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THE BOUNDEDNESS OF MULTILINEAR

CALDERÓN–ZYGMUND OPERATORS ON WEIGHTED

AND VARIABLE HARDY SPACES

David Cruz-Uribe, OFS, Kabe Moen, and Hanh Van Nguyen

Abstract: We establish the boundedness of the multilinear Calderón–Zygmund op-

erators from a product of weighted Hardy spaces into a weighted Hardy or Lebesgue

space. Our results generalize to the weighted setting results obtained by Grafakos
and Kalton [18] and recent work by the third author, Grafakos, Nakamura, and

Sawano [20]. As part of our proof we provide a finite atomic decomposition theorem

for weighted Hardy spaces, which is interesting in its own right. As a consequence of
our weighted results, we prove the corresponding estimates on variable Hardy spaces.

Our main tool is a multilinear extrapolation theorem that generalizes a result of the

first author and Naibo [10].
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1. Introduction

In this paper we study the boundedness of multilinear Calderón–Zyg-
mund operators (m-CZOs) on products of weighted and variable Hardy
spaces. More precisely, we are interested in the following operators.
Let K(y0, y1, . . . , ym) be a kernel that is defined away from the diagonal
y0 = y1 = · · · = ym in (Rn)m+1 and satisfies the smoothness condition

(1.1) |∂α0
y0
· · · ∂αm

ym K(y0, y1, . . . , ym)|

≤ Aα0,...,αm

(
m∑

k,l=0

|yk − yl|

)−(mn+|α0|+···+|αm|)
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for all α = (α0, . . . , αm) such that |α| = |α0| + · · · + |αm| ≤ N , where
N is a sufficiently large integer. An m-CZO is a multilinear operator T
that satisfies

T : Lq1(Rn)× · · · × Lqm(Rn)→ Lq(Rn)

for some 1 < q1, . . . , qm < ∞ and 1
q = 1

q1
+ · · · + 1

qm
, and T has the

integral representation

T (f1, . . . , fm)(x) =

ˆ
(Rn)m

K(x, y1, . . . , ym)f(y1) · · · f(ym) dy1 · · · dym

whenever fi ∈ L∞c (Rn) and x /∈ ∩i supp(fi).
Multilinear CZOs were introduced by Coifman and Meyer [2, 3] in

the 1970s and were systematically studied by Grafakos and Torres [22].
They showed that m-CZOs are bounded from Lp1(Rn)×· · ·×Lpm(Rn)→
Lp(Rn), for any 1 < p1, . . . , pm <∞ and p defined by 1

p = 1
p1

+ · · ·+ 1
pm

.

Further, m-CZOs satisfy weak endpoint bounds when pi = 1 for some i.
For Lebesgue space bounds, it is sufficient to take N = 1 in (1.1) and
in fact weaker regularity conditions are sufficient. Bounds for m-CZOs
from products of Hardy spaces into Lebesgue spaces were proved by
Grafakos and Kalton [18] (see also Grafakos and He [17]). As in the
linear case, more regularity is required on the operators: in this case,
N ≥ s =

⌊
n
(

1
p −1

)⌋
+

where x+ = max(0, x). Very recently, bounds into

Hardy spaces were proved by the third author, Grafakos, Nakamura, and
Sawano [20]. To map into Hardy spaces the kernel K must satisfy (1.1)
for

N > s+ max

{⌊
mn

(
1

pk
− 1

)⌋
+

: 1 ≤ k ≤ m

}
+mn.

Moreover, in the multilinear case the operator T must satisfy an addi-
tional cancelation condition:

(1.2)

ˆ
xαT (a1, . . . , am)(x) dx = 0,

for all |α| ≤ s and all (pk,∞, N) atoms ak. For linear CZOs of con-
volution type, this condition holds automatically: see [21, Lemma 2.1].
An example of a bilinear CZO that satisfies this cancelation condition is
T = R1 +R2, where Ri is the bilinear Riesz transform

Ri(f, g)(x) = p.v.

ˆ
R

ˆ
R

x− yi
|(x− y1, x− y2)|3

f(y1)g(y2) dy1 dy2.
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Somewhat surprisingly, neither Riesz transform itself has sufficient can-
cellation. For more examples of convolution-type multilinear operators
that do and do not satisfy this cancelation condition, see [20, 21].1

Weighted norm inequalities for multilinear operators were first con-
sidered by Grafakos and Torres [23]. Later, Lerner et al. [25] character-
ized the weighted inequalities for m-CZOs using a multilinear general-
ization of the Muckenhoupt Ap condition. Weighted Hardy spaces were
introduced by Garćıa-Cuerva [14]. A complete treatment of weighted
Hardy spaces is due to Strömberg and Torchinsky [31]; they proved
that (linear) Calderón–Zygmund operators whose kernels have enough
regularity map Hp(w) into Lp(w) or Hp(w), for 0 < p < ∞ and for
weights w ∈ A∞.

Our goal is to generalize the results of Strömberg and Torchinsky to
m-CZOs. To state them, we first define some notation. To do so we rely
on some (hopefully) well-known concepts; complete definitions will be
given below. Given w ∈ A∞, we define

rw = inf{r ∈ (1,∞) : w ∈ Ar}
and for 0 < p <∞ we define the critical index sw of w by

sw =

⌊
n

(
rw
p
− 1

)⌋
+

.

Our first result gives the boundedness ofm-CZOs into weighted Lebes-
gue spaces.

Theorem 1.1. Given an integer m ≥ 1, 0 < p1, . . . , pm < ∞, and
wk ∈ A∞, 1 ≤ k ≤ m, let T be an m-CZO associated to a kernel K that
satisfies (1.1) for N such that

(1.3) N ≥ max

{⌊
mn

(
rwk

pk
− 1

)⌋
+

, 1 ≤ k ≤ m

}
+ (m− 1)n.

Then
T : Hp1(w1)× · · · ×Hpm(wm)→ Lp(w),

where w =
∏m
k=1 w

p
pk

k and

1

p
=

1

p1
+ · · ·+ 1

pm
.

Our second result gives boundedness of m-CZOs into weighted Hardy
spaces.

1We note in passing that the results for m-CZOs in [20] are stated for convolution
type operators, but as the authors note (see Remark 3.4), their results extend to

non-convolution type m-CZOs.
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Theorem 1.2. Given p, p1, . . . , pm, w, w1, . . . , wm and T as in Theo-
rem 1.1, suppose the kernel K satisfies (1.1) for N such that

(1.4) N > sw + max

{⌊
mn

(
rwk

pk
− 1

)⌋
+

, 1 ≤ k ≤ m

}
+mn.

Suppose further that T satisfies the cancellation condition (1.2) for all
|α| ≤ sw, where for 1 ≤ k ≤ m, ak is an (N,∞) atom: i.e., ak is
supported on a cube Qk, ‖ak‖∞ ≤ 1, and

(1.5)

ˆ
Rn

xβak(x) dx = 0

for all |β| ≤ N . Then

T : Hp1(w1)× · · · ×Hpm(wm)→ Hp(w).

Remark 1.3. In Theorems 1.1 and 1.2, if all the weights wk = 1, then
rwk

= 1, so we recapture the unweighted results in [18, 20].

Remark 1.4. If p > 1 and w ∈ Ap, then Hp(w) = Lp(w) (see [31]).
Therefore, in Theorems 1.1 and 1.2, if wk ∈ Apk , then we can re-
place Hpk(wk) by Lpk(wk) in the conclusion.

Remark 1.5. Implicit in the statement of Theorem 1.2 is the assumption
that w ∈ A∞. However, this is always the case: see Lemma 2.1 below.

Remark 1.6. Earlier, Xue and Yan [33] proved a version of Theorem 1.1
with the additional restriction that 0 < pk ≤ 1 for all 1 ≤ k ≤ m. We
want to thank the authors for calling our attention to their paper, which
we had overlooked.

Our next pair of results are the analogs of Theorems 1.1 and 1.2
for the variable Lebesgue spaces. The variable Lebesgue spaces are a
generalization of the classical Lp spaces with the exponent p replaced
by a measurable exponent function p(·) : Rn → (0,∞). It consists of all
measurable functions f such that for some λ > 0

ρ(f/λ) =

ˆ
Rn

(
|f(x)|
λ

)p(x)

dx <∞.

This becomes a quasi-Banach space with quasi-norm

‖f‖p(·) = inf{λ > 0 : ρ(f/λ) ≤ 1}.
If p(x) ≥ 1 a.e., then this is a norm and Lp(·) is a Banach space. These
spaces were introduced by Orlicz [29] in 1931, and have been extensively
studied by a number of authors in the past 25 years. For complete details
and references, see [6]. Variable Hardy spaces were introduced by the
first author and Wang [12] and independently by Nakai and Sawano [28].
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In variable Lebesgue exponent spaces, harmonic analysis requires some
assumption of regularity on the exponent function p(·). A common as-
sumption that is sufficient for almost all applications is that the exponent
function is log-Hölder continuous both locally and at infinity. More pre-
cisely, there exist constants C0, C∞, and p∞ such that

(1.6) |p(x)− p(y)| ≤ C0

− log(|x− y|)
, 0 < |x− y| < 1

2
,

and

(1.7) |p(x)− p∞| ≤
C∞

log(e+ |x|)
.

