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Propagation of singularities for semilinear wave
equation with nonlinearity satisfying null condition
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Abstract. We study the propagation of singularities for nonlinear wave equa-
tion Ou = F(u, Du). Our main result in this paper is Theorem 1.1, which is an
extension of Theorem 2.7 in [2]. When the nonlinearity F(u, Du) satisfies the
null condition, we improve a condition with respect to regularity of solutions w.
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§1. Introduction

In this paper, we study the propagation of singularities for the following non-
linear wave equation,

(1.1) Ou = F(u, Du),
where
. 82 n—1 82
_ _ ~ n— _
(1.2) u=u(z), = (7)€ RxR"", D:@—i:1 pr

Du denotes the first partial derivatives of u and F € C° satisfies the null
condition which is defined in Definition 3.1. Typical example of F'(u, Du)
satisfying the null condition is f(u){(dyu)? —|Vu|?}. The general case is given
in Remark 3.3.

In the case of the linear wave equation

(1.3) Ou =0,
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the wave front set of u is locally completely characterized as being invariant
under the Hamiltonian flow, and hence it is easily described in terms of the
wave front set of the initial data (Hormander[5]). In particular, the singular
support of u is contained in the union of the light cones over the singular
support of the initial data.

In the case of nonlinear wave equations in one space dimension, Reed [11]
showed that solutions to (1.1) are C* except at the points (¢, x) from which
the backward characteristics intersect singular points of the initial data at
t = 0. Therefore the singularities lie on rays issuing from singularities at ¢ = 0
as in the linear case.

However this result is specific to the one-dimensional case. The analogous
result is false for second order equations when the number of space dimension
is greater than one. The counterexamples have been found by Rauch [9] and
Rauch-Reed [10], which showed that when the number of space dimensions is
greater than one, the solution u to Ou = f(u) may have other singularities.

Generally, in the case of nonlinear wave equation, its singular support may
be larger than that is predicted by the linear case when the number of space
dimensions is greater than one. These new singularities are weaker than the
original singularities (Beals-Reed [1], Bony [3], Rauch [9]).

However, even in the case of nonlinear wave equations, a phenomenon sim-
ilar to the linear case is observed when we consider low regularity. In [9],
for Ou = f(u) with a polynomial f, Rauch proved that if v € Hj] (R") for
s > n/2 and no ray through (¢, ) intersects the singular support of the ini-
tial data of u then u € HlsotHa(t, x) for all o < s —n/2. These analysis are
based on a study of the microlocal regularity of products of distributions. Let
u € HP (U)NH] (r0,&) (Definition 2.1) be a solution to (1.1) with singu-
larities on the initial hypersurface or in the past and (zg, &) is a point in null
bicharacteristic (Definition 2.3) of (. In [3], Bony showed that w is in H, , at
all points of null bicharacteristic of J as long asn/2+1 < s <r < 2s—1—n/2.
Beals and Reed [1] gave another proof of this result by using a simple com-
mutator lemma and Rauch’s lemma. Beals [2] has shown that for the equa-
tion (1.1), w is in H) , at all points of null bicharacteristic of [J as long as
n/2+1<s<r<3s—n-—2.

In other words, if r is so small that s < r < 3s — n — 2, then microlocal
Sobolev H , regularity propagates along null bicharacteristic as in the linear
case. If r is sufficiently large, then new singularities are observed. We are
interested in the threshold of . Although numerous attempts have been made
to study these analysis, the threshold of r has not been determined exactly.
In this paper, we improve lower bound of the threshold in the case that the
nonlinear term F'(u, Du) satisfies the null condition. The condition for s and
r of Theorem 1.1 in this paper is weaker than that of Theorem 2.7 (Beals[2])
in §2, if F satisfies the null condition. We obtain the following theorem.
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Theorem 1.1. Suppose that U is a neighborhood of xqg € R™, F' € C* satisfies
the null condition, and w € H (U), s > n/2, satisfies (1.1). Let I" be a null
bicharacteristic for O and suppose that v € H) (x0,&0) for some point (zo, o)
on I, then v € H), ( ) for nj2 < s < v < 25 —n/2 where T is a connected
component of T' N (U x R™\{0}) and contains (zo,&p).

Remark 1.2. The definition of null condition, null bicharacteristic and mi-
crolocal Sobolev space H] (xo,&) are given in Definition 3.1, Definition 2.3
and Definition 2.1, respectively.

Remark 1.3. If F(u, Du) satisfies the null condition, then

F(u, Du) = f(u){(8u)? — |Vul*} + g(u BtlH—Zgz )0t + h(w).

i=1
(Proposition 3.2)
So we can interpret F(u, Du) for v e H} (U) (s >n/2).

