
SUT Journal of Mathematics
Vol. 39, No. 2 (2003), 117–124

Integral bases and fundamental units of certain
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Abstract. We consider families of cubic fields introduced by Ishida. We find
integral bases and the fundamental units for these families.
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§1. Introduction

Let Z be the ring of rational integers, and let θ be the real root of the irre-
ducible cubic polynomial

f(X) = X3 − 3X − b3, b(�= 0) ∈ Z.

The discriminant of f(X) is Df = −33(b3 − 2)(b3 + 2) and Df < 0 provided
b �= ±1. Let K = Q(θ) be the cubic field formed by adjoining θ to the
rationals Q, and let ZK be the ring of algebraic integers in K. These families
of cubic fields were introduced by Ishida [4]. Ishida constructed an unramified
cyclic extension, of degree 32, of K provided b ≡ −1 (mod 32). The author
investigated the case that {1, θ, θ2} is an integral basis of K in the former
paper [6], where he proved, using the Voronoi-algorithm, that

ε =
1

1 − b(θ − b)
(> 1) is the fundamental unit of Z[θ] for any b(> 1) ∈ Z.

In this paper, first we shall find an integral basis of K. Next, we shall show
that there exist infinitely many cubic fields Q(θ) such that ε is the fundamental
unit of K.

Remark 1.1. “f(X) = X3−3X +b3” in [4] is replaced by “f(X) = X3−3X−
b3”.
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Remark 1.2. If b ≡ ±1 (mod 3), then K is of Eisenstein type with respect to
3 (cf. [4]).

§2. Integral bases

In this section we refer to Voronoi’s Theorem and Llorente and Nart [8] (cf.
[3]) in order to find integral bases. We quote a part of Voronoi’s Theorem
which is well known as Theorem 2.1 for our convenience.

Theorem 2.1. (cf. Section 17 in [1]) If δ is a primitive integer in a cubic
field satisfying the equation F (δ) = δ3 − qδ − n = 0, and if there is no integer
τ whose square divides q and whose cube divides n, then an integral basis of
the field Q(δ) can be found as follows:
If the congruences 3 − q ≡ 0 (mod 9), n + q − 1 ≡ 0 (mod 27), n − q + 1 ≡
0 (mod 27) are not satisfied and if the integer a is the greatest square factor
of the discriminant Dδ(= DF ) of δ for which the congruences{

F ′(X) ≡ 0 (mod a)
F (X) ≡ 0 (mod a2)

have a solution t, then
{

1, δ,
t2 − q + tδ + δ2

a

}
is an integral basis and Dδ/a2

is the discriminant of Q(δ).

Theorem 2.2. Let b(�= 0) ∈ Z and f(θ) = θ3−3θ−b3 = 0. Let K = Q(θ) and
DK be the discriminant of K. Let b3−2 = 2e ·3g1 ·k1

2�1, b3+2 = 2e ·3g2 ·k2
2�2,

where �1, �2 are squarefree, GCD(k1�1, k2�2) = GCD(k1�1k2�2, 2 · 3) = 1, and
e, g1, g2 = 0 or 1. Then

(i) If b ≡ ±1 (mod 3), then
{

1, θ,
t2 − 3 + tθ + θ2

k1k2

}
is an integral basis of

K, where t is a solution of the following congruences{
X ≡ 1 (mod k2)
X ≡ −1 (mod k1).

(ii) If b ≡ 0 (mod 3), then
{

1, θ,
t2 − 3 + tθ + θ2

3k1k2

}
is an integral basis of K,

where t is a solution of the following congruences


X ≡ 1 (mod k2)
X ≡ −1 (mod k1)
X ≡ 0 (mod 3).
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Proof. At first, we note that GCD(b3 − 2, b3 + 2) = 1 or 2. Next, e = 1 if and
only if b is even. If b is even, then Dθ/22 ≡ 3 (mod 4). Therefore by Theorem
1 in [8] if e = 1, then 22|DK . According to Theorem 2.1, we must find the
greatest square factor a of 3gk1

2k2
2 (g = 3 or 4) such that the congruences

{
f ′(X) = 3(X − 1)(X + 1) ≡ 0 (mod a)
f(X) = X3 − 3X − b3 ≡ 0 (mod a2)

have a solution t.

(i) The case b ≡ ±1 (mod 3):
By Remark 1.2 we have GCD(3, a) = 1. Let t be a solution of the
following congruences

{
X ≡ 1 (mod k2)
X ≡ −1 (mod k1).

Then it is easily seen that the integer t satisfies the following con-
grunences

{
f ′(X) = 3(X − 1)(X + 1) ≡ 0 (mod k1k2)
f(X) = X3 − 3X − b3 ≡ 0 (mod k1

2k2
2).

Therefore we have a = k1k2.

(ii) The case b ≡ 0 (mod 3):
From Theorem 2 in [8] we have 3‖DK . Let t be a solution of the following
congruences 


X ≡ 1 (mod k2)
X ≡ −1 (mod k1)
X ≡ 0 (mod 3).