Finally, given an exponent function p(·), we define

p− = ess inf
x∈Rn

p(x), p+ = ess sup
x∈Rn

p(x).

As an immediate application of Theorems 1.1 and 1.2, and multilinear
Rubio de Francia extrapolation in the scale of variable Lebesgue spaces,
we get the following two results.

Theorem 1.7. Given an integer m ≥ 1, let p1, . . . , pm be real numbers,
and let q1(·), . . . , qm(·) be log-Hölder continuous exponent functions such
that 0 < pk < (qk)− ≤ (qk)+ <∞. Define

1

q(·)
=

1

q1(·)
+ · · ·+ 1

qm(·)
.

Let T be an m-CZO as in Theorem 1.1 satisfying (1.1) for all |α| ≤ N
with

N ≥ max

{⌊
mn

(
1

pk
− 1

)⌋
+

, 1 ≤ k ≤ m

}
+ (m− 1)n.

Then
T : Hq1(·) × · · · ×Hqm(·) → Lq(·).

Theorem 1.8. Given q(·), q1(·), . . . , qm(·), p1, . . . , pm as in Theorem 1.7,
define p by

1

p
=

1

p1
+ · · ·+ 1

pm
.

Let T be an m-CZO as in Theorem 1.1 satisfying (1.1) for all |α| ≤ N
with

N >

⌊
n

(
1

p
− 1

)⌋
+

+ max

{⌊
mn

(
1

pk
− 1

)⌋
+

, 1 ≤ k ≤ m

}
+mn.

Suppose further that T satisfies (1.2) for all |α| ≤ bn(1/p− 1)c+. Then

T : Hq1(·) × · · · ×Hqm(·) → Hq(·).
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Remark 1.9. We chose to prove Theorems 1.7 and 1.8 using Rubio de
Francia extrapolation because of the simplicity of this approach. How-
ever, it should be possible to prove these results directly, adapting the
unweighted proof in [20] to the variable exponent setting. Many of the
technical, weighted results for the proof contained in Sections 2 and 3
also hold in the variable exponent case: see [12, 28, 30].

As we were completing this paper we learned that this approach was
taken by Tan [32]. He proved bilinear versions of Theorems 1.7 and 1.8,
with the additional hypothesis that (qk)+ ≤ 1 for all 1 ≤ k ≤ m. We
want to thank him for sharing with us a preprint of his work.

Remark 1.10. Our techniques should apply to a wider class of operators,
namely, we believe that Theorems 1.1, 1.2, 1.7, and 1.8 will hold for the
classes of product type and mixed type operators defined on pages 2
and 3 of [20].

The remainder of this paper is organized as follows. In Section 2 we
give some basic definitions and theorems about weights that we will use
in subsequent sections. In particular, we prove a finite atomic decom-
position for weighted Hardy spaces that extends the results in [12]. In
Section 3 we gather together a number of technical lemmas that we need
for the proofs of Theorems 1.1 and 1.2. Then in Sections 4 and 5 we
prove these results. Finally, in Section 6 we give some basic facts about
variable exponent spaces and prove Theorems 1.7 and 1.8. In fact, we
prove more general results which include these theorems as special cases.
Their statements, however, require additional facts about variable expo-
nent spaces, and so we delay their statement until the final section.

Throughout this paper, we will use n to denote the dimension of the
underlying space, Rn, and will use m to denote the “dimension” of our
multilinear operators. By a cube Q we will always mean a cube whose
sides are parallel to the coordinate axes, and for τ > 1 let τQ denote
the cube with same center such that `(τQ) = τ`(Q). We define the
average of a function f on a cube Q by fQ =

ffl
Q
f dx = |Q|−1

´
Q
f dx.

By C, c, etc. we will mean constants that may depend on the underlying
parameters in the problem. Sometimes, to emphasize that they (only)
depend on certain parameters, we will write C(X,Y, Z, . . . ). The values
of these constants may change from line to line. If we write A . B, we
mean that A ≤ cB for some constant c.

2. Weights and weighted Hardy spaces

Weights and weighted norm inequalities. In this section we give
some basic definitions and results about Ap weights. For complete infor-
mation, we refer the reader to [13, 15, 16]. By a weight w we always
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mean a non-negative, locally integrable function such that 0 < w(x) <∞
a.e. For 1 < p <∞, we say that w is in the Muckenhoupt class Ap, de-
noted by w ∈ Ap, if

[w]Ap = sup
Q

( 
Q

w dx

)( 
Q

w1−p′ dx

)p−1

<∞.

When p = 1 we say that w ∈ A1 if there is a constant C such that, for
every cube Q and a.e. x ∈ Q, 

Q

w dx ≤ Cw(x).

The infimum over all such constants will be denoted by [w]A1 . The
Ap classes are nested: for 1 < p < q < ∞, A1 ( Ap ( Aq. Let A∞
denote the union of all the Ap classes, p ≥ 1.

Given w ∈ A∞, then w is a doubling measure. More precisely, if
w ∈ Ap for some p ≥ 1, then it follows from the definition that given
any cube Q and τ > 1

w(τQ) ≤ Cτnpw(Q).

In the study of multilinear weighted norm inequalities, we often need
the fact that the convex hull of A∞ weights is again in A∞. The following
result can be found, for instance, in [33] or in [19, Lemma 5]. For
completeness we sketch a short proof, using a multilinear reverse Hölder
inequality: if w1, . . . , wm ∈ A∞, 1 < p1, . . . , pm <∞, and 1

p = 1
p1

+ · · ·+
1
pm

, then for every cube Q

m∏
k=1

( 
Q

wk dx

) p
pk

.
 
Q

m∏
k=1

w
p
pk

k dx.

This was originally proved in the bilinear case by the first author and
Neugebauer [11]; for simpler proofs in the multilinear case, see [9, 33].

Lemma 2.1. Given m ≥ 1, 1 < p1, . . . , pm <∞, 1
p = 1

p1
+ · · ·+ 1

pm
, if

w1, . . . , wm ∈ A∞, then w =
∏m
k=1 w

p
pk

k ∈ A∞.

Proof: Since each wk ∈ A∞, by choosing C sufficiently large and δ < 1
sufficiently close to 1, we have that, for every cube Q and E ⊂ Q,

wk(E)

wk(Q)
≤ C

(
|E|
|Q|

)δ
.
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But then, if we apply Hölder’s inequality and the multilinear reverse
Hölder’s inequality, we have that

w(E)

w(Q)
.

∏m
k=1

(´
E
wk dx

) p
pk∏m

k=1

(´
Q
wk dx

) p
pk

≤ C
(
|E|
|Q|

)δ
.

There is a close connection between Muckenhoupt weights and the
Hardy–Littlewood maximal operator, defined by

Mf(x) = sup
Q

 
Q

|f(y)| dy · χQ(x),

where the supremum is taken over all cubes Q. We have that if 1 < p <
∞, then the maximal operator is bounded Lp(w) if and only if w ∈ Ap.
Moreover, we have a weighted vector-valued inequality that generalizes
the Fefferman–Stein inequality. This was first proved by Andersen and
John [1]; for an elementary proof via extrapolation, see [7].

Lemma 2.2. Given 1 < p, q < ∞ and w ∈ Ap, then, for any se-
quence {fk} in Lp(w),∥∥∥∥(∑

k

(Mfk)q
) 1

q
∥∥∥∥
Lp(w)

.

∥∥∥∥(∑
k

|fk|q
) 1

q
∥∥∥∥
Lp(w)

.

Remark 2.3. Below we will repeatedly apply Lemma 2.2 in the following
way. Fix 0 < p < ∞ and w ∈ A∞. Then w ∈ Aq and without loss of
generality we may assume p < q. Let r = q

p > 1. Given a sequence of

cubes Qk, let Q∗k = τQk, τ > 1. Then χQ∗k . M(χQk
), and the implicit

constant depends only on n and τ . But then by Lemma 2.2 we have
that, for any non-negative λk,∥∥∥∥∑
k

λkχQ∗k

∥∥∥∥
Lp(w)

.

∥∥∥∥∑
k

M
(
λ

1
r

k χ
1
r

Qk

)r∥∥∥∥
Lp(w)

=

∥∥∥∥(∑
k

M
(
λ

1
r

k χ
1
r

Qk

)r)1
r
∥∥∥∥r
Lq(w)

.

∥∥∥∥(∑
k

λkχQk

) 1
r
∥∥∥∥r
Lq(w)

=

∥∥∥∥∑
k

λkχQk

∥∥∥∥
Lp(w)

.

Below we will need to prove a weighted norm inequality for anm-CZO.
To do so, we will make use of some recent developments in the theory
of harmonic analysis on the domination of singular integrals by sparse
operators. Here we sketch the basic definitions; for further information,
see, for instance, [5].
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A collection of cubes S is called a sparse family if each cube Q ∈ S
contains measurable subset EQ ⊂ Q such that |EQ| ≥ 1

2 |Q| and the
family {EQ}Q∈S is pairwise disjoint. Given a sparse family S we define
a linear sparse operator

TSf(x) =
∑
Q∈S

 
Q

f(y) dy · χQ(x).

The following estimate is proved in [8, 27].