§2. Microlocal analysis

First we give some notation with respect to microlocal analysis. Secondly we
introduce the precedence result of microlocal propagation of singularities.

Definition 2.1. We say that a subset K of Ry x (Rg\{0}) is a conic set
if (z,6) € K implies that (z,t§) € K for any t > 0. Suppose that U is a
neighborhood of xo. u € H} (U) means that (£)*|ypu(€)| € L*(R™) for all 4

in Cg° with support in U u e H]  (xo,8) means that there exists ¢(x) € C§°
with ¢(xo) =1 and a conic neighborhood K of & in R™\{0} such that

(2.1) (€ xk (6)|u(é)| € LAR™),

where X is the characteristic function of K and (€) = (1 + |¢[))V/2. IfT
is a closed conic set in Ry x (Rg\{0}), we say that w € H}, (U) N Hy, (') if
ue H (U) and u € H’"l(az €) for all (z,€) €T,

As is easily verified from the definitions and the symbolic calculus, u €
H! (%0, &o) if and only if there is a classical pseudodifferential operator of order
zero with symbol a(z, ) microlocally elliptic at (xg, £) such that a(z, D)u(z) €
H{ .(R™). This functional space satisfies the following property. This property
is one of the key to solve Theorem 1.1.

Lemma 2.2. Suppose that U is a neighborhood of xo. If u € Hj (U) N
H! (20,&0), n/2 < s <1 <25s—n/2, and f € C*, then f(z,u) € H (U)N
Hy (o, &o)-
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The first proof of such result was given in Rauch [9]. Rauch proved that
Hp (U)N H] (x0,&) is an algebra for n/2 < s < r < 25 —n/2. Afterward
Bony [3] established that H; (U)NH] (xo,&o) is preserved for n/2 < s < r <
2s — n/2 under the action of smooth functions f(u) by introducing the para
product of nonsmooth functions. Moreover Meyer [7] extended this property
ton/2<s<r<2s—n/2

Next we give a brief explanation for propagation of singularities. In the
linear case, it is known that the regularity of microlocal Sobolev space propa-
gates along some integral curve which is called null bicharacteristic, which is
defined as follows.

Definition 2.3. Let p(x,§) is a characteristic polynomial of differential oper-
ator P. The curves x(s), £(s) are bicharacteristics if

a; _ o

dz; _ Op _ 9
ds Ox;

22 =g

(z(s), £(s)), (x(s), &(s)), G =1, -+, n).

n
dp 0 op 0
Since (—— — ——) =0, we see that p is constant on each o
JZ_; 0¢; 0x; ~ 0wj0g;)" ! 4
these curves; one on which p vanishes is called a null bicharacteristic of p.

Example 2.4. We consider the null bicharacteristic of O, with symbol 7% —
€|2. Simple calculation shows that the null bicharacteristic through the point
(0, zg, 10, &0) with |To] = £|&o| # 0 is the straight line

(2.3) [ ={(t,z,70,&) : = =0~ (§0/70)t}.

In [2] Beals proved that following theorems for propagation of singularities
in the sense of microlocal Sobolev spaces.

Theorem 2.5 (Rauch[9], Beals[2]). Suppose that U is a neighborhood of x¢ €
R", f € C™, and that uw € H} (U) with s > n/2 satisfies

(2.4) Ou = f(u).

Let T' be a null bicharacteristic for O and suppose that u € H]  (xq,&) for
some point (xo,&) on I'. Then u € H) (T') as long as r < 3s —n + 1 where
I' is a connected component of ' N (U x R™"\{0}) and contains (zo,&o).

This is proved by a bootstrap argument with Héormander’s propagation of
singularities theorem for the linear operator [J and Lemma 2.2. Moreover in
[2] Beals proved the following theorem.
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Theorem 2.6 (Beals[2]). Suppose that U is a neighborhood of xo € R™ and
f, ga € C°, and that u € HP (U) with s > n/2 satisfies

loc

(2.5) Ou= f(u) + Z Jo(u) D%u.

|af=1

Let T be a null bicharacteristic for O and suppose that we H} (U)NH] (xo,&o)
for some point (x0,&) onT'. Thenw e H (U)NH] (I') for r < 3s—n where

loc

' is a connected component of I' N (U x R™\{0}) and contains (xq, o).

Theorem 2.7 (Beals[2]). Suppose that U is a neighborhood of xy € R", f €
C, and that u € H (U) with s >n/2+ 1 satisfies

loc
(2.6) Ou = f(u, Du).

LetT" be a null bicharacteristic for O and suppose that we H} (U)NH] (xo,&o)
for some point (x9,&) on I'. Then w € Hj (U)NH (T') forr <3s—n—2

loc

where T" is a connected component of T' N (U x R"\{0}) and contains (xo,&p).

