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1. Introduction

In a previous paper [9] we introduced the so-called simplicial Lus-
ternik–Schnirelmann category of a simplicial complex. This invariant,
denoted by scatK, is defined directly from the combinatorial structure
of the complex K, instead of considering the topological LS-category of
the geometric realization |K|, by replacing the notion of homotopy by
that of contiguity. With this approach it turned out that the simplicial
LS-category is an invariant of the strong homotopy type, as defined
by Barmak and Minian in [4]. Also, simplicial LS-category is closely
related to the LS-category of the finite T0-space represented by the Hasse
diagram of K [18].

It is worth noting that although the idea of contiguous simplicial maps
is a classic one, the corresponding theory of Lusternik–Schnirelmann cat-
egory had not been developed until now. Then, many natural questions
remained unsolved in this new context. The aim of this paper is to an-
swer some of them: for instance, the relationship between scatK and
cat |K| (Theorem 4.4) or the Whitehead formulation of simplicial cate-
gory (Definition 6.5), among others. Other results include a direct proof
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of the formula scat(sdK) ≤ scatK for the barycentric subdivision (The-
orem 3.1), or a counterexample of the analogue of the homotopy exten-
sion property for subcomplexes (Example 7.6). A final important result
(Theorem 8.12) will be that simplicial category generalizes to arbitrary
simplicial complexes the well known notion of arboricity of a graph.

The contents of the paper are as follows.
We start (Section 2) by introducing the definition of simplicial Lus-

ternik–Schnirelmann category scatK of the simplicial complex K. The
idea is to define an analogue of the classical LS-category of a topological
space, by replacing the notion of homotopic maps by that of contiguous
simplicial maps. We then prove some basic properties of this new notion
of category, and we recall our previous result [9] that scat is an invariant
of the strong homotopy type. In particular, the category of the simplicial
complex K equals that of its core K0 (the minimal subcomplex of K
obtained by strong collapses). As a corollary we prove that scatK is
bounded above by the number of vertices and the number of maximal
simplices of K0.

In Section 3 we study the effect of barycentric subdivision on simplicial
category and we give a direct proof of scat(sdK) ≤ scatK. For that we
need to prove that if ϕ, ψ are contiguous maps, then the induced maps
sdϕ, sdψ, are in the same contiguity class. The only proof that we found
in the literature is as a consequence of the results given in [4] via finite
posets, so we give a direct one.

In Section 4 we compare the simplicial category of the complex K
with the classical LS-category of the geometric realization |K|, proving

that cat |K| ≤ scatK. This implies that cat |K| ≤ scat(sdNK), for any

iterated barycentric subdivision sdNK of K. We show an example where
this inequality is strict.

Section 5 deals with the study of simplicial products. Being more
precise, we consider the categorical product, denoted by K × L. Then,
we prove that scat(K × L) + 1 ≤ (scatK + 1)(scatL+ 1).

We are now (Section 6) in a position to discuss the simplicial ana-
logue of the Whitehead formulation of the LS-category. It is known
that for topological spaces X with “good” properties the LS-category
can be computed as the least integer n = catWhX such that the diago-
nal map ∆: X → Xn+1 factors (up to homotopy) through the so-called
fat wedge Tn+1X. We try to adapt this result to abstract simplicial
complexes. First, we define the n-th fat wedge TnK for any pointed
complex K and we study its behaviour under contiguity. We then de-
fine a simplicial Whitehead category scatWhK, which is an invariant
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of the pointed strong homotopy type and we are able to prove that
scatK ≤ scatWhK. However, unlike the continuous case, the other
inequality is not true, as we show by an example.

In Section 7 we explain how the partial failure of the Whitehead for-
mulation is related to the contiguity extension property. We discuss
a new notion of cofibration in the simplicial setting. It is well known
that if A is a subcomplex of a CW-complex X then the pair (X,A) has
the homotopy extension property. Therefore, if L is a subcomplex of a
simplicial complex K, the pair (|K|, |L|) has the (topological) homotopy
extension property. We define a purely combinatorial analogue for a sim-
plicial pair (K,L), but we show counterexamples where the contiguity
extension property fails to be true.