Proposition 2.4. If 1 < q < ∞ and w ∈ Aq, then, given any sparse
linear operator TS ,

‖TSf‖Lq(w) =

∥∥∥∥∑
Q∈S

 
Q

f dy · χQ
∥∥∥∥
Lq(w)

≤ C[w]
max(1, 1

q−1 )

Aq
‖f‖Lq(w).

In a similar way, given a sparse family S we define the multilinear
sparse operator

TS(f1, . . . , fm)(x) =
∑
Q∈S

m∏
k=1

 
Q

fk(yk) dyk · χQ(x).

The following pointwise domination theorem was proved in [24, Theo-
rem 13.2] (see also [4]).

Proposition 2.5. Let T be an m-CZO whose kernel satisfies (1.1) for
any N ≥ 1. Then given any collection f1, . . . , fm with bounded functions
of compact support, there exists 3n sparse families Sj such that

|T (f1, . . . , fm)(x)| ≤ C
3n∑
j=1

TSj (|f1|, . . . , |fm|)(x).

Weighted Hardy spaces. In this section we define the weighted Hardy
spaces and prove a finite atomic decomposition theorem. In defining
them we follow Strömberg and Torchinsky [31] and we refer the reader
there for more information.

Let S (Rn) denote the Schwartz class of smooth functions. ForN0 ∈ N
to be a large value determined later, define

FN0 =

{
ϕ ∈ S (Rn) :

ˆ
(1 + |x|)N0

( ∑
|α|≤N0

∣∣∣∣ ∂α∂xαϕ(x)

∣∣∣∣2) dx ≤ 1

}
.

Fix 0 < p <∞ and w ∈ A∞; we define the weighted Hardy space Hp(w)
to be the set of distributions

Hp(w) = {f ∈ S ′(Rn) :MN0
(f) ∈ Lp(w)}



688 D. Cruz-Uribe, OFS, K. Moen, H. V. Nguyen

with the quasi-norm

‖f‖Hp(w) = ‖MN0
(f)‖Lp(w),

where the grand maximal function MN0(f) is defined by

MN0
(f)(x) = sup

ϕ∈FN0

sup
t>0
|ϕt ∗ f(x)|.

Note that in this definition, N0 is taken to be a large positive integer,
depending on n, p, and w, whose value is chosen so that the usual def-
initions of unweighted Hardy spaces remain equivalent in the weighted
setting. Its exact value does not matter for us.

Given an integer N > 0, an (N,∞) atom is a function a such that
there exists a cube Q with supp(a) ⊂ Q, ‖a‖∞ ≤ 1, and for all |β| ≤ Nˆ

Rn

xβa(x) dx = 0.

In [31, Chapter VIII] it was shown that every f ∈ Hp(w) has an
atomic decomposition: for every N ≥ sw there exist a sequence of non-
negative numbers {λk} and a sequence of smooth (N,∞) atoms {ak}
with supp(ak) ⊂ Qk, such that

f =
∑
k

λkak,

and the sum converges in the sense of distributions and in the Hp(w)
quasi-norm. Moreover, we have that∥∥∥∥∑

k

λkχQk

∥∥∥∥
Lp(w)

. ‖f‖Hp(w).

Below, we want to use the atomic decomposition to estimate the norm
of an m-CZO. One technical obstacle, however, is that this atomic de-
composition may be an infinite sum, and therefore it is not immediate
that we can exchange sum and integral in the definition of an m-CZO.
For the argument to overcome this problem in the unweighted setting,
see [17]. Our approach here is different: we show that for a dense subset
of Hp(w), we can form the atomic decomposition using a finite sequence
of atoms. Our result generalizes a result in the unweighted case from [26];
in the weighted case it generalizes results proved in [12, 28].

To state our result, note that for N ≥ sw, if we define

ON =

{
f ∈ C∞0 :

ˆ
Rn

xαf(x) dx = 0, 0 ≤ |α| ≤ N
}
,

then ON ∩Hp(w) is dense in Hp(w).
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Theorem 2.6. Fix w ∈ A∞ and 0 < p < ∞, and let N ≥ sw. For
each f ∈ ON ∩ Hp(w), there exists a finite sequence of non-negative
numbers {λk}k and a sequence {ak} of (N,∞) atoms, supp(ak) ⊂ Qk,
such that f =

∑
k λkak and

(2.1)

∥∥∥∥∑
k

λkχQk

∥∥∥∥
Lp(w)

≤ C‖f‖Hp(w).

The proof of Theorem 2.6 is gotten by a close analysis of the atomic
decomposition given above. To prove it, we use the following technical
result. It is adapted from the corresponding result from [31, Chap-
ter VIII] (in the weighted case) and from the proof of the unweighted
version of Theorem 2.6 in [26]. (See also the construction of the atomic
decomposition in [12].) Indeed weights play almost no role in the result
except in (4).

Lemma 2.7. Fix w ∈ A∞, 0 < p < ∞, and N ≥ sw, and let f ∈
ON ∩Hp(w). For each k ∈ Z, let

Ωk = {x ∈ Rn :MN0
f(x) > 2k}.

Then there exists a sequence {βk,i} of smooth functions with compact
support and a family of cubes {Qk,i} with finite overlap such that the
following hold:

(1) For each k and all i, Qk,i ⊂ Q∗k,i ⊂ Ωk, where Q∗k,i = τQk,i for a
fix constant τ > 1 and the Q∗k,i also have finite overlap.

(2) The βk,i are (N,∞) atoms with supp(βk,i) ⊂ Q∗k,i. In particular,∑
i |βk,i| . C uniformly for all k ∈ Z.

(3) f =
∑
k,i λk,iβk,i, where the convergence is unconditional both

pointwise and in the sense of distributions.

(4) λk,i . 2k for all k, i and
∑
k,i λk,iχQk,i

.MN0
(f). In particular,∑

k,i λk,iβk,i also converges absolutely to f in Lq(w), whenever q >
1 is such that w ∈ Aq.

Proof of Theorem 2.6: Fix f ∈ ON ∩ Hp(w); by homogeneity we may
assume without loss of generality that ‖f‖Hp(w) = 1. Then there ex-
ists R > 1 such that supp(f) ⊂ B(0, R) = B. Let B∗ = B(0, 4R). We
claim that, for all x /∈ B∗,

(2.2) MN0
f(x) . w(B)

−1
p ‖f‖Hp(w) .

1

w(B∗)
1
p

.
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To prove this, we argue as in [12, Lemma 7.11] (cf. inequality (7.7)).
There they showed a pointwise inequality: given any ϕ ∈ FN0

and t > 0,

|f ∗ ϕt(x)| . inf
z∈B∗

MN0
f(z),

where B∗ = B
(
0, 1

2R
)
. Therefore, we have that

|f ∗ ϕt(x)|p . 1

w(B∗)

ˆ
B∗

MN0
f(z)pw(z) dz ≤ 1

w(B∗)
;

inequality (2.2) follows if we take the supremum over all ϕ ∈ FN0
and

t > 0, and note that since w ∈ A∞, w(B∗) . w(B∗).
Now let k0 be the smallest integer such that for all k > k0, Ωk ⊂ B∗.

More precisely, by (2.2) we can take k0 to be the largest integer such

that 2k0 ≤ Cw(B∗)
−1
p .

By Lemma 2.7 we can decompose f as

f =
∑
k,i

λk,iβk,i,

where the βk,i are (N,∞) atoms. We will show that this sum can be
rewritten as a finite sum of atoms. Set

F1 =
∑
k≤k0

∑
i

λk,iβk,i = f −
∑
k>k0

∑
i

λk,iβk,i.

Since the βk,i are supported in Ωk ⊂ B∗ for all k > k0, the function F1

is also supported in B∗. Moreover

‖F1‖∞ ≤
∑
k≤k0

∥∥∥∥∑
i

λk,i|βk,i|
∥∥∥∥
L∞

.
∑
k≤k0

2k = C12k0 .

Further, F1 has vanishing moments up to order N . To see this, fix |α| ≤
N and q > 1 such that w ∈ Aq. Then, since supp(βk,i) ⊂ B∗,∥∥∥∥∑
k≤k0

∑
i

|xα||λk,iβk,i|
∥∥∥∥
L1

≤ (4R)|α|
∥∥∥∥∑
k≤k0

∑
i

|λk,iβk,i|
∥∥∥∥
Lq(w)

w1−q′(B∗)
1
q′

. (4R)|α|‖MN0
f‖qL(w)w1−q′(B∗)

1
q′

. (4R)|α|‖f‖qL(w)w1−q′(B∗)
1
q′ <∞.

Therefore, the series on the left-hand side converges absolutely, so you
can exchange the sum and integral; since each βk,i has vanishing mo-

ments, so does F1. Therefore, if we set a0 = C−1
1 2−k0F1 then a0 is an

(N,∞) atom supported in B∗.
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To estimate the remaining terms, note that f is a bounded function
and so there exists an integer k∞ > k0 such that Ωk = ∅ for all k ≥ k∞.
Thus the sum ∑

k>k0

∑
i

λk,iβk,i =
∑

k0<k<k∞

∑
i

λk,iβk,i

has finite many terms under the summation of k indices. Further, since
the sum

∑
k,i λk,iχQk,i

.MN0
f it converges everywhere. Therefore, for

each k0 < k < k∞ there exists an integer ρk such that∑
i>ρk

λk,i|βk,i| ≤ 2−k∞w(B∗)−
1
p .