In Section 3, we give an improvement of Theorem 2.7 with respect to the
conditions on s and r for the equation (1.1) under the null condition.

§3. Proof of Theorem 1.1

First we give the following notion of the null condition defined by Klainerman
[6]. Klainerman introduced the null condition as a sufficient condition for a
global existence of smooth solutions to Ou = F(u,u’,u").

Definition 3.1. Let F(u,v,w) a real valued function in the variables
(u,v,w) = (W, V1, Vp, WL, Wiyt Whyn)

with i < § running from 1 to n, smoothly defined in a neighborhood of the origin

2
nRxR'xR"2". We say that F(u, Du, D*u) (where Du, D?u denote the
first and second partial derivatives of u) satisfies the null condition if, for any
u, v, w and any vector X = (X1,---, Xy) such that X? = > , X2 =0, the
following identities hold

n
O*F
3.1 —F— XX, =
( ) ZZ: 81),‘8%‘ e
n
O*F
igk=1 " Ik
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. —F X X; X X; = 0.
(33) Z 8w,7]8wkl JEkA 0

As a equivalent condition to null condition, the following important propo-
sition holds for C°° function F' with no second order derivative terms which
satisfies the null condition.

Proposition 3.2. Suppose that F(u,v) is a C* function with (u,v) =
(u,v1, -+, vy). Then F(u,v) satisfies the null condition if and only if there
are some C*™ functions f,qg,g; and h such that

(3.4) F(u,v):f(u)< Z )—l—ZgZ Yui + h(u

=2
Proof. By assumption the following identity holds for all u,v and all vector
X =(Xy, -+, X,) with X7 =31 , X? =0,
n
O*F
3.5 ——X;X; =0.
(3.5) Z 81}131)]
i,7=1
If we set for t € R
Xi==4t, Xo=t and X;=0(i=2, ---, n and i# a),
then by (3.5) we have
O*F O*F O*F
3.6 =— d = =2, 3, ,
(36) ol ov? M 90100, ( ")

Moreover we set for ¢, s € R

Xlzﬂ:\/tQ—i-SQ, X,=1t, Xp=s,

X;=0 (i=2, ---, n and i# a,b),
then by (3.5) and (3.6) we have
2
F
(3.7) aiavjzo (i, 7=1,2, -+, n and i# j).
Therefore the result follows from (3.6) and (3.7) immediately. |

Remark 3.3. Suppose that F is in C°, u = u(t,z) and (t,r) € R x R*~1,
F(u,Du) = F(u, Oy, Opyu, -+, Oz, _,u) satisfies the null condition if and
only if there is some function f, g, g; and h € C* such that

(3.8)  F(u,Du) = f(u){(8)? — |Vul*} + g(u atu—l—Zgl )0t + h(u).
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Proof of Theorem 1.1. Let
(3.9) exp[— /O f(g)dg} = G'(u) and v = G(u).

Then the facts G”(u) = —f(u)G'(u) and Ov = G"(u){(0u)? — |Vul?} +
G'(u)Ou with (1.1) and (3.8) imply

n—1
(3.10) O = & (u) (g(u)Dr + 3 g5(u)eu -+ () ).

where g, g; and h is C*°. Since G € C* and G'(u(zo)) # 0, by the inverse
mapping theorem, there exists some function G such that u = é(v) in the
neighborhood of xy. Therefore we can rewrite the equation (3.10) as the
following form

(3.11) Ov=A(v) + Y Ba(v)D
la|=1

where A and B, are in C*°. By Lemma 2.2 and (3.9), v is in H} _(U) N
H (x0,&) for n/2 < s < r < 25 —n/2. Moreover by Theorem 2.6, v is in
Hp (U)n H:nl(f) for n/2 < s £ r < 2s —n/2. Similarly by Lemma 2.2, u
is in H (U)nH (') for n/2 < s < r =< 25 —n/2. Therefore we have the
conclusion of Theorem 1.1. [ ]

Remark 3.4. When n/2 < s < n/2 + 2, this theorem is better than Theo-
rem 2.7 with respect to the conditions on s and r.

Remark 3.5. Let u € H*(U) N H) ,(x0,&) with n/2 < s S r < 25 —n/2
satisfies

(3.12) Ou = f(w){(@u)? — [Vul?},

where f is C*°. Let I' be a null bicharacteristic for O through (xo,&). In
this case, v defined in (3.9) satisfies Ov = 0 so our problem is reduced to the
linear case with respect to v. By using Hormander’s Theorem of propagation of
singularities in the linear case, v € Hj NH, (xo,&o) impliesv € Hj NH ().

However we can apply Lemma 2.2 only if n/2 < s £ r < 2s —n/2. Therefore
the condition on s and r is needed.
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