Finally, Section 8 is focused on the study of the simplicial LS-category
in the one-dimensional case, that is, on graphs. The well known graph-
theoretical notion of arboricity will play a central role in this study.
The arboricity Υ(G) of the graph G is the cardinality of a minimal
decomposition of G into disjoint spanning forests, i.e., acyclic subgraphs
which are not necessarily connected and cover all the vertices. The aim of
this section is to prove that arboricity coincides with simplicial category.
Being more precise, we prove that Υ(G) = scatG + 1. The two main
ideas are that categorical subcomplexes are precisely forests and that the
notion of contiguity is a very rigid one in the setting of graphs, allowing
only a limited number of moves.

As a final comment, we emphasize that simplicial LS-category is a
new strong homotopy invariant, defined in purely combinatorial terms,
that generalizes to arbitrary simplicial complexes the well known notion
of arboricity of a graph, and that allows to develop all the machin-
ery of algebraic topology which is costumary in the classical theory of
Lusternik–Schnirelmann category.

2. Simplicial category

2.1. The notion of simplicial LS-category. We recall the notion of
simplicial LS-category, introduced by the authors in [9].

Let K and L be abstract simplicial complexes. Remember (see [20,
§3.5]) that two simplicial maps ϕ,ψ : K → L are contiguous, denoted
by ϕ ∼c ψ, if for any simplex σ = {v0, . . . , vp} of K, the set of vertices

ϕ(σ) ∪ ψ(σ) = {ϕ(v0), . . . , ϕ(vp), ψ(v0), . . . , ψ(vp)}

is a simplex of L. More generally, two simplicial maps ϕ,ψ : K → L are
in the same contiguity class, denoted by ϕ ∼ ψ, if there is a sequence of
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simplicial maps ϕi : K → L, i = 1, . . . ,m, such that ϕ = ϕ1 ∼c ϕ2 ∼c
· · · ∼c ϕm = ψ.

At this point it is convenient to recall that the subcomplex L′ ⊆ L is
said to be full subcomplex of L if each simplex of L whose vertices belong
to L′ is also a simplex of L′. The next proposition can be proved easily
from this definition.

Proposition 2.1. Let ϕ,ψ :K→L be two simplicial maps. Let K ′⊂K be
a subcomplex and let L′⊂L be a full subcomplex such that ϕ(K ′), ψ(K ′)⊂
L′. If ϕ and ψ are contiguous then their restrictions ϕ′, ψ′ : K ′ → L′ are
contiguous too.

The concept of contiguity class provides a simplicial analogue of homo-
topy classes of continuous maps between topological spaces. By means
of the notion of contiguity we define the key concept of categorical sub-
complex.

Definition 2.2. Let K be an abstract simplicial complex. We say that
the subcomplex U ⊂ K is categorical (in K) if there exists a vertex v ∈ K
such that the inclusion i= iU : U → K and the constant map c=cv : U →
K are in the same contiguity class (denoted by i ∼ c).

In other words, the inclusion of U factors through the vertex v ∈ K
up to “simplicial homotopy” (meaning contiguity class). Notice that a
categorical subcomplex may not be connected.

Definition 2.3. LetK be an abstract simplicial complex. The simplicial
LS-category of K, denoted by scatK, is the least integer n ≥ 0 such
that there exist n + 1 categorical subcomplexes U0, . . . , Un of K which
cover K, that is, such that K = U0 ∪ · · · ∪ Un.

For instance, as we shall explain in Subsection 2.3, scatK = 0 if and
only if K is strongly collapsible to a point, in the sense given by Barmak
and Minian [3, 4].

2.2. Maximal simplices. We now show that the simplicial LS-cate-
gory can be obtained by taking into account only maximal simplices
in its definition. The proof is inspired on the analogous idea for the
LS-category of finite topological spaces, that was pointed out to us by
J. Strom.

Lemma 2.4. Let V ⊂ U ⊂ K be subcomplexes of K. If U is categorical
(in K) then V is categorical (in K).

Proof: If the inclusion i : U ⊂ K verifies i ∼ c for some constant map
c : U → K, and j : V ⊂ U is the inclusion, then i ◦ j : V → K is the
inclusion, c ◦ j : V → K is a constant map, and c ◦ j ∼ i ◦ j.
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Proposition 2.5. In Definition 2.3 one may assume that:

1. Each categorical subcomplex in the covering U0, . . . , Un is a union
of maximal simplices of K.

2. Each maximal simplex of K is contained in only one of the elements
of the covering.

Proof: Let U0, . . . , Un ⊂ K be a categorical covering. We shall replace
each subcomplex Uj by another subcomplex Vj (may be empty) defined
as the union of the simplices σ ∈ Uj which are maximal in K.