If we define
F2 =

∑
k0<k<k∞

∑
i>ρk

λk,iβk,i,

then F2 is supported in B∗ and

‖F2‖∞ ≤
∑

k0<k<k∞

2−k∞w(B∗)−
1
p ≤ C2w(B∗)−

1
p .

Moreover, arguing as we did above for F1, we have that F2 has vanishing

moments for |α| ≤ N . Thus if we set a∞ = C−1
2 w(B∗)

1
pF2, then a∞ is

an (N,∞) atom.
Therefore, we have shown that we can decompose f as a finite sum

of (N,∞) atoms:

f = (C12k0)a0 +
∑

k0<k<k∞

∑
1≤i≤ρk

λk,iβk,i + C2w(B∗)−
1
p a∞.

It remains to prove that (2.1) holds. But by our choice of k0, we

have that ‖C12k0χB∗‖Lp(w) ≤ C, and clearly ‖w(B∗)−
1
pχB∗‖Lp(w) ≤ C.

Finally, by the weighted Fefferman–Stein inequality (see Remark 2.3),
we have that∥∥∥∥ ∑

k0<k<k∞

∑
1≤i≤ρk

λk,iχQ∗k,i

∥∥∥∥
Lp(w)

.

∥∥∥∥ ∑
k0<k<k∞

∑
1≤i≤ρk

λk,iχQk,i

∥∥∥∥
Lp(w)

. ‖MN0
f‖Lp(w) . 1.

Since ‖f‖Hp(w) = 1, we get the desired inequality, and this completes
the proof of Theorem 2.6.

3. Auxiliary results

In this section we state and prove several lemmas on averaging oper-
ators and m-CZOs needed for the proofs of Theorems 1.1 and 1.2.
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Averaging operators. We begin with a well-known result on the max-
imal operator Mµ defined with respect to a measure µ:

Mµf(x) = sup
Q

1

µ(Q)

ˆ
Q

|f | dµ · χQ(x).

For a proof, see [15, Chapter II].

Proposition 3.1. Let µ be a doubling measure on Rn. Then the maxi-
mal operator Mµ satisfies the weak (1, 1) inequality

(3.1) sup
t>0

t µ({x ∈ Rn : Mµf(x) > t}) ≤ C(µ)

ˆ n

R
|f | dµ,

and for 1 < p <∞ the strong (p, p) inequality

(3.2)

ˆ n

R
(Mµf)p dµ ≤ C(µ, p)

ˆ n

R
|f |p dµ.

The next three lemmas on averaging operators are weighted extensions
of results from [18]. Our proofs, however, are different and are motivated
by ideas from [31].

Lemma 3.2. Let µ be a doubling measure on Rn and fix 0 < p < 1.
Then, given any finite collection J of cubes and any set {fQ : Q ∈ J }
of non-negative integrable functions with supp(fQ) ⊂ Q,∥∥∥∥∑

Q∈J
fQ

∥∥∥∥
Lp(µ)

≤ C(µ, p, n)

∥∥∥∥∑
Q∈J

aµ1 (Q)χQ

∥∥∥∥
Lp(µ)

,

where

aµ1 (Q) = µ(Q)−1

ˆ
Q

fQ(x) dµ(x).

Proof: Let F =
∑
Q∈J fQ and G =

∑
Q∈J a

µ
1 (Q)χQ and for each t > 0

let

Lt = {x ∈ Rn : G(x) > t}, Ut =

{
y ∈ Rn : MµχLt

(y) >
1

4

}
.
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By (3.1) we have that µ(Ut) ≤ C(µ)µ(Lt). We can now estimate as
follows:

µ({x ∈ Rn : F (x) > t}) ≤ µ(Ut) + µ(U ct ∩ {x ∈ Rn : F (x) > t})

. µ(Lt) +
1

t

ˆ
Uc

t

F (x) dµ(x)

. µ(Lt) +
1

t

∑
Q∈J :Q∩Uc

t 6=∅

ˆ
Q

fQ(x) dµ(x)

. µ(Lt) +
1

t

∑
Q∈J :Q∩Uc

t 6=∅

aµ1 (Q)µ(Q).

If Q ∈ J is such that Q∩U ct 6= ∅, then MµχLt(z) ≤ 1
4 for all z ∈ Q∩U ct .

In particular, we have
µ(Lt ∩Q)

µ(Q)
≤ 1

4
,

and so µ(Q) ≤ 4
3µ(Lct ∩Q) for all Q ∈ J . Thus we have that

µ({x ∈ Rn : F (x) > t}) . µ(Lt) +
1

t

∑
Q∈J

aµ1 (Q)µ(Q ∩ Lct)

. µ(Lt) +
1

t

∑
Q∈J

aµ1 (Q)

ˆ
Lc

t

χQ(x) dµ(x)

. µ(Lt) +
1

t

ˆ
Lc

t

G(x) dµ(x).

Given this estimate, if we multiply by ptp−1 and integrate, by Fubini’s
theorem we get

‖F‖pLp(µ) =

ˆ ∞
0

ptp−1µ({x ∈ Rn : F (x) > t}) dt

.
ˆ ∞

0

ptp−1µ({x ∈ Rn : G(x) > t}) dt

+

ˆ ∞
0

ptp−2

ˆ
{x∈Rn:G(x)≤t}

G(x) dµ(x)

=

ˆ n

R
G(x)p dµ(x) +

ˆ n

R
G(x)

ˆ ∞
G(x)

ptp−2 dt dµ(x)

. ‖G‖pLp(µ).
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Lemma 3.3. Let µ be a doubling measure on Rn and fix 1 ≤ p < q <∞.
Then, given any finite collection of cubes J and any set {fQ : Q ∈ J }
of non-negative integrable functions with supp(fQ) ⊂ Q,∥∥∥∥∑

Q∈J
fQ

∥∥∥∥
Lp(µ)

≤ C(µ, p, q, n)

∥∥∥∥∑
Q∈J

aµq (Q)χQ

∥∥∥∥
Lp(µ)

,

where

aµq (Q) =

(
1

µ(Q)

ˆ
Q

|fQ(x)|q dµ(x)

) 1
q

.

Proof: First suppose that p > 1; we estimate by duality. Then there
exists non-negative g ∈ Lp′(µ), ‖g‖Lp′ (dµ) = 1, such that∥∥∥∥∑

Q∈J
fQ

∥∥∥∥
Lp(µ)

=
∑
Q∈J

ˆ
Q

fQ(x)g(x) dµ(x)

≤
∑
Q∈J

(ˆ
Q

fQ(x)q dµ(x)

) 1
q
(ˆ

Q

g(x)q
′
dµ(x)

) 1
q′

=
∑
Q∈J

aµq (Q)µ(Q)

[
1

µ(Q)

ˆ
Q

gq
′
dµ

] 1
q′

≤
∑
Q∈J

aµq (Q)

ˆ
Q

Mµ(gq
′
)(x)

1
q′ dµ(x)

≤
ˆ n

R

[∑
Q∈J

aµq (Q)χQ

]
Mµ(gq

′
)(x)

1
q′ dµ(x)

≤
∥∥∥∥∑
Q∈J

aµq (Q)χQ

∥∥∥∥
Lp(µ)

‖Mµ(gq
′
)

1
q′ ‖Lp′ (µ)

=

∥∥∥∥∑
Q∈J

aµq (Q)χQ

∥∥∥∥
Lp(dµ)

‖Mµ(gq
′
)‖

1
q′

L
p′
q′ (µ)

.

∥∥∥∥∑
Q∈J

aµq (Q)χQ

∥∥∥∥
Lp(µ)

;

the first and third inequalities follow from Hölder’s inequality, and the
last from (3.2) (since p′ > q′) and the fact that ‖g‖Lp′ (µ) = 1.

Finally, when p = 1 the proof is essentially the same except that we use
use the fact that Mµ is bounded on L∞. This completes the proof.
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Lemma 3.4. Let w ∈ A∞, and fix 0 < p <∞ and max(1, p) < q <∞.
Then, given any collection of cubes {Qk}∞k=1 and nonnegative integrable
functions {gk} with supp(gk) ⊂ Qk,∥∥∥∥ ∞∑
k=1

gk

∥∥∥∥
Lp(w)

≤ C(w, p, q, n)

∥∥∥∥ ∞∑
k=1

(
1

w(Qk)

ˆ
Qk

gk(x)qw(x) dx

)1
q

χQk

∥∥∥∥
Lp(w)

.

Proof: Since w ∈ A∞, the measure µ = w(x) dx is doubling. If p ≥
1, then if we fix an arbitrary integer K and apply Lemma 3.3 to the
functions {gk}Kk=1, we immediately get∥∥∥∥ K∑
k=1

gk

∥∥∥∥
Lp(w)

≤ C(w, p, q, n)

∥∥∥∥ K∑
k=1

(
1

w(Qk)

ˆ
Qk

gk(x)qw(x) dx

)1
q

χQk

∥∥∥∥
Lp(w)

.

