — 1)g} + (m — Svenz)q — 21}077%] 2

Suow?
+ [ s 2(2n2 — q) {2vom2 + (v1 — 1)} + (m — 5vgn)q — 200773] K3,
q = p+2m+2, w =wi, wr=wj, W3 = Wik, Wi = Wiy

Therefore, the modified second order Bonferroni approximate upper 100« per-

centiles of T2, that is, t?\/[.XQ = t?M.XQ(a) and 3, » = 13, (), are obtained

as follows:

1
(3.1) t?\/l_xz = X?, (7)—mxi ()
S 1 o 1 @
0 2) 2
XZ Z {Clm_ lmXp(’)/)}’
=1 m=Il+1 p p(p+2)
vp 1 5
2) B,y = —2 F, -
(3.2) #,p P 1 () = S e ()
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where v = {a + 3(t3)}/K and
B(81) =D Brigu(t)) + ) Baiju(t})

(i, j, k, 1 are all distinct for B1.;k(t3) and 4,7, k are all distinct for Ba.ijx(t3)).
When sample sizes are equal, these results coincide with those of Seo [7].

84. Approximations for comparisons with a control

In this section, simultaneous confidence intervals for comparisons with a con-
trol among k independent p-dimensional mean vectors are discussed under
elliptical populations. Letting the first population be a control, the simulta-
neous confidence intervals for comparisons with a control among mean vectors
are given by

a'(pt — ptm) e [a'(i(l) —zm) + t\/dlma’Sa} ,
Va € RP — {0}, 2<m <k.

The value ¢ (> 0) satisfies as follows:

2 2
Pr{Ti.u.>t} =q,
where
T2 = max {T?
max -c QSWSk{ 1m}7

G O y(m>)’ 57 (30 —ym).

By Bonferroni’s inequality for Pr {132, .. > t*}:

k
Pr{T2..>t} <Y Pr{I%, >},
m=2

the approximate upper percentile t% of Tiax .c is given by
k
(4.1) Z Pr{T?, >t} =«
m=2
Let y; = w12z(1) - w21z(2)7 Yo = wlSZ(l) - w31Z(3)7 o Y1 = wlkz(l) -

wi12®) | Wi = \/Tm /(11 + ). Bonferroni’s inequality for Pr{T2,. . > t*} is
given by

k—1

k—1
D PriyiS Tty > 7} = Be(t?) < Pr{Tl. . > 7} <) Pr{yiS~'y, > t*},
=1 =1
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where

e
&
Ead
—

Be(t?) = Pr{y;S'y, > %, y;5 y; > £},

[ 1

1 j=i

+

The first order Bonferroni approximation t7 is defined as a critical value that
satisfies the equality

T2 .(t3 ZPr{y'S ly; > 11} = o

Note that T2,.(t?) is equal to the left side in (4.1). The second order Bonferroni
approximation t% is defined as a critical value that satisfies the equality

T3 .(t5) = ZPT {yi57 'y, > 85} — Be(t3) = o,

The modified second order Bonferroni approximation t?\/[c is defined as a crit-
ical value that satisfies the equality

k—1
ZPr {y;S_lyi > t?\/lc} =a-+ Bc(t%),

i=1

where

) =Y Paigr(t])

(1,7, k are all distinct).
By using the same way as pairwise multiple comparisons, the first and
the modified second order Bonferroni approximate upper 100« percentiles of

T2 .« .. are obtained as follows:

9 9 o _ 1 9 o
fazel@) = % <k:—1> 2N (k —1)7 (k—l)
1 2) 2 o
< (et (50) )
9 B vp (0% _ 1 2 «
frele) = v—p+ 1F”’”"’+1<k—1> 2N (k—1)7 <k—1)

S {0 w) - Grrat- )2 (250))
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t?W-XQ-c(a) = X;Q; (’YC) - 2N(k1_1)X,2, (’70)

k
<3 (i g 00
plp+2) T

vp 1

t2 = ——F v— c)] T ANt/ 4N 2 c
upe(a) v_pt1 P p+1 (Ve) 2N(k71)Xp(rY)

x Ek: {(clm + sp> (Mﬁl - 8) X5 (%)} :

where . = {a + B.(£2)}/(k — 1).