First, V0, . . . , Vn is a covering of K, because if µ is a simplex of K,
it must be contained in some maximal simplex σ, which turns out to be
contained in some Uj . Then µ ⊂ σ ∈ Vj , so µ ∈ Vj . Moreover, Vj is
categorical (by Lemma 2.4), because Vj ⊂ Uj .

The second part follows from the fact that if we remove each maximal
simplex from all excepting one of the Vj , then the resulting subcomplexes
are still categorical, by Lemma 2.4, and they cover K.

2.3. General properties. We state several general properties of sim-
plicial LS-category.

In [4] (see also [3]), Barmak and Minian introduced the notion of
strong collapse, a particular type of simplicial collapse in the Whitehead’s
sense (see Chapter 1, Section 2 of [5]) which is specially adapted to
the simplicial structure. Actually, a strong collapse can be modelled
as a simplicial map, in contrast with the general concept of simplicial
collapse.

Definition 2.6. A vertex v of a simplicial complex K is dominated by
another vertex v′ if every maximal simplex that contains v also con-
tains v′.

An elementary strong collapse consists of removing the open star of
a dominated vertex v from a simplicial complex K (see Figure 1).

v′

v

v′ v′

Figure 1. An elementary strong collapse.

The inverse of a strong collapse is called a strong expansion. Then,
two simplicial complexes K, L have the same strong homotopy type,



270 D. Fernández-Ternero, E. Maćıas-Virgós, E. Minuz, J. A. Vilches

denoted by K ∼ L, if they are related by a sequence of strong collapses
and expansions. Surprisingly, this turns out to be intimately related to
the classical notion of contiguity. More precisely, having the same strong
homotopy type is equivalent to the existence of simplicial maps ϕ : K →
L and ψ : L → K such that ψ ◦ ϕ ∼ 1K and ϕ ◦ ψ ∼ 1L (see [4,
Corollary 2.12]). The strong homotopy type gives a simplicial analogue
to the homotopy type of topological spaces.

Notice that scatK = 0 if and only if K is strongly collapsible, that is,
there is a finite sequence of elementary strong collapses reducing it to a
vertex.

Example 2.7. The simplicial complex in Figure 2 is not strong collapsi-
ble, in fact scatK = 1.

0 1

2

Figure 2. A complex K with scatK = 1.

For the next example, let us recall the simplicial notions of star and
link. Roughly speaking, they correspond to the simplicial counterparts
of closed ball and sphere around a vertex. Being more precise, given a
simplicial complex K and v ∈ K a vertex, the star of v in K, denoted
by st(v;K), is the subcomplex of simplices σ ∈ K such that σ∪{v} ∈ K.
The link of v in K, denoted by lk(v;K), is the subcomplex of st(v;K)
of simplices which do not contain v.

Example 2.8. Let K be a finite simplicial complex and let a be a vertex
not in K. The cone K ∗ a is the simplicial complex generated by the
simplices of the form (v0, . . . , vn, a) where (v0, . . . , vn) is a simplex of K.
Notice that K∗a is strong collapsible, that is, scat(K∗a) = 0. This result
can be proved just by taking into account that lk(u,K ∗a) = lk(u,K)∗a
(see [2]).

Example 2.9. Let K be a finite simplicial complex such that scatK >
0, and let S0 be the complex given by only two 0-simplices and no
other simplices. We define the suspension of K as ΣK=K ∗ S0. Then
scat(ΣK) = 1. Notice that any suspension can be naturally decomposed
as the union of two simplicial cones, and thus scat(K) ≤ 1. Moreover in
this case scat(Σ) 6= 0. First, assume that K is a minimal complex, that is
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K has no dominated vertices. The maximal simplices of ΣK are (wi, a)
and (wi, a

′) where wi, i = 0, . . . , n are the maximal simplices of K and
a, a′ are the 0-simplices of S0. Now, since K has no dominated vertices
then for every pair (v, u) of vertices in K there is a maximal simplex
wi in K containing v but not containing u. Therefore, the maximal
simplex (wi, a) in ΣK contains v but not u. So v and u are not dominated
vertices in the suspension. Moreover any vertex v is not dominated
by the vertices a (resp. a′) since there is always a maximal simplex
containing v but not a (x resp. a′), meaning the simplex containing v
and a′ (resp. a). Now assume that K is not minimal, then there is a
sequence of strong collapses and expansions from K to its core K ′. Since
a point that is dominated in K is also dominated in ΣK, then there is
a sequence of strong collapses and expansions from ΣK to its core ΣK ′.
Therefore, by means of the next theorem, ΣK and ΣK ′ have the same
strong homotopy type and the result follows.