The desired inequality now follows from Fatou’s lemma.
When 0 < p < 1, we can apply Lemma 3.2 to get the same conclusion,

using the fact that

1

w(Qk)

ˆ
Qk

gk(x)w(x) dx ≤
(

1

w(Qk)

ˆ
Qk

gk(x)qw(x) dx

) 1
q

.

Estimates for m-CZOs. In this section we prove three estimates on
m-CZOs.

Lemma 3.5. Let T be the operator as in Theorem 1.1 and fix w ∈ Aq,
q > 1. Then, given any collection f1, . . . , fm of bounded functions with
compact support,

‖T (f1, f2, . . . , fm)‖Lq(w) ≤ C‖f1‖Lq(w)‖f2‖L∞ · · · ‖fm‖L∞ .

Proof: By the domination estimate in Proposition 2.5 it will suffice to
prove this estimate for any multilinear sparse operator TS and non-
negative functions f1, . . . , fm. By the definition of the sparse operator
we have

TS(f1, . . . , fm) ≤ ‖f2‖∞ · · · ‖fm‖∞
∑
Q∈S

 
Q

f1 dy · χQ

= ‖f2‖∞ · · · ‖fm‖∞TSf1,

where on the right-hand side we now have a linear sparse operator. But
then by Proposition 2.4 we have that

‖TS(f1, . . . , fm)‖Lq(w) . ‖TSf1‖Lq(w)‖f2‖∞ · · · ‖fm‖∞
. ‖f1‖Lq(w)‖f2‖∞ · · · ‖fm‖∞.
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The following lemma was first prove in [20]. For completeness we
include its short proof.

Lemma 3.6. For 1 ≤ k ≤ m let ak be an (N,∞) atom supported in Qk
and let ck be the center of Qk. Then, given any non-empty subset Λ ⊂
{1, . . . ,m}, we have that, for all y /∈ ∪k∈ΛQ

∗
k,

(3.3) |T (a1, . . . , am)(y)| . min{`(Qk) : k ∈ Λ}n+N+1(∑
k∈Λ |y − ck|

)n+N+1
.

In particular, we always have that

(3.4) |T (a1, . . . , am)|χ(Q∗1∩···∩Q∗m)c .
m∏
k=1

(
M(χQk

)
)n+N+1

mn .

Proof: Without loss of generality we may assume that Λ = {1, . . . , r}
for some 1 ≤ r ≤ m and that

`(Q1) = min{`(Qk) : k ∈ Λ}.
Fix y /∈ ∪k∈ΛQ

∗
k; because a1 has vanishing moments up to order N , we

can rewrite

T (a1, . . . , am)(y)=

ˆ
Rmn

K(y, y1, . . . , ym)a1(y1) · · · am(ym) d~y

=

ˆ
Rmn

[
K(y, y1, . . . , ym)− PN (y, y1, y2, . . . , ym)

]
× a1(y1) · · · am(ym) d~y

=

ˆ
Rmn

K1(y, y1, y2, . . . , ym)a1(y1) · · · am(ym) d~y,

(3.5)

where

PN (y, y1, y2, . . . , ym) =
∑
|α|≤N

1

α!
∂α2 K(y, c1, y2, . . . , ym)(y1 − c1)α

is the Taylor polynomial of degree N of K(y, ·, y2, . . . , ym) at c1 and

(3.6) K1(y, y1, . . . , ym) = K(y, y1, . . . , ym)− PN (y, y1, y2, . . . , ym).

By the smoothness condition of the kernel and the fact that |y−yk| ≈
|y − ck| for all k ∈ Λ and yk ∈ Qk we have that

|K(y, y1, . . . , ym)− PN (y, c1, y2, . . . , ym)|

. |y1 − c1|N+1

(∑
k∈Λ

|y − ck|+
m∑
j=2

|y − yj |
)−mn−N−1

.
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Thus

|T (a1, . . . , am)(y)|.
ˆ
Rmn

|y1 − c1|N+1|a1(y1)| · · · |am(ym)|(∑
k∈Λ |y − ck|+

∑m
j=2 |y − yj |

)mn+N+1
d~y

.
ˆ
R(m−1)n

`(Q1)n+N+1(∑
k∈Λ|y−ck|+

∑m
j=2|yj |

)mn+N+1
dy2 · · · dym

.
`(Q1)n+N+1(∑

k∈Λ |y − ck|
)n+N+1

,

which implies (3.3).
To prove (3.4), fix y ∈ (Q∗1 ∩ · · · ∩ Q∗m)c; then there exists a non-

empty subset Λ of {1, . . . ,m} such that y /∈ Q∗k for all k ∈ Λ and y ∈ Q∗l
for l /∈ Λ. Then by (3.3) we have that

|T (a1, . . . , am)(y)| . min{`(Qk) : k ∈ Λ}n+N+1(∑
k∈Λ |y − ck|

)n+N+1

.
∏
k∈Λ

(
`(Qk)

`(Qk) + |y − ck|

)n+N+1
mn

.
m∏
k=1

(
`(Qk)

`(Qk) + |y − ck|

)n+N+1
mn

.

Inequality (3.4) follows from the definition of the maximal operator.

Lemma 3.7. Given w ∈ Aq, 1 ≤ q < ∞, for 1 ≤ k ≤ m let ak be an
(N,∞) atom supported in Qk and let ck be the center of Qk. Suppose
Q1 is the cube such that `(Q1) = min{`(Qk) : 1 ≤ k ≤ m}. Then

(3.7) ‖T (a1, . . . , am)χQ∗1‖Lq(w) . w(Q1)
1
q

m∏
l=1

inf
z∈Q1

M(χQl
)(z)

n+N+1
mn .

Proof: Since the Ap classes are nested, we may assume without loss of
generality that q > 1. To prove (3.7) we consider two cases: Q∗1∩Q∗k 6= ∅
for all 2 ≤ k ≤ m or this intersection is empty for at least one value
of k. In the first case, since `(Q1) = min{`(Qk) : 1 ≤ k ≤ m} we have
Q∗1 ⊂ 3Q∗k for all 1 ≤ k ≤ m. This implies

inf
z∈Q1

M(χQk
)(z) & 1,
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for all 1 ≤ k ≤ m, and so Lemma 3.5 yields

‖T (a1, . . . , am)χQ∗1‖Lq(w) ≤ ‖T (a1, . . . , am)‖Lq(w)

. ‖a1‖Lq(w)‖a2‖L∞ · · · ‖am‖L∞

. w(Q1)
1
q

m∏
k=1

inf
z∈Q1

M(χQk
)(z)

n+N+1
mn .

In the second case, since Q∗1 ∩Q∗k = ∅ for some k, the set

Λ = {2 ≤ k ≤ m : Q∗1 ∩Q∗k = ∅}
is non-empty. Fix any point y ∈ Rn. Then arguing as in the previous
proof we have that

(3.8) T (a1, . . . , am)(y)=

ˆ
Rmn

K1(y, y1, y2, . . . , ym)a1(y1) · · · am(ym) d~y,

where K1(y, y1, . . . , ym) is defined by (3.6). For y1 ∈ Q1 we have that,
for some ξ1 ∈ Q1 and for all yl ∈ Ql, 1 ≤ l ≤ m,

(3.9) |K1(y, y1, . . . , ym)| ≤ C`(Q1)N+1

(
|y−ξ1|+

m∑
j=2

|y−yj |
)−mn−N−1

.

For all k ∈ Λ, since Q∗1∩Q∗k = ∅, |y−ξ1|+|y−yk| ≥ |ξ1−yk| & |c1−ck|.
Therefore, for all y1 ∈ Q∗1 and yk ∈ Qk, k ∈ Λ,

|K1(y, y1, . . . , ym)| . `(Q1)N+1

(∑
k∈Λ

|c1 − ck|+
m∑
j=2

|y − yj |
)−mn−N−1

.

If we combine this inequality with (3.8), we get

|T (a1, . . . , am)(y)| . `(Q1)n+N+1(∑
k∈Λ |c1 − ck|

)n+N+1

.
`(Q1)n+N+1(∑

k∈Λ[`(Q1) + |c1 − ck|+ `(Qk)]
)n+N+1

.

Since Q∗1 ⊂ 3Q∗l for all l /∈ Λ, the last inequality gives us

‖T (a1, . . . , am)‖L∞ .
m∏
k=1

inf
z∈Q1

M(χQk
)(z)

n+N+1
mn ;

since w ∈ Aq is doubling, this implies that

‖T (a1, . . . , am)χQ∗1‖Lq(w) . w(Q1)
1
q

m∏
k=1

inf
z∈Q1

M(χQk
)(z)

n+N+1
mn .

This completes the proof.
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4. Proof of Theorem 1.1

For 1 ≤ k ≤ m, let wk ∈ A∞ and fix arbitrary functions fk ∈
Hpk(wk) ∩ ON (Rn). By Theorem 2.6, we have the finite atomic de-
compositions

(4.1) fk =

N0∑
jk=1

λk,jkak,jk ,

where λk,jk ≥ 0 and ak,jk are (N,∞)-atoms that satisfy

supp(ak,jk) ⊂ Qk,jk , |ak,jk | ≤ χQk,jk
,

ˆ
Qk,jk

xαak,jk(x) dx = 0

for all |α| ≤ N , and

(4.2)

∥∥∥∥∑
jk

λjkχQjk

∥∥∥∥
Lpk (wk)

≤ C‖fk‖Hpk (wk).