85. Accuracy and conservativeness of approximations

In order to evaluate the accuracy and conservativeness of the obtained ap—
proximations, the Monte Carlo simulation for the upper percentiles of T2,
is implemented for varied parameters. The accuracy of the modified sec-
ond order Bonferroni approximation is compared with that of the first order
Bonferroni approximation. The accuracy of the first order Bonferroni approx-
imation is good when the number of populations is small. However, that
becomes worse as the number of populations or the kurtosis parameter in-
creases for k > 6. Therefore, we discuss the accuracy and conservativeness for
k = 6,10 throughout this section. In the simulation, the k populations have
the same distributions and consider three types of distributions: the multi-
variate normal (x = 0), the e-contaminated normal (k = 1.78 with ¢ = 0.1 &
o = 3) and the e-contaminated normal (k = 3.24 with ¢ = 0.1 & 0 =4).
Tables 1-3 give the simulated and approximate values of the upper per-
centile of Tinax (= \/T2ax) for the following parameters: p =5, k = 6, 10, N;
(= N) =10, 20, 40,80 (j =1,...,k), =1 and a = 0.05. Tables 4-6 give
them for the following parameters: p=>5k=26,10, r = 0.5, a = 0.05 and
N = 10, 20, 40, 80; the sample sizes of the first k/2 populations are N and
the rest of them are rN. For example, when k =6, Ny = No = N3 = N and
Ny = N5 = Ng =rN. Values t.,2, t1.r, tpr.2 and ty.F stand for approxima-

tions , /t7. 2,1/75%1;,1/ M2 and t3, p found in (2.3), (2.4), (3.1) and (3.2),

respectlvely P2, P F, PM Xz and Pyy. F stand for lower tail probablhtles
PI‘{ max < tz 2} PI‘{ max F} PI‘{ max < t?w 2} and Pl“{ max ~F}a
respectively. t* is a s1mulated value and Pr{T?2 . t*2} =1l—-a. If lower tail
probability is larger than 1 — «, we can construct conservative simultaneous
confidence intervals from (2.1). Figures 2-4 show the graphs of the corre-
sponding data in Tables 1-3 for £k = 10, r = 1, K = 0,1.78, 3.24. Figures 5-7
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show them in Tables 4-6 for £ = 10, »r = 0.5, Kk = 0,1.78, 3.24.

In Tables 1-3 and Figures 2—4, the modified second order Bonferroni ap-
proximations fyr.,2 and fy;.p have highly precise for large N even if x is
large, that is, lower tail probabilities are very close to 0.95 and at the same
time these are conservative. In general, the effect of nonnormality becomes
small as a increases, and approximate accuracy is good, see Okamoto and
Seo [5]. Therefore, the effect of nonnormality for the modified second order
Bonferroni approximation is smaller than that for the first order Bonferroni
approximation. Approximate errors are occurred by Bonferroni’s inequality
and an asymptotic expansion. The first order Bonferroni approximation al-
ways leads to overestimates when the error by using the asymptotic expansion
is ignored. Underestimates occur when the error of the asymptotic expan-
sion is larger than that of Bonferroni’s inequality. It is not always true that
the modified second order Bonferroni approximation leads to overestimates
even if the error of the asymptotic expansion is ignored. When the first or-
der Bonferroni approximation is not conservative, the modified second order
Bonferroni approximation is not conservative, either, see e.g. Figure 5. There
is a case that the modified second order Bonferroni approximation is not con-
servative though the first order Bonferroni approximation is conservative, see
e.g. Figure 2. For such cases, it is not useful to use the modified second order
Bonferroni approximation. However, both the first and the modified second
order Bonferroni approximations are conservative for large N regardless of k,
p, k, and 7.