The next theorem was proved in [9, Theorem 3.4] by the authors.

Theorem 2.10. The simplicial LS-category is an invariant of the strong
homotopy type, that is, K ∼ L implies scatK = scatL.

Therefore a simplicial complex K and its core K0 have the same sim-
plicial LS-category. Remember that the core of a complex is the minimal
subcomplex obtained by eliminating dominated vertices (see for instance
Barmak’s book [3]). More precisely, if a vertex v is dominated by an-
other vertex v′, then the collapse r : K → K \ v is a strong equivalence.
Under a finite number of steps one attains a complex K0 which is mini-
mal, that is, it does not have dominated vertices. This minimal complex
is unique up to simplicial isomorphism.

The next result establishes two combinatorial upper bounds for the
simplicial category which do not exist for the usual LS-category.

Corollary 2.11. scatK is strictly bounded from above by both:

1. The number of vertices of K.
2. The number of maximal simplices of its core K0.

Proof: The star of a vertex st(v), v ∈ K0, is a strong collapsible subcom-
plex of K0 because all vertices in st(v) are dominated by v. Therefore,
the family {st(v) : v ∈ K0} provides a cover of K0 by categorical sub-
complexes, and so we have that scatK0 < m, where m is the number of
vertices of K0. Since the value of scatK is a strong homotopy invariant,
scatK = scatK0 < m.

On the other hand, let M(K0) be the number of maximal simplices
of K0. Then, from Proposition 2.5 it follows that scatK0<M(K0) be-
cause any maximal simplex is a strong collapsible subcomplex of K0.
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2.4. Geometric simplicial category. In [9], the authors also intro-
duced the notion of geometric simplicial category gscatK of the com-
plex K, which is the analogue of the geometric LS-category of a topo-
logical space introduced by Fox in [10], see also [6, §3.1]. The difference
with scatK is that each subcomplex in a categorical covering is required
to be strongly collapsible in itself, rather than in the ambient complex;
in other words, the identity, rather than the inclusion, is in the con-
tiguity class of a constant map. Clearly, scatK ≤ gscatK. However,
as in the continuous case, there are complexes where this inequality is
strict; for example, in the standard triangulation of the 2-dimensional
torus. Geometric simplicial category has a very different behaviour from
that of the ordinary category. In particular it is neither hereditary nor
homotopically invariant. However, the bounds of Corollary 2.11 are still
true for gscatK because gscatK0 = max{gscatL : L ∼ K}, as proven
in [9].

Definition 2.12. Let K and L be two finite simplicial complexes. We
define the join K ∗L as the simplicial complex with set of vertices K0 ∪
L0 and with simplices the simplices of K, the simplices of L, and the
simplices given by σ ∪ τ , σ simplex in K and τ simplex in L.

Proposition 2.13. Let K, L be two finite simplicial complexes, then
gscat(K ∗ L) ≤ min{gscatK, gscatL}.
Proof: Suppose that min{gscatK, gscatL} = gscatK = n, then there
are n + 1 strong collapsible subcomplexes U0, . . . , Un covering K. Con-
sider the subcomplexes U0∗L, . . . , Un∗L. These subcomplexes are strong
collapsible [3, Proposition 5.1.16 ] and they provide a cover of K ∗L.

3. Barycentric subdivision

We now study the behaviour of scat under barycentric subdivisions.
Our main result states that scat is decreasing under such kind of subdi-
visions.

Theorem 3.1. Let sdK be the first barycentric subdivision of the sim-
plicial complex K. Then scat(sdK) ≤ scatK.

This theorem was proved in [9, Corollary 6.7] using results of Barmak
and Minian (precisely, [4, Proposition 4.11 and Proposition 4.12]) about
finite spaces. We shall reformulate them in order to give a direct proof.