Set w =
∏m
k=1 w

p
pk

k . Again by Theorem 2.6, it will suffice to prove that

‖T (f1, . . . , fm)‖Lp(w) .
m∏
k=1

∥∥∥∥∑
jk

λk,jkχQk,jk

∥∥∥∥
Lpk (wk)

.

Since T is m-linear, we have that, for a.e. x ∈ Rn,

T (f1, . . . , fm)(x) =
∑
j1

· · ·
∑
jm

λ1,j1 · · ·λm,jmT (a1,j1 , . . . , am,jm)(x).

Given a cube Q, let Q∗ = 2
√
nQ. For each m-tuple, (j1, . . . , jm), define

Rj1,...,jm to be the smallest cube among Q∗1,j1 , . . . , Q
∗
m,jm

. To estimate
‖T (f1, . . . , fm)‖Lp(w) we will split T (f1, . . . , fm) into two parts:

|T (f1, . . . , fm)(x)| ≤ G1(x) +G2(x),

where

G1(x) =
∑
j1

· · ·
∑
jm

λ1,j1 · · ·λm,jm |T (a1,j1 , . . . , am,jm)|χRj1,...,jm
(x)

and

G2(x) =
∑
j1

· · ·
∑
jm

λ1,j1 · · ·λm,jm |T (a1,j1 , . . . , am,jm)|χ(Rj1,...,jm )c(x).
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We first estimate ‖G2‖Lp(w). By (3.4) we have that

|T (a1,j1 , . . . , am,jm)(x)|χ(Rj1,...,jm )c(x) .
m∏
k=1

M(χQk,jk
)(x)

n+N+1
mn ;

thus

G2.
∑
j1

· · ·
∑
jm

m∏
k=1

λk,jkM(χQk,jk
)
n+N+1

mn =

m∏
k=1

[∑
jk

λk,jkM(χQk,jk
)
n+N+1

mn

]
.

By condition (1.3), Hölder’s inequality and the weighted Fefferman–Stein
vector-valued inequality (see Remark 2.3), we get

‖G2‖Lp(w) .
m∏
k=1

∥∥∥∥∑
jk

λk,jkχQk,jk

∥∥∥∥
Lpk (wk)

.

We now estimate the norm of G1. Since w ∈ A∞ by Lemma 2.1, we
can choose q > max(1, p) such that w ∈ Aq. Then by Lemma 3.5 we
have that(

1

w(Rj1,...,jm)

ˆ
Rj1,...,jm

|T (a1,j1 , . . . , am,jm)|q(x)w(x) dx

) 1
q

.
m∏
k=1

inf
z∈Rj1,...,jm

M(χQk,jk
)(z)

n+N+1
mn .

If we combine this inequality, Lemma 3.4, Hölder’s inequality, and the
Fefferman–Stein vector-valued inequality (again see Remark 2.3), we get
the following estimate:

‖G1‖Lp(w).

∥∥∥∥ ∑
j1...,jm

m∏
k=1

λk,jk

(
1

w(Rj1,...,jm)

×
ˆ
Rj1,...,jm

|T (a1,j1 , . . . , am,jm)|q(x)w(x) dx

)1
q

χRj1,...,jm

∥∥∥∥
Lp(w)

.

∥∥∥∥ ∑
j1...,jm

( m∏
k=1

λk,jk

)

×
( m∏
k=1

inf
z∈Rj1,...,jm

M(χQk,jk
)(z)

n+N+1
mn

)
χRj1,...,jm

∥∥∥∥
Lp(w)

.

∥∥∥∥ m∏
k=1

(∑
jk

λk,jkM(χQk,jk
)

n+N+1
mn

)∥∥∥∥
Lp(w)
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.
m∏
k=1

∥∥∥∥∑
jk

λk,jkM(χQk,jk
)

n+N+1
mn

∥∥∥∥
Lpk (wk)

.
m∏
k=1

∥∥∥∥∑
jk

λk,jkχQk,jk

∥∥∥∥
Lpk (wk)

.

If we combine the estimates for G1 and G2, we get the desired inequality.

5. Proof of Theorem 1.2

The proof of Theorem 1.2 is very similar to the proof of Theorem 1.1.
Instead of estimating the norm of T , we will estimate the norm of Mφ◦T ,
where Mφ is the non-tangential maximal operator

Mφf(x) = sup
0<t<∞

sup
|y−x|<t

|φt ∗ f(y)|,

where φ ∈ C∞0 and supp(φ) ⊂ B(0, 1). We will use the that the Hardy
space can be characterized by using the non-tangential maximal func-
tion Mφ with the norm

‖f‖Hp(w) ≈ ‖Mφf‖Lp(w).

See [31]; this equivalence is guaranteed by our choice of N0 sufficiently
large. Throughout this section we fix a choice of φ.

In this section, we fix the smooth approximate identity φ supported
in the unit ball. The following lemma was first proved in [20]; it is the
essential part in the proof of Theorem 1.2 and so we repeat the proof
here for the convenience of the reader. Hereafter, given a cube Q, let
Q∗∗ = 4nQ.

Lemma 5.1. For 1 ≤ k ≤ m, let ak be (N,∞) atoms with supp(ak) ⊂
Qk. Suppose that Q1 is such that `(Q1) = min{`(Qk) : 1 ≤ k ≤ m}.
Then, for all x /∈ Q∗∗1 , we have

(5.1) MφT (a1, . . . , am)(x) .
m∏
l=1

M(χQl
)(x)

n+N+1
mn

+M(χQ1)(x)
n+sw+1

n

m∏
l=1

inf
z∈Q1

M(χQl
)(z)

N−sw
mn ,

where T is the operator in Theorem 1.1.
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Proof: Fix x ∈ (Q∗∗1 )c, 0 < t <∞, and y ∈ Rn such that |y− x| < t. To
prove (5.1) it will suffice to show that

|φt ∗ T (a1, . . . , am)(y)| .
m∏
l=1

M(χQl
)(x)

n+N+1
mn

+M(χQ1
)(x)

n+sw+1

n

m∏
l=1

inf
z∈Q1

M(χQl
)(z)

N−sw
mn ,

where the implicit constant does not depend on x, y, and t. We will
consider two cases.

Case 1: t > 1
1000n2 |x − c1|. We will exploit the cancellation in (1.2) to

show that

(5.2) |φt∗T (a1, . . . , am)(y)|.M(χQ1)(x)
n+sw+1

n

m∏
l=1

inf
z∈Q1

M(χQl
)(z)

N−sw
mn .

By (1.2) we have

φt ∗ T (a1, . . . , am)(y) =

ˆ
φt(y − z)T (a1, . . . , am)(z) dz

=

ˆ (
φt(y− z)−

∑
|α|≤sw

∂α[φt](y − c1)

α!
(c1− z)α

)
T (a1, . . . , am)(z) dz.

Note that, by Taylor’s theorem,∣∣∣∣φt(y − z)− ∑
|α|≤sw

∂α[φt](y − c1)

α!
(c1 − z)α

∣∣∣∣ . |z − c1|sw+1

tn+sw+1

for all y, z ∈ Rn and all t ∈ (0,∞). Since t & |x − c1| and x /∈ Q∗∗1 , we
have

|φt ∗ T (a1, . . . , am)(y)| .
ˆ
|z − c1|sw+1

tn+sw+1
|T (a1, . . . , am)(z)| dz

.

(
`(Q1)

|x− c1|

)n+sw+1
1

`(Q1)n+sw+1

ˆ
|z − c1|sw+1|T (a1, . . . , am)(z)| dz

.M(χQ1)(x)
n+sw+1

n
1

`(Q1)n+sw+1

ˆ
|z − c1|sw+1|T (a1, . . . , am)(z)| dz.
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Hence, to prove (5.2) it remains to show that

(5.3)
1

`(Q1)n+sw+1

ˆ
|z − c1|sw+1|T (a1, . . . , am)(z)| dz

.
m∏
l=1

inf
z∈Q1

M(χQl
)(z)

N−sw
mn .

If we split the integral on the left-hand side of (5.3) over Q∗1 and (Q∗1)c,
we can estimate as follows:

ˆ
|z − c1|sw+1|T (a1, . . . , am)(z)| dz

.
ˆ
Q∗1

|z − c1|sw+1|T (a1, . . . , am)(z)| dz

+

ˆ
(Q∗1)c

|z − c1|sw+1|T (a1, . . . , am)(z)| dz

. `(Q1)sw+1

ˆ
Q∗1

|T (a1, . . . , am)(z)| dz

+

ˆ
(Q∗1)c

|z − c1|sw+1|T (a1, . . . , am)(z)| dz.

By (3.7), we can estimate the first integral in the last inequality by

(5.4) `(Q1)sw+1

ˆ
Q∗1

|T (a1, . . . , am)(z)| dz

. `(Q1)n+sw+1
m∏
l=1

inf
z∈Q1

M(χQl
)(z)

n+N+1
mn .

To estimate the second integral, we need to exploit carefully the smooth-
ness of the kernel. Recall the representation of T (a1, . . . , am)(z) in (3.8).
Denote

J = {2 ≤ l ≤ m : Q∗∗1 ∩Q∗∗l = ∅}.