Then it is easily seen that the integer t satisfies the following congruences

{
f ′(X) = 3(X − 1)(X + 1) ≡ 0 (mod 3k1k2)
f(X) = X3 − 3X − b3 ≡ 0 (mod 32k1

2k2
2).

Therefore we have a = 3k1k2.
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§3. Fundamental units

Lemma 3.1. The integer solution (A,B, b) of the following diophantine equa-
tion is only finite:

A2 − 2B = 3(b2 + 1) (3.1)

B2 − 2A = 3(b4 + b2 + 1). (3.2)

{

Proof. Without loss of generality we may suppose b ≥ 0. Since b2 + 1 ≡
±1 (mod 3), from (3.1) we have B �= 0. From (3.1), (3.2) we have

B2 − 2(2A2 − 3)B + A4 − 3A2 + 6A + 9 = 0. (3.3)

If b = 0, then from (3.1), (3.2) we have only the following integer solutions:

(A,B, b) = (−1,−1, 0), (3, 3, 0).

If A = −1, 0 or 2, then from (3.3), (3.1), (3.2) we have only the following
integer solutions:

(A,B, b) = (0,−3,±1), (−1,−1, 0).

Hence, we shall suppose A �= −1, 0, 2 and b �= 0. The discriminant DB of the
quadratic equation (3.3) is

DB = 3A(A + 1)2(A − 2). (3.4)

Hence we have

DB > 0 ⇐⇒ A < 0 or 2 < A. (3.5)

Under the condition (3.5), we have

B ∈ Z ⇐⇒
√

DB = |A + 1|
√

3A(A − 2) ∈ Z

⇐⇒ A(A − 2) = 3C1
2 for some C1(> 0) ∈ Z

⇐⇒ A2 − 2A − 3C1
2 = 0 for some C1(> 0) ∈ Z.

From this and (3.1), we have B = 2A2−3−3C1−3C1|A+1|. Next we consider
the quadratic equation

A2 − 2A − 3C1
2 = 0. (3.6)

Since the discriminant DA of (3.6) is DA = 1 + 3C1
2, we have

A ∈ Z ⇐⇒ 1 + 3C1
2 = 3C2

2 for some C2(> 0) ∈ Z

⇐⇒ C2
2 − 3C1

2 = 1 for some C2(> 0) ∈ Z.

From this, we have A = 1 ± C2. Note that the equation C2
2 − 3C1

2 = 1
has infinitely many integer solutions. Therefore as a necessary condition, the
integer solution (A,B) of (3.3) is



CUBIC NUMBER FIELDS 121

(I)




A = 1 + C2 (C2 > 0)
B = 2A2 − 3C1A − 3C1 − 3 (C1 > 0)
C2

2 − 3C1
2 = 1

or

(II)




A = 1 − C2 (C2 > 0)
B = 2A2 + 3C1A + 3C1 − 3 (C1 > 0)
C2

2 − 3C1
2 = 1.

Now we shall consider the equation (3.1).
The case (I): (3.1) becomes

b2 + (C2 − C1 + 1)2 = (C1 + 1)2. (3.7)

We may consider a positive integer solution of (3.7). Hence we can put

(Ia) b = (u2 − v2)t, C2 − C1 + 1 = 2uvt, C1 + 1 = (u2 + v2)t,

or

(Ib) b = 2uvt, C2 − C1 + 1 = (u2 − v2)t, C1 + 1 = (u2 + v2)t,

where u, v and t are positive integers such that u > v, GCD(u, v) = 1.
The case (Ia): From C1 = (u2+v2)t−1, C2 = t(u+v)2−2 and C2

2−3C1
2 = 1,

we have

t(u + v)4 − (u + v)2 − 6tuv(u + v)2 + 6tu2v2 + 6uv = 0. (3.8)

We put u + v = X, uv = Y , then (3.8) becomes

(X2 − 6Y )(tX2 − 1) = −6tY 2. (3.9)

Since GCD(X,Y ) = 1, we have GCD(X2 − 6Y, Y 2) = GCD(tX2 − 1, t) = 1.
From this and (3.9) we have {

X2 − 6Y = −pt

tX2 − 1 = qY 2
(3.10)

where p and q are positive integers such that pq = 6. From (3.10) we have

X4 − 6X2Y + 6Y 2 = −p. (3.11)

From (3.11) we have

u4 + v4 − 2uv(u2 + v2) = −p. (3.12)
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It is well known that the diophantine equation (3.12) has only finite solutions.
The case (Ib): From C1 = (u2 + v2)t − 1, C2 = 2u2t − 2 and C2

2 − 3C1
2 = 1,

we have

(u2 − 3v2){(u2 − 3v2)t − 2} = 12v4t. (3.13)

Since GCD(u2 − 3v2, v) = 1, GCD((u2 − 3v2)t − 2, t) = 1 or 2, we have

(i) t: even (t = 2t′)