If K is an abstract simplicial complex, its first barycentric subdivision
can be defined formally as the complex sdK whose vertices {σ} are
identified to the simplices σ = {v0, . . . , vp} of K, while the simplices
of sdK are the sequences {σ1, . . . , σq} of simplices of K such that σ1 ⊂
· · · ⊂ σq (see [16, §2.1]).
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Definition 3.2. Let ϕ : K → L be a simplicial map. The induced map
sdϕ : sdK → sdL is defined as

(sdϕ)({σ1, . . . , σq}) = {ϕ(σ1), . . . , ϕ(σq)}.

Clearly sdϕ is a simplicial map, sd id = id and sd(ϕ ◦ ψ) = (sdϕ) ◦
(sdψ).

Proposition 3.3. If the simplicial maps ϕ,ψ : K → L are in the same
contiguity class, ϕ ∼ ψ, then sdϕ, sdψ : sdK → sdL are in the same
contiguity class, sdϕ ∼ sdψ.

Proof: Without loss of generality, we may assume that the maps ϕ and ψ
are contiguous, ϕ ∼c ψ, which means that ϕ(σ) ∪ ψ(σ) is a simplex, for
any simplex σ ∈ K. Let F : sdK → sdL be the map given by

F ({σ1, . . . , σq}) = {ϕ(σ1) ∪ ψ(σ1), . . . , ϕ(σq) ∪ ψ(σq)}.

We shall prove that sdϕ ∼ F by increasing step by step the size of the
set

Ω(sdϕ, F ) = {σ ∈ K : (sdϕ)({σ}) = F ({σ})}.

Note that (sdϕ)({σ}) = {ϕ(σ)}, while F ({σ}) = {ϕ(σ) ∪ ψ(σ)}.
If sdϕ = F there is nothing to prove. Otherwise, there exists µ ∈ K

such that µ /∈ Ω(sdϕ, F ), or equivalently, ϕ(µ) is strictly contained in
ϕ(µ)∪ψ(µ). Let us take µ to be of maximal dimension with this property;
in this way ϕ(σ) = ϕ(σ) ∪ ψ(σ) when µ is a proper face of σ. Now, we
can define a new map F1 : sdK → sdL as

F1({σ}) =

{
(sdϕ)({σ}) if σ 6= µ,

F ({µ}) if σ = µ.

It follows:

(1) The map F1 is simplicial. In fact, if {σ1, . . . , σq} is a simplex
of sdK, then

F1({σ1, . . . , σq}) = {ϕ(σ1), . . . , ϕ(σq)},

if σj 6= µ for all j = 1, . . . , q, while

F1({σ1, . . . , σq}) = {ϕ(σ1), . . . , ϕ(µ) ∪ ψ(µ}, . . . , ϕ(σq)},

if σj = µ for some j. In both cases the image is a simplex of sdL. Note
that in the second case, by the maximality of µ cited above, it follows
that ϕ(µ) ∪ ψ(µ) ⊂ ϕ(σi) if i > j.
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(2) We have sdϕ ∼c F1, because if {σ1, . . . , σq} ∈ sdK then

(sdϕ)({σ1, . . . , σq}) ∪ F1({σ1, . . . , σq})
= {ϕ(σ1), . . . , ϕ(σq)} ∪ {F1({σ1}), . . . , F1({σq})},

which equals the simplex

{ϕ(σ1), . . . , ϕ(σj−1), ϕ(σj) ∪ ψ(σj), . . . , ϕ(σq) ∪ ψ(σq)},
where j is the lowest index such that σj = µ, if such a j exists.

(3) Finally, Ω(sdϕ, F )  Ω(F1, F ), by the definition of F1.

By repeating this construction we shall obtain a sequence of contigu-
ous maps sdϕ ∼c F1 ∼c · · · ∼c F , which shows that sdϕ ∼ F . Using the
same argument for ψ, we can prove that sdψ ∼ F . Thus sdϕ ∼ sdψ, as
claimed.

Remark 3.4. However, subdivision does not preserve the strong homo-
topy type, as shown by the following example taken from [3, Exam-
ple 5.1.13]. Consider K to be the boundary of a 2-simplex and sdK
its barycentric subdivision as in Figure 3. They are both minimal com-
plexes because they have no dominated vertices, but they are not iso-
morphic, therefore they do not have the same strong homotopy type (see
Lemma 6.9).

K sdK

Figure 3. The simplicial complex K does not have the
same strong homotopy type of its subdivision sdK.