For z /∈ Q∗1, ξ1 ∈ Q1, we have |z− ξ1| ≈ |z− c1| ≥ `(Q1). Also, for l ∈ J
and zl ∈ Q∗l ,

|z − ξ1|+ |z − zl| ≥ |ξ1 − zl| & |c1 − cl|.
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We now estimate K1(z, z1, . . . , zm) in (3.9) to get

|T (a1, . . . , am)(z)|

.
ˆ

(Rn)m

`(Q1)N+1χQ1(z1) dz1 · · · dzm(
`(Q1) + |z − c1|+

∑
l∈J |c1 − cl|+

∑m
l=2 |z − zl|

)mn+N+1

for all z ∈ (Q∗1)c. Thusˆ
(Q∗1)c

|y − c1|sw+1|T (a1, . . . , am)(y)| dy

.
ˆ
Rn×(Rn)m

|y − c1|sw+1`(Q1)N+1χQ1
(y1) dy1 · · · dym dy(

`(Q1)+|y−c1|+
∑
l∈J |c1−cl|+

∑m
l=2 |y−yl|

)mn+N+1

. `(Q1)n+sw+1
∏
l∈J

(
`(Ql)

`(Q1) + |c1 − cl|

)N−sw
m

.

Note that 1 . infz∈Q1 M(χQl
)(z) if Q∗∗1 ∩Q∗∗l 6= ∅ and, for all l ∈ J ,

`(Ql)

`(Q1) + |c1 − cl|
. inf
z∈Q1

M(χQl
)(z)

1
n .

Therefore

(5.5)

ˆ
(Q∗1)c

|y − c1|sw+1|T (a1, . . . , am)(y)| dy

. `(Q1)n+sw+1
m∏
l=1

inf
z∈Q1

M(χQl
)(z)

N−sw
mn .

Now we combine (5.4) and (5.5) we get (5.3), which completes the proof
of Case 1.

Case 2: t ≤ 1
1000n2 |x− c1|. In this case, we will show that

(5.6) |φt ∗ T (a1, . . . , am)(y)| .
m∏
l=1

M(χQl
)(x)

n+N+1
mn .

Since supp(φ) ⊂ B(0, 1) and |y − x| < t,

|φt∗T (a1, . . . , am)(y)|≤
ˆ
B(y,t)

t−n|φ(t−1(y−z))T (a1, . . . , am)(z)| dz

. sup
z∈B(y,t)

|T (a1, . . . , am)(z)|

. sup
z∈B(x,2t)

|T (a1, . . . , am)(z)|.

(5.7)
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Let Λ = {1 ≤ l ≤ m : x /∈ Q∗∗k }. For z ∈ B(x, 2t), ξ1 ∈ Q1, we have

|x− c1| ≤ |x− z|+ |z − c1| ≤ 2t+ |ξ1 − c1|+ |z − ξ1|

≤ 1

500n2
|x− c1|+

1

2
|x− c1|+ |z − ξ1|;

hence

t . |x− c1| . |z − ξ1|.
For l ∈ Λ and zl ∈ Ql, since x /∈ Q∗∗l ,

|x−cl| ≤ 2|x−zl| ≤ 2|x−z|+2|z−zl| ≤ 4t+2|z−zk| . |z−ξ1|+ |z−zk|.

Recall the formula for T (a1, . . . , am)(z) in (3.8); we estimateK1(z, z1, . . . ,
zm) in (3.9) to get

|T (a1, . . . , am)(z)| .
ˆ

(Rn)m

`(Q1)N+1χQ1(z1) dz1 · · · dzm(∑m
l=2 |z − zl|+

∑
k∈Λ |x− ck|

)mn+N+1

for all z ∈ B(x, 2t). From this we get that

sup
z∈B(x,2t)

|T (a1, . . . , am)(z)|.
∏
l∈Λ

`(Ql)
n+N+1
|Λ| χ(Q∗∗l )c(x)

|x− cl|
n+N+1
|Λ|

∏
k/∈Λ

χQ∗∗k (x)

.
m∏
l=1

M(χQl
)(x)

n+N+1
mn .

(5.8)

Combining (5.7) and (5.8) gives (5.6). This completes Case 2 and so
completes the proof.

The next lemma is an immediate consequence of Lemma 3.7 and the
fact that Mφ is bounded on Lq(w) if w ∈ Aq (since it is controlled
pointwise by the Hardy–Littlewood maximal operator; cf. [15]).

Lemma 5.2. Given w ∈ Aq, 1 ≤ q < ∞, for 1 ≤ k ≤ m let ak be
an (N,∞) atom supported in Qk. Suppose Q1 is the cube such that
`(Q1) = min{`(Qk) : 1 ≤ k ≤ m}. Then

‖MφT (a1, . . . , am)χQ∗∗1 ‖Lq(w) . w(Q1)
1
q

m∏
l=1

inf
z∈Q1

M(χQl
)(z)

n+N+1
mn .

Proof of Theorem 1.2: Fix wk ∈ A∞, 1 ≤ k ≤ m, and define w =∏m
k=1 w

p
pk

k . Fix fk ∈ Hpk(wk) ∩ ON (Rn), 1 ≤ k ≤ m. We will show
that

(5.9) ‖MφT (f1, . . . , fm)‖Lp(w) . ‖f1‖Hp1 (w1) · · · ‖fm‖Hpm (wm).
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Form the atomic decompositions of the functions fk as in the proof of
Theorem 1.1 to get (4.1) and (4.2). Then to prove (5.9), it is enough to
show that

(5.10) ‖MφT (f1, . . . , fm)‖Lp(w) .
m∏
k=1

∥∥∥∥∑
jk

λk,jkχQk,jk

∥∥∥∥
Lpk (wk)

.

Since Mφ ◦ T is multi-sublinear, we can write

MφT (f1, . . . , fm)(x) ≤ G1(x) +G2(x),

where

G1(x) =
∑
j1

· · ·
∑
jm

λ1,j1 . . . λm,jmMφT (a1,j1 , . . . , am,jm)χRj1,...,jm
(x)

and

G2(x) =
∑
j1

· · ·
∑
jm

λ1,j1 · · ·λm,jmMφT (a1,j1 , . . . , am,jm)χ(Rj1,...,jm )c(x).

Here Rj1,...,jm is the smallest cube among Q∗∗1,j1 , . . . , Q
∗∗
m,jm

.
A similar argument as in the proof of Theorem 1.1 with Lemma 5.2

in place of Lemma 3.7 gives

(5.11) ‖G1‖Lp(w) .
m∏
k=1

∥∥∥∥∑
jk

λk,jkχQk,jk

∥∥∥∥
Lpk (wk)

.

We now estimate the norm of G2. By Lemma 5.1 we get that

G2(x) . G21(x) +G22(x),

where

G21(x) =
∑
j1

· · ·
∑
jm

λ1,j1 · · ·λm,jm
m∏
k=1

M(χQk,jk
)(x)

n+N+1
mn

and

G22(x) =
∑
j1

· · ·
∑
jm

λ1,j1 · · ·λm,jmM(χRj1,...,jm
)(x)

n+sw+1

n

×
m∏
l=1

inf
z∈Rj1,...,jm

M(χQl,jl
)(z)

N−sw
mn .

The function G21 can be estimated by essentially the same argument
used for G1 to get

(5.12) ‖G21‖Lp(w) .
m∏
k=1

∥∥∥∥∑
jk

λk,jkχQk,jk

∥∥∥∥
Lpk (wk)

.
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To estimate G22, since (n+sw+1)p
n > 1, we use (1.4) and the Fefferman–

Stein vector-valued inequality (cf. Remark 2.3) to get

‖G22‖Lp(w) .

∥∥∥∥∑
j1

· · ·
∑
jm

λ1,j1 · · ·λm,jmχRj1,...,jm

×
m∏
l=1

inf
z∈Rj1,...,jm

M(χQl,jl
)(z)

N−sw
mn

∥∥∥∥
Lp(w)

≤
∥∥∥∥∑
j1

· · ·
∑
jm

λ1,j1 · · ·λm,jm
m∏
k=1

M(χQk,jk
)
N−sw
mn

∥∥∥∥
Lp(w)

≤
m∏
k=1

∥∥∥∥∑
jk

λk,jkM(χQk,jk
)

N−sw
mn

∥∥∥∥
Lpk (wk)

.
m∏
k=1

∥∥∥∥∑
jk

λk,jkχQk,jk

∥∥∥∥
Lpk (wk)

.

(5.13)

If we combine (5.11), (5.12), and (5.13), we get (5.10) and this com-
pletes the proof.

6. Variable Hardy spaces: Proof of Theorems 1.7 and 1.8

In this section we prove Theorems 1.7 and 1.8. In fact, we will prove
two more general results that include these theorems as special cases.
To do so, we first recall some basic facts about the variable Lebsesgue
spaces. For complete information we refer the reader to [6].

Let P0(Rn) be the set of all measurable functions p(·) : Rn → (0,∞).
Define

p− = ess inf
x∈Rn

p(x), p+ = ess sup
x∈Rn

p(x).

Given p(·) ∈ P0(Rn) define Lp(·) = Lp(·)(Rn) to be the set of all measur-
able functions f such that, for some λ > 0,

ρ(f/λ) =

ˆ
Rn

(
|f(x)|
λ

)p(x)

dx <∞.

