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Abstract. A special structure of the two level orthogonal array of order 12
is given. By using this structure and the method of constructing mixed-level
orthogonal arrays presented by Zhang, Lu and Pang (1999), a lot of mixed-
level orthogonal arrays of run size 108 are obtained. Especially, we obtain an
orthogonal array of size 108 with 11 6-level columns.
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§1. Introduction

T
An nxm matrix A, having k; columns with p; levels, i = 1,2,...,r,m = >_ k;,
i=1

pi # pj for i # j, is called an orthogonal array(OA) of strength d and ;ize n
if each n x d submatrix of A contains all possible 1 X d row vectors with the
same frequency. Unless stated otherwise, we use the notation L, (p]lCl b
for an OA of strength 2. An orthogonal array is said to have mixed-levels
if » > 2. Orthogonal arrays have been used extensively in statistical design
of experiments, computer science and cryptography. Constructions of mixed-
level OA’s have been studied in the literature. But our knowledge about
the existence and nonexistence of arrays is rather limited. Hedayat, Sloane
and Stufken (1999) stated that orthogonal arrays L72(67) and Logg(6'1) exist.
How many 6-level columns can an orthogonal array of size 108 have? This
paper presents a special structure of orthogonal array Li2(2''). By using
this structure and the method of constructing mixed-level orthogonal arrays
presented by Zhang, Lu and Pang (1999), a lot of mixed-level orthogonal
arrays of 108 are obtained. Especially, we obtain an orthogonal array of size
108 with 11 6-level columns.
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§2. Construction method

The following definitions, notations and results are needed in the sequel.
Let (r) = (0,... ,7 — 1)” 1, be the r x 1 vector of 1’s and I, the identity

of order r. P, = %lrlz’ and 7 = I, — P.. Let €;(r) = (0---0 i 0---0)F  bea
base vector of R" (r-dim vector space),

Ny =ei(r)eg (r) + - +er1(r)ey (r) + ep(r)ef (r)

and
K(p,q) =YY eilp)e] (a) @ ej(@)e] (p),
i=1 j=1

where ® is the usual Kronecker product in the theory of matrices. Sometimes,
it is necessary and easy to use the following properties of those permutation
matrices N, and K(p,q) to obtain the orthogonal arrays needed:

N, -(r)=1,+ (r), mod r

K(p,q)(14 @ (p)) = (p) ® 1, K(p,q)((9) ® (p)) = (p) ® (q).
and
K(p,q)(Py @ 1) K" (p,q) = 7p ® Py, K(p,q) (74 ® 7)) K™ (p,q) = 7 ® 7.

Definition 1. Let A be an OA of strength 1, i.e.,

A= (a17' i 7am) = (Sl(lTl ® (pl))" .- 7Sm(17“m ® (pm)))v

where 7;p; = n and S; is a permutation matrix, for ¢« = 1,... ,m. Then the
projection matrix Sj(P, ® ij)Sf is called the matrix image (MI) of the jth
column a; of A, denoted by m(a;). The MI of a subarray of A is defined as
the sum of the MI’s of all its columns. In particular, we denote the MI of A
by m(A).

From the definition of matrix image, we have
m(1,) = P,,m((r)) = 7.

Definition 2. Suppose that L, is an OA with entries from a finite addi-
tive group G, and that a and b are two columns of L,. ie., a = Ly(p) =
(a1,...,a,)" and b = L,(q) = (by,...,by)T. The generalized Hadamard
product of a and b, denoted a[jb, is defined as

anb = (h(a1,b1),... ,h(an, b))t = (a1q+ b1, ... ,ang +by)T = Ly(t),

where t = pq and h(a;, b;) = a;q+b; fori=1,... n.



ORTHOGONAL ARRAYS OF SIZE 108 WITH SIX-LEVEL COLUMNS 3

Definitions 1 and 2 can be found in Zhang, et al (2001).
Lemma 1. For any permutation matriz S and any array L , m(S(L®1,)) =
S(m(L) ® P.)ST, and m(S(1, ® L)) = S(P, ® m(L))ST.
Lemma 2. Let A be an orthogonal array of strength 1, i.e.,

A= (al,. .. 7am) = (Sl(lm ® (pl))7' < ’Sm(le ® (pm)))v

where rjp; =n and S; is a permutation matriz, fori=1,... ,m. The follow-
ing statements are equivalent.
(1) A is an orthogonal array of strength 2.
(2) m(A) is a projection matriz.
(3) mla;)mla;) = 0 (i # j).
(4) The projection matriz T, can be decomposed as 1, = m(ay)+---+m(am)+
m
A, where rk(A) =n—1— 3 (pj — 1) is the rank of the matriz A.
j=1
Lemma 3. Suppose 1,, = Ej SjASjT and Tp, = Zj TjBT]T are orthogonal
decompositions of T,, and Ty,, respectively, where the S;’s and Tj’s are per-
mutation matrices and n = ning. Then Tp,pn, can be orthogonally decomposed
mnto

m
m

Tning = Z(Sj ® Tj)(A ® Pnz + Inl ® B)(SJT ® TJT)
J
If there exists an orthogonal array H such that m(H) < I,,, ® B+ A® P,,,
then

L= ((51 X Tl)H, (SQ ®T2)H,. . )
s also an orthogonal array.
Lemmas 1,2 and 3 can be found in Zhang, Lu and Pang (1999).