Proof of Theorem 3.1: Let scatK = n, and take a categorical covering
U0, . . . , Un of K. Consider the subcomplexes sdU0, . . . , sdUn, which
cover sdK. Since each inclusion Ij : Uj ⊂ K is in the contiguity class
of some constant map vj : Uj → K, denoted by Ij ∼ vj , it follows
from Proposition 3.3 that sd Ij ∼ sd vj . But it is clear that sd Ij is
the inclusion sdUj ⊂ sdK, while sd vj is the constant map {vj}. Then
each sdUj is a categorical subcomplex and scat(sdK) ≤ n.

Corollary 3.5. Let K be a finite simplicial complex and let sdK be the
first barycentric subdivision. Then, scatK = 1 implies that scat(sdK) =
1.
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Proof: In [4, Theorem 4.15] it is proved that a complex K is strongly
collapsible if and only if sdK is strongly collapsible. In other words,
scatK = 0 if and only if scat(sdK) = 0. Jointly with our Theorem 3.1
this ends the proof.

Example 3.6. The following example, suggested to the third author
by J. Barmak, shows a complex where the inequality of Theorem 3.1 is
strict.

Let K be the complete graph K5 (see Figure 4) considered as a 1-di-
mensional simplicial complex.

K5

v1

v0 v2

v4 v3

Figure 4. The graph K = K5 verifies scat(sdK) < scatK.

Let us consider the following categorical cover of K:

U0 = v0v1 ∪ v0v2 ∪ v0v3 ∪ v0v4,

U1 = v1v4 ∪ v1v2 ∪ v2v3,

U2 = v1v3 ∪ v3v4 ∪ v2v4.

Therefore scatK5 ≤ 2. Moreover, there is no cover of two categorical
subcomplexes. In fact, if it happens, then one of the two subcomplexes
has to contain at least 5 edges. Moreover, any tree contains one more
vertex than the number of edges. Hence, any forest with 5 edges should
have at least 6 vertices, which is impossible in our complex.

We conclude that there is not any categorical subcomplex with at least
5 vertices, therefore there is no covering of K5 given by two categorical
subcomplexes. Hence we have scatK = 2.

On the other hand, the first barycentric subdivision sdK has a cov-
ering with two categorical subcomplexes given, for example, by the two
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subcomplexes that are showed in Figure 5: L0, drawn with continuous
edges, and L1, drawn with dashed edges. Since sdK5 is not strongly
collapsible we can conclude that 1 = scat(sdK5) < scatK5 = 2.

v1

v0 v2

v4 v3

v01 v12

v02

v14 v13

v04 v23
v03 v24

v34

Figure 5. A covering of sdK5 with two categorical subcomplexes.

Remark 3.7. Note that scatK5 equals the arboricity of K5 minus one;
later we shall prove that this is a general result for any graph (Theo-
rem 8.12).

It is interesting to point out that Theorem 3.1 can be extended to
the geometrical simplicial category, that is, gscat(sdK) ≤ gscatK with
an analogous argument. In addition, notice that the complex sdK5

(Figure 5) can be covered with two trees and thus, gscat(sdK5) = 1.

4. Geometric realization

A natural question is to compare the simplicial category of the com-
plex K with the LS-category of X = |K|, the so-called geometric real-
ization of K [20, §3.1].

We recall the classical definition of Lusternik–Schnirelmann category
of a topological space. For general properties of this invariant we refer
to [6].

Definition 4.1. An open subset U of the topological space X is called
categorical if U can be contracted to a point inside the ambient space X.
The LS-category of X, denoted by catX, is the least integer n ≥ 0 such
that there is a covering of X by n+ 1 categorical open subsets.
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It is known (see Proposition 1.10 of [6]) that, when the space X is a
normal ANR, the categorical sets in Definition 4.1 can be taken to be
closed instead of open. In particular, this is the case for the geometric
realization X = |K| of a finite abstract simplicial complex (see [17,
§II.4], also [7, p. 84] and the references and comments in [15, p. 247]).

On the other hand, O. Randal-Wallis pointed out to the second au-
thor the following example, showing that categorical sets can be rather
pathological.

Example 4.2. Let X = [0, 1] be the unit interval and let F be the
Cantor set. Then F is contractible in X and has not the homotopy type
of a finite CW-complex. This is because F is totally disconnected but
non-discrete (see [11, §5.1]).

Anyway, the following theorem shows that, when X = |K| is the geo-
metric realization of an abstract simplicial complex K, the LS-category
of X can be computed by means of a closed categorical covering whose
sets are subcomplexes of K in a certain subdivision. This result is es-
sentially stated, but without proof, in Fox’s paper [10, §3].