This becomes a quasi-Banach space with the “norm”

‖f‖Lp(·) = inf{λ > 0 : ρ(f/λ) ≤ 1}.

If p− ≥ 1, Lp(·) is a Banach space; if p(·) = p a constant, then Lp(·) = Lp

with equality of norms.
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If the maximal operator is bounded on Lp(·) we write that p(·) ∈ B.
A necessary condition for this to be the case is that p− > 1. A sufficient
condition is that 1 < p− ≤ p+ < ∞ and p(·) is log-Hölder continu-
ous: i.e., (1.6) and (1.7) hold. However, this continuity condition is not
necessary: see [6] for a detailed discussion of this problem.

Given p(·) ∈ P0(Rn), the variable Hardy space Hp(·) is defined to be
the set of all distributions f such that MN0f ∈ Lp(·). Again, we here
assume N0 > 0 is a sufficiently large constant so that all the standard
definitions of the classical Hardy spaces are equivalent. These spaces
were examined in detail in [12] (see also [28]).

A very important tool for proving norm inequalities in spaces of vari-
able exponents is the extension of the Rubio de Francia theory of ex-
trapolation to the scale of variable Lebesgue spaces. For the history and
application of this approach for linear operators, see [6, 7]. To prove
Theorems 1.7 and 1.8 we will use a multilinear version due to the first
author and Naibo [10]. They only stated their proof for the bilinear
case, but the same proof immediately extends to the general multilinear
setting.

Theorem 6.1. Let F = {(f1, . . . , fm, F )} be a family of (m+ 1)-tuples
of non-negative, measurable functions on Rn. Suppose that there exist
indices 0 < p1, . . . , pm, p <∞ satisfying 1

p = 1
p1

+ · · ·+ 1
pm

such that, for

all weights wk ∈ A1, 1 ≤ k ≤ m, and w =
∏m
k=1 w

p
pk

k ,

(6.1) ‖F‖Lp(w) . ‖f1‖Lp1 (w1) · · · ‖fm‖Lpm (wm)

for all (f1, . . . , fm, F ) such that F ∈ Lp(w), and where the implicit con-
stant depends only on n, pk, and [wk]A1 , 1 ≤ k ≤ m. Let q1(·), . . . , qm(·),
q(·) ∈ P0 be such that

1

q(·)
=

1

q1(·)
+ · · ·+ 1

qm(·)
,

pk < (qk)−, 1 ≤ k ≤ m, and qk(·)/pk ∈ B. Then

(6.2) ‖F‖Lq(·) . ‖f1‖Lq1(·) · · · ‖fm‖Lqm(·)

provided ‖F‖Lq(·)<∞. The implicit constant only depends on n and qk(·),
1 ≤ k ≤ m.

Remark 6.2. In [10], the hypothesis on the exponents qk(·) was stated as
(qk(·)/pk)′ ∈ B, where this exponent is the conjugate exponent, defined
pointwise by 1

p(x) + 1
p′(x) = 1. It was stated in this way for technical rea-

sons related to the proof. However, these two hypotheses are equivalent:
see [6, Corollary 4.64].
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The one technical obstacle in applying Theorem 6.1 is constructing
the family F to satisfy the hypotheses that the left-hand sides of (6.1)
and (6.2) are finite and that the resulting family is large enough that
the desired result can be proved via a density argument. In our case we
will use the atomic decomposition in the weighted and variable Hardy
spaces. As we noted in Section 2, given w ∈ A∞ and 0 < p <∞, every
f ∈ Hp(w) can be written as the sum

(6.3) f =
∑
k

λkak,

where λk ≥ 0 and the ak are (N,∞) atoms, provided N ≥ sw. Moreover,
this series converges both in the sense of distributions and in Hp(w).
(See [31, Chapter VIII].) The same is true in the variable Hardy spaces.
More precisely: suppose p(·) ∈ P0 is such that there exists 0 < p0 < p−
with p(·)/p0 ∈ B. Then given N > n(p−1

0 − 1), if f ∈ Hp(·), there exists
a sequence of (N,∞) atoms ak and constants λk such that (6.3) holds,
and the series converges both in the sense of distributions and in Hp(·).
(See [12, Theorem 6.3]; here we have slightly modified the definition of
atoms, but the change is immediate.) It follows immediately from these
two results that finite sums of (N,∞) atoms, for N sufficiently large, are
dense in Hp(w) and Hp(·).

Remark 6.3. In applying the density of finite sums of atoms, we are not
making use of the finite atomic decomposition norm (as in Theorem 2.6
for weighted spaces or in the corresponding result for variable Hardy
spaces in [12]). We will only use that these sums are dense with respect
to the given Hardy space norm.

Theorem 6.4. Let q1(·), . . . , qm(·), q(·) ∈ P0 be such that 1
q(·) = 1

q1(·) +

· · · + 1
qm(·) and 0 < (qk)− ≤ (qk)+ < ∞, 1 ≤ k ≤ m. Suppose further

that there exist 0 < p1, . . . , pm <∞, 0 < pk < (qk)−, and qk(·)/pk ∈ B.
If T is an m-CZO as in Theorem 1.1 satisfying (1.1) for all |α| ≤ N ,
where

N ≥ max

{⌊
mn

(
1

pk
− 1

)⌋
+

, 1 ≤ k ≤ m

}
+ (m− 1)n,

then

T : Hq1(·) × · · · ×Hq1(·) → Lq(·).

Remark 6.5. Theorem 1.7 follows at once since if qk(·) is log-Hölder
continuous, then qk(·)/pk ∈ B.
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Proof: Fix an integer K0 such that

K0 > max

{⌊
n

(
1

pk
− 1

)⌋
+

, 1 ≤ k ≤ m

}
.

Define the family F = {(f1, . . . , fm, F )}, where, for each 1 ≤ k ≤ m,

fk =

L∑
j=1

λjaj

is a finite linear combination of (K0,∞) atoms, and

F = min{|T (f1, . . . , fm)|, R}χB(0,R),

where 0 < R <∞.
Now fix any collection of weights w1, . . . , wm ∈ A1. Then for 1 ≤

k ≤ m, rwk
= 1, so K0 > swk

. Therefore, given any (m + 1)-tuple
(f1, . . . , fm, F ) ∈ F , fk ∈ Hpk(wk), and by Theorem 1.1,

‖F‖Lp(w) ≤ ‖T (f1, . . . , fm)‖Lp(w) . ‖f1‖Hp1 (w1) · · · ‖fm‖Hpm (wm) <∞.

Moreover, we have that fk ∈ Hqk(·) and

‖F‖q(·) ≤ R‖χB(0,R)‖q(·) <∞.

Hence, by Theorem 6.1 we have that

‖F‖q(·) . ‖f1‖Hq1(·) · · · ‖fm‖Hqm(·) <∞.

By Fatou’s lemma in the scale of variable Lebesgue spaces [6, Theo-
rem 2.61], we get

‖T (f1, . . . , fm)‖q(·) . ‖f1‖Hq1(·) · · · ‖fm‖Hqm(·) <∞.

Since finite sums of (K0,∞) atoms are dense in Hqk(·), 1 ≤ k ≤ m,
a standard density argument shows that this inequality holds for all
fk ∈ Hqk(·), 1 ≤ k ≤ m. This completes the proof.

The proof of the following result is identical to the proof of The-
orem 6.4, except that in the definition of the family F we replace T
by MN0T (for N0 sufficiently large) and use Theorem 1.2 instead of
Theorem 1.1. Theorem 1.8 again follows as an immediate corollary.
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Theorem 6.6. Given q1(·), . . . , qm(·), q(·) and p1, . . . , pm as in Theo-
rem 6.4, define p by

1

p
=

1

p1
+ · · ·+ 1

pm
.

Let T be an m-CZO as in Theorem 1.1 satisfying (1.1) for all |α| ≤ N ,
where

N ≥
⌊
mn

(
1

p
− 1

)⌋
+

+ max

{⌊
mn

(
1

pk
− 1

)⌋
+

, 1 ≤ k ≤ m

}
+mn.

Suppose further that T satisfies (1.2) for all |α| ≤ bn(1/p− 1)c+. Then

T : Hq1(·) × · · · ×Hq1(·) → Hq(·).
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multilinéaires, Ann. Inst. Fourier (Grenoble) 28(3) (1978), 177–202. DOI:

10.5802/aif.708.
[4] J. M. Conde-Alonso and G Rey, A pointwise estimate for positive dyadic

shifts and some applications, Math. Ann. 365(3–4) (2016), 1111–1135. DOI:

10.1007/s00208-015-1320-y.
[5] D. Cruz-Uribe, Two weight inequalities for fractional integral operators and

commutators, in: “Proceedings of the Sixth International School of Advanced
Courses of Mathematical Analysis VI” (F. J. Mart́ın-Reyes et al., ed.), World
Scientific, 2017, pp. 25–85. DOI: 10.1142/9789813147645−0002.

[6] D. V. Cruz-Uribe and A. Fiorenza, “Variable Lebesgue Spaces. Founda-
tions and Harmonic Analysis”, Applied and Numerical Harmonic Analysis,
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