§3. A special structure of orthogonal array Lip(2'!)

Consider the following orthogonal array Lio(2'!)

00000000111
00000111000
00111000000
01011011110
01101101101
01110110011
10110011101
10101110110
10011101011
11100001010
11010100100
11001010001

L12(211) = [al,. .. ,an] =
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Let A1 = (a3, a4,a5), A2 = (as,a7,as) and Az = (ag,a10,a11). It is easy
to see that Ay = T'A; and Ay = QAy, where T' = diag(T, T3, T5, 1), Q =
diag(Q1,Q2,Q3, Q4),

1 00 0 01
Tr=10 0 1 |, Th=1313=T, = 1 00
010 010
and
0 01 010
Qi=Q=| 01 0 |,Q3=Qs= 1 00
1 00 0 01

From the definition of orthogonal array, there exists a permutation matrix S
such that

S(as,as) = (16 ® (2), 13 ® ((2) @ (2)))

where (2) @ (2) = (0,1,1,0)T, where @ is the usual Kronecker sum in the
theory of matrix. Let

100000000000
001000000000
000000000010
000010000000
010000000000
000001000000
000000001000
000000010000
000000000001
000000100000
000100000000
000000000100

and L%Q(QH) = S(al,ag,... ,a11) = (bl,bg,... ,bn), then we have b; =
(001000111101)", by = (001101001011)7, by = 16 ® (2), by = 13 ® ((2) @ (2))
and by = (010100111010)". Let By = (b3,bs,b5), Ba = (bs,br,bs) and
B3 = (bg,blo,bn), then By = STS_IB1 and B3 = SQS_IBL It follows that
Li,(21) = (M1 By, MyBy, M3 By, by, bs), where My = I19,My = STS™1 M3 =



ORTHOGONAL ARRAYS OF SIZE 108 WITH SIX-LEVEL COLUMNS 5

SQSL. If set

100000000000
000010000000
010000000000
001000000000
000000001000
000000100000
000100000000 |’
000000010000
000001000000
000000000001
000000000010
000000000100

M, =

then
Liy(2") = (M1 By, My By, M3 By, My(bs, by)).

L15(2°) = (bs, Mo B1, M3 By, My(bs, by)).
L15(2%) = (MaBy, M3 By, My(b3, bs)).

The structure of orthogonal array Li2(2'') is useful for construction of
other arrays.

We first give some smaller orthogonal arrays and their matrix images which
will be used.

Theorem 1. There exist orthogonal arrays L3g(63) and L3g(623%) such that
m(L36(6%)) < L2 ® 73 +m(B1) @ P3 and m(L3s(6°3)) < s @73+ (Ps @ T2 +
P3® 1 @37@) ® Ps.

Proof. An orthogonal array L3g(6%-2%) can be obtained by Zhang, et al (2001)
from the following formula:

L3s(6°-2%) = [13® L12(2°), (((3) @ (3)) ® 14)0(11s @ (2)),
(3)@ (3)™) ® 14)0(1s @ ((2) @ (2))), ((3) ® a)0(13 ® b)),

where the operation [] is defined in Definition 2 and OA L12(2®) satisfies the
condition:

Lip(2') = [16 ® (2),13 @ ((2) @ (2)), b5, L12(2°)] = [B1, L12(2°)].

Let Lig(63-2%) = K(12,3)L36(6% - 28), then Li,(63 - 2%) contains a subarray
L12(28) ® 13. On the other hand, we have

m(Lig(6%-2%)) < 736 = [12@T3+T12@ Py = [12@73+(m(B1)+m(L12(2%)))® Ps.
Deleting L12(2%) ® 13 from Li,(63 - 2%), we get an OA Lsg(6%) satisfying

m(L3s(6%)) < I1a ® 73 + m(B;) @ Ps.
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Similarly and from the OA L3g(6%-3%-2%) in Zhang et al(2001), one can obtain
an OA L36(623%) such that m(Lzg(623%)) < I1o®@73+(Ps@To+P3@T2®72) @ Ps.
This completes the proof.
Corollary 1. There are orthogonal arrays L3g(3'2'°), Lag(3%22'2), L3g(332°),
L3 (613'219),  L36(6'3223), L36(623'2), L36(6'3%22), L36(623%2') and
L36(3'223) whose matriz images are less than or equal to I12®@73+m(B1)® Ps.
There exist orthogonal arrays Lse(3'2'9), L3g(322'), L36(332%), L3g(6'3'29),
L36(6'3%22), L3g(6'3%2') and L3g(3'222) whose matriz images are less than or
equal to I12 @ T3+ (P @ T2 + P3 @ T2 ® 72) ® P3.
Proof. The proof is similar to that of Theorem 1. Using those orthogonal
arrays in Zhang, et al (1999) and Zhang, et al (2001), we can obtain the
orthogonal arrays we needed.
Now we illustrate construction of orthogonal array Lios(6'13%).