In Tables 4-6 and Figures 5-7, lower tail probability of the first order
Bonferroni approximation and that of the modified second order Bonferroni
approximation come to hardly change as x increases. This means that the
effect of nonnormality becomes large and 3(t?) becomes small. The effect of
nonnormality becomes small and approximate accuracy becomes good as r
increases. The probability 3(¢?) tends to become small as r decreases, that is,
the conservativeness of the first order Bonferroni approximation gets closer to
that of the modified second order Bonferroni approximation for small r. For
example, in Table 2, Py;.p = 0.960 for kK = 10, r = 1, N = 20; total sample size
is 200. In Table 5, Py;.p = 0.960 for k = 10, r = 0.5, N = 80 : 40; total sample
size is 600. Therefore, approximate accuracy for r = 1 is better even if total
sample size is smaller than that for » = 0.5. Though the modified second order
Bonferroni approximation does not always become theoretically conservative,
this value is conservative for many parameters as results of simulation. It is
preferable that r is close to 1 and we recommend to use the modified second
order Bonferroni approximation for k£ > 6.
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k=0,r=1,p=5,a=0.05

k iy tir Pl-x2 P .r Ity tmr PM~X2 Py.r t*
6 | 10 | 459 4.71 .947 960 | 4.56 4.68 .942 957 | 4.62
20 | 440 4.43 955 959 | 4.36 4.38 .950 953 | 4.36
40 | 431 4.31 957 958 | 4.26 4.26 .950 951 | 4.25
80 | 4.26 4.26 .958 958 | 4.21 4.21 951 951 | 4.20
10 | 10 | 4.78 4.85 953 .961 | 4.74 4.80 947 .956 | 4.76
20 | 464 4.66 .958 960 | 4.59 4.60 .950 953 | 4.58
40 | 4.57 4.58 .959 959 | 4.52  4.52 .950 951 | 4.51
80 | 4.54 4.54 .959 .959 | 4.48 4.48 .951 951 | 448

Table 1: Approximations and lower tail probabilities for equal sample sizes.

k=178r=1p=5a=0.05

k| N tl,XQ t1.F Pl-x2 P r tM-XQ tym.F PM_X2 Py.r t*
6 | 10 | 459 4.71 .950 963 | 4.56 4.68 .946 .960 | 4.59
20 | 440 4.43 957 960 | 4.36 4.38 951 954 | 4.35
40 | 431 4.31 958 959 | 4.26 4.26 951 952 | 4.25
80 | 4.26 4.26 .958 .958 | 4.21 4.21 951 951 | 4.21
10 | 10 | 5.02 5.09 .969 974 | 5.00 5.06 .966 972 | 4.85
20 | 4.77 4.78 .964 966 | 4.72 4.74 .959 .960 | 4.66
40 | 4.64 4.64 961 .962 | 4.58 4.58 .953 954 | 4.56
80 | 4.57 4.57 .960 .960 | 4.51 4.51 951 951 | 4.51

Table 2: Approximations and lower tail probabilities for equal sample sizes.

k=324,r=1,p=5,a=0.05

k| N t1~x2 t.r Pl-x2 P.r tM,X2 tMF PM,XQ Py.p t*
6 | 10 | 4.59 4.71 953 .966 | 4.56 4.68 .949 963 | 4.56
20 | 440 4.43 959 962 | 4.36 4.38 .953 956 | 4.34
40 | 4.31 4.31 958 .959 | 4.26 4.26 951 952 | 4.25
80 | 4.26 4.26 .957 958 | 4.21 4.21 951 951 | 4.21
10 | 10 | 5.21 5.28 979 983 | 5.20 5.26 978 982 | 4.91
20 | 4.87 4.89 970 .971 | 4.83 4.85 .966 967 | 4.71
40 | 4.69 4.69 .964 .964 | 4.63 4.64 .956 .956 | 4.59
80 | 4.60 4.60 .961 .961 | 4.54 4.54 .953 953 | 4.53