{
u2 − 3v2 = p′t′

(u2 − 3v2)t − 2 = q′v4

(ii) t: odd

{
u2 − 3v2 = pt

(u2 − 3v2)t − 2 = qv4,

where p, q, p′ and q′ are positive integers such that pq = 12, p′q′ = 24. From
(i), (ii) we have

u4 − 6u2v2 − 3v4 = p′ (t : even), u4 − 6u2v2 − 3v4 = 2p (t : odd). (3.14)

These diophantine equations have only finite solutions.
The case (II): As the process is almost the same as in the case (I), we only
mention the corresponding equations.

b2 + (C2 − C1 − 1)2 = (C1 − 1)2, (3.7)’

(IIa) b = (u2 − v2)t, C2 − C1 − 1 = 2uvt, C1 − 1 = (u2 + v2)t,

(IIb) b = 2uvt, C2 − C1 − 1 = (u2 − v2)t, C1 − 1 = (u2 + v2)t,

u4 + v4 − 2uv(u2 + v2) = p, (3.12)’

u4 − 6u2v2 − 3v4 = −p′ (t : even), u4 − 6u2v2 − 3v4 = −2p (t : odd).
(3.14)’

From now on, we restrict ourselves to the case b ≡ ±1 (mod 3).

Theorem 3.2. Let b(> 1) ∈ Z, b ≡ ±1 (mod 3) and let θ3 − 3θ − b3 = 0.
Then, excluding finite integer b, if 4(4b4)

3
5 + 24 < |DK |, then

ε =
1

1 − b(θ − b)
(> 1)

is the fundamental unit of Q(θ).

Proof. First we note that

F (ε) = ε3 − 3(b4 + b2 + 1)ε2 + 3(b2 + 1)ε − 1 = 0.
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If ε is not a fundamental unit of Q(θ), there exists a unit ε0(> 1) of Q(θ) such
that ε = ε0

n, with some n ∈ Z, n > 1.
The case n = 2 (i.e. ε = ε0

2): Let ε0 be a root of the equation

ε0
3 − Bε0

2 + Aε0 − 1 = 0 (A,B ∈ Z).

Then we have the relation{
A2 − 2B = 3(b2 + 1)
B2 − 2A = 3(b4 + b2 + 1).

(3.15)

By Lemma 3.1 the diophantine equation (3.15) has only finite integer solutions.
The case n = 3 (i.e. ε = ε0

3): Let ε0 be a root of the equation

ε0
3 − Bε0

2 + Aε0 − 1 = 0 (A,B ∈ Z).

Then we have the relation{
A3 − 3AB + 3 = 3(b2 + 1)
B3 − 3AB + 3 = 3(b4 + b2 + 1).

From the above, we have 3|A, 3|B. Moreover from the first equation we have
A3 − 3AB = 3b2, which is a contradiction. Therefore we obtained the fact
that there exists no units ε0(> 1) such that ε = ε0

2, ε0
3 or ε0

4. Next we
shall show that, for any unit ε0(> 1), if 4(4b4)

3
5 + 24 < |DK |, then ε < ε0

5.
Since F (4b4) > 0, we have ε < 4b4. From Artin’s Lemma ([6], Lemma 2), if
4(4b4)

3
5 + 24 < |DK |, then we have (4b4)

1
5 < ε0, where ε0(> 1) is any unit of

Q(θ). Hence we have that, for any unit ε0(> 1), if 4(4b4)
3
5 + 24 < |DK |, then

ε < ε0
5. Therefore, excluding finite integer b, if 4(4b4)

3
5 + 24 < |DK |, then

ε(> 1) is the fundamental unit of Q(θ).

Corollary 3.3. Let b(> 1) ∈ Z, b ≡ ±1 (mod 3) and let θ3 − 3θ − b3 = 0.
Then, excluding finite integer b, if b3 − 2 or b3 + 2 is squarefree, then

ε =
1

1 − b(θ − b)
(> 1)

is the fundamental unit of Q(θ).

Proof. Suppose b3 − 2 is squarefree. Then by Theorem 2.2 we have |DK | =
27(b3−2)×2e·3g2 ·�2 > 27(b3−2). It is easily seen that 4(4b4)

3
5 +24 < 27(b3−2).

Therefore from Theorem 3.2 excluding finite integer b, ε is the fundamental
unit of Q(θ). The case that b3 + 2 is squarefree is similar.
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Corollary 3.4. Let b(> 1) ∈ Z, b ≡ ±1 (mod 3) and let θ3 − 3θ − b3 = 0.
Then, there exist infinitely many cubic fields Q(θ) such that

ε =
1

1 − b(θ − b)
(> 1)

is the fundamental unit of Q(θ).

Proof. By Erdös [2], there are infinitely many natural numbers m for which
(3m + 1)3 − 2(= b3 − 2) is squarefree. The Corollary 3.4 is obtained from this
and Corollary 3.3.

Remark 3.5. It is an open question whether ε is the fundamental unit of Q(θ)
for any b(> 1) ∈ Z or not.
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