Theorem 2. There exist orthogonal arrays Lyog(6'13%), L1og(6193%21), etc.

Proof. There exists S; (j = 1,2,3,4) such that

4
T9 = Sj(r3® Py)S],
j=1
where S; = Iy, So = K(3,3), S3 = K(3,3)diag(I3, N3, N2)K(3,3)T, and
Sy = K(3,3) diag(I3, N2, N3) K(3,3)T. And from the OA L},(2!'), we have
the following decomposition of the projection matrix 71s:

3
T2 = Z(M]m(Bl)MJT) + M4(P6 R+ PR TQ)ME.
j=1
Hence projection matrix 7pg can be orthogonally decomposed as

T108 = 112 ® 79 + T12 @ Py
3
= (M; ® S;)(Iia ® 73 ® Ps + m(B1) ® Py)(M; @ ;)"
J=1
+ (M@ 8S)(I12@0 T30 P3+ (P @7+ Py @79 ® 1) @ Po)(My @ Sy)” .

From Lemma 3, we obtain an orthogonal array Lios(6'13%) as follows(see Table
1):
Lios(6M13%) = [(M; ® S1)(Ls6(6%) ® 13),

(Ma ® Sa)(L36(6%) ® 13), (M3 ® S3)(L36(6%) ® 13), (My ® Sq)(L36(6*3*) ® 13)].

Using the arrays in Corollary 1 to replace the arrays Lzg(6%) and Lzg(623%)
in L103(6'13%) respectively, we can construct 1760 (220 x 8) orthogonal arrays
such as L10g(6193%21), L105(6193%22), L10s(61°312%), etc.
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Table 1. The orthogonal array Ligg(6''3%) = s1 — s11,t1 — t4

No.

i1 — 14

511
0
4
2
2
0
4
4
2
0
4
2
0
0
4
2
2
0
4
1
)
3
3
1
5
)
3
1
1
5
3
3
1
5
)
3
1
2
0
4
4

510

59

§2 83 S84 S5 S6 St S8

51

1122
0011

2200
2200
1122
0011

4 4 0 5 2

2

0011

2200
1122
1212
0101

2020
2020

1212
0101

0101

2020

4

1212

1122
0011

2200
2200

3

1122
0011

0011

2200

1122
2211

1

1100
0022

0022

2211

1100
1100
0022

4

2211

1221
0110

4 0 4 2

3

2002
2002

0

4 0 4

10
11
12
13

14
15
16

17
18
19
20
21

22
23
24
25
26
27
28
29
30
31

32

33

34
35

36

37
38
39
40
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81 (2 0 5 45 2 0 4 3 3 5 1212
82 15 3 4 2 5 3 3 4 1 5 2 2112
83 (5 3 441 5 5 0 3 3 0 1001
84 (5 3 4 0 3 1 1 2 5 1 4 0220
8 |1 5 0 2 5 3 5 0 3 1 4 0220
86 (1 5 0 4 1 5 1 2 5 5 2 2112
711 5 0 0 3 1 3 4 1 3 0 1001
88 (3 1 2 2 5 3 1 2 5 3 0 1001
89 13 1 2 41 5 3 4 1 1 4 0220
90913 1 20315 035 2 2112
91 (4 3 3 4 3 3 3 5 4 4 3 2112
9214 3 3 05 5 5 1 0 2 1 1001
914 3 3 21113 2 0 5 0220
94910 55 4 3 3 5 10 0 5 0220
9%5 10 55 05 51 3 2 4 3 2112
9% (0 5 5 21 1 3 5 4 2 1 1001
9712 1 1 4 3 3 1 3 2 2 1 1001
9812 1 1 05 5 3 5 4 0 5 0220
91211211510 4 3 2112
10056 2 2 4 2 1014 5 3 1221
101/5 2 2 04 3 2 3 0 3 1 0110
10215 2 2 2 0 5 4 5 2 1 5 2002
10311 4 4 4 2 1 2 3 0 1 5 2002
10411 4 4 04 3 45 2 5 3 1221
1056411 4 4 2 05 01 4 3 1 0110
1063 0 0 4 21 4 5 2 3 1 0110
107/3 0 0 04 3 01 4 1 5 2002
10813 0 0 2 0 5 2 3 0 5 3 1221
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