Table 3: Approximations and lower tail probabilities for equal sample sizes.
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k=0,r=05p=5a=0.05

k N liy2 1R P1~X2 P.r vy tMF PM-X2 Py.p t*
6 10:5 | 4.71 494 937 962 | 4.70 4.93 .936 961 | 4.81
20:10 | 447 4.52 954 960 | 4.44 4.49 951 .958 | 4.43
40:20 | 4.34 4.35 958 .959 | 4.31 4.32 .954 .956 | 4.28
80:40 | 4.27 4.28 959 959 | 4.24 4.25 .955 955 | 4.21
10 | 10:5 | 4.87 4.99 .949 963 | 4.85 4.97  .946 .961 | 4.88
20:10 | 4.69 4.72 958 962 | 4.66 4.69 .954 .958 | 4.63
40:20 | 4.60 4.60 .960 .961 | 4.56 4.57  .956 957 | 4.53
80:40 | 4.55 4.55 .961 961 | 4.52 4.52 .956 956 | 4.48

Table 4: Approximations and lower tail probabilities for unequal sample sizes.

k=178,r=0.5,p=5a=0.05

k N tl,XQ t1.p Pl,XQ P r tM-X2 tvm.F PM'X2 Py.p t*
6 10:5 | 491 514 .95 .973 | 491 5.13 .956 972 | 4.86
20:10 | 4.57 4.62 962 967 | 4.56 4.61 .961 966 | 4.47
40:20 | 4.40 4.41 961 .963 | 4.37 4.39 .959 .960 | 4.31
80:40 | 4.30 4.31 .960 .960 | 4.28 4.28 957 957 | 4.23
10 | 10:5 | 543 5.55 978 983 | 543 5.55 978 983 | 5.09
20:10 | 4.99 5.02 972 974 | 498 5.01 971 973 | 4.78
40:20 | 4.75 4.76 .967 .967 | 4.73 4.74 .964 965 | 4.62
80:40 | 4.63 4.63 .963 .963 | 4.60 4.60 .960 .960 | 4.53

Table 5: Approximations and lower tail probabilities for unequal sample sizes.

k=324,r=0.5,p=5a=0.05

k N tl,xz t.r P1~X2 P.r tM-XZ tM.F PM-X2 Py.r t*
6 10:5 | 5.08 5.29 .967 .980 | 5.07 5.29 .967 980 | 4.87
20:10 | 466 4.71 .969 972 | 4.65 4.70 .968 972 | 4.49
40:20 | 4.44 4.45 964 .966 | 4.42 4.44 .963 964 | 4.32
80:40 | 4.33 4.33 .961 .962 | 4.30 4.31 .959 959 | 4.24
10 | 10:5 | 5.86 5.97 .988 .991 | 5.86 5.96 .988 991 | 5.21
20:10 | 5.23 5.25 981 982 | 5.22 5.25 .980 982 | 4.87
40:20 | 4.88 4.88 .972 972 | 4.86 4.87 .970 971 | 4.69
80:40 | 4.69 4.70 .965 .966 | 4.67 4.67 .963 963 | 4.58

Table 6: Approximations and lower tail probabilities for unequal sample sizes.
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Figure 2: Conservativeness for k =  Figure 3: Conservativeness for k =
10, p=5,r=1,k=0. 10, p=5,r=1, k= 1.78.
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Figure 4: Conservativeness for k = Figure 5: Conservativeness for k =
10, p=>5,r=1, k = 3.24. 10, p=5,7=0.5, Kk =0.
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Figure 6: Conservativeness for k = Figure 7: Conservativeness for k =

10, p=5,r =0.5, k = 1.78. 10, p=>5,r =0.5, k = 3.24.
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