Theorem 4.3. If X = |K| then catX ≤ n if and only if there exist
subcomplexes L0, . . . , Ln of some subdivision K ′ of K, such that each |Lj |
is contractible in X and X = |L0| ∪ · · · ∪ |Ln|.

The proof of the above Theorem 4.3 can be sketched as follows:
a categorical covering of X has a Lebesgue number δ. Recall that
the mesh of a simplicial complex is the supremum of the diameters of
all its simplices [20]. If we take a subdivision sdnK of K such that
mesh(sdnK) < δ, then, by considering the subcomplexes formed by the
simplices contained on each element of this covering, a categorical cov-
ering by subcomplexes is obtained.

We now state the precise relation between the simplicial category of
a complex and the topological LS-category of its geometric realization.

Theorem 4.4. Let K be a finite simplicial complex. Then cat |K| ≤
scatK.

Proof: Let scatK = n and let {U0, . . . , Un} be a categorical simpli-
cial covering of K, that is, each inclusion Ij : Uj → K is in the same
contiguity class that a constant map vj . Therefore, the induced maps
|Ij |, |vj | : |Uj | → |K| between the geometric realizations are homotopic,
|Ij | ' |vj | (see [20, §3.4]). It is clear that |Ij | is the inclusion |Uj | ⊂ |K|,
and |vj | is a constant map. Thefore the subspaces |U0|, . . . , |Un| form a
categorical closed cover of |K|. As we commented before, since |K| is a
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normal ANR we can consider closed covers instead of open covers. Then
cat |K| ≤ n.

Corollary 4.5. cat |K| ≤ scat(sdN K), for any iterated barycentric sub-

division sdN K of the complex K.

Proof: The geometric realizations |sdK| and |K| are homeomorphic (see
for instance [16, Proposition 2.33]).

Example 4.6. The inequality in Corollary 4.5 may be strict. For in-
stance, the complex K in Figure 6 is topologically contractible (it is
collapsible), that is cat |K| = 0, but all the barycentric subdivisions
have simplicial category one.

v

b

σ

a c

Figure 6. A collapsible but not strongly collapsible
complex K. The subcomplex L = K \ σ does not have
the contiguity extension property.

This happens because, as proven by Barmak and Minian in [4, Theo-
rem 4.15], a complex is strongly collapsible if and only if its barycentric
subdivision is strongly collapsible. In other words, scatK = 0 if and only
if scat(sdK)=0. But the complex K is not strongly collapsible (it has no
dominated vertices) and can be covered by two categorical subcomplexes,

so scatK = 1. By applying Theorem 3.1 we have 0 < scat(sdN K) ≤ 1
for all N .

5. Products

We recall the definition of categorical product (see Remark 5.2 below
for an explanation of our notations).
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Definition 5.1. Let K, L be two abstract simplicial complexes. The
categorical product K×L is defined as follows. The vertices of K×L are
the pairs (v, w) of vertices with v ∈ K and w ∈ K. The simplices of K×L
are the sets of vertices {(v1, w1), . . . , (vq, wq)} such that {v1, . . . , vq} is a
simplex of K and {w1, . . . , wq} is a simplex of L.

We fix some notation.
For n ≥ 1, we shall denote Kn = K× n). . .×K. By definition, the pro-

jections πj : K → Kn, j = 1, . . . , n, onto each factor are simplicial maps.
The diagonal map ∆: K → Kn defined by ∆(v) = (v, . . . , v) is simplicial
too. A map L → Kn is simplicial if and only if the compositions with
all the projections are simplicial maps.

If ϕ1, . . . , ϕn : K → L are simplicial maps, the map (ϕ1, . . . , ϕn) : K →
Ln defined by

(ϕ1, . . . , ϕn)(v) = (ϕ1(v), . . . , ϕn(v))

is simplicial.
If ϕ : K → L is a simplicial map then we denote by ϕn : Kn → Ln

the map

ϕn(v1, . . . , vn) = (ϕ(v1), . . . , ϕ(vn)),

which is simplicial.

Remark 5.2. Our Definition 5.1 of categorical product is Definition 4.25
in [16], but we changed the notation K

∏
L to K × L for the sake of

simplicity. This categorical (or simplicial) product should not be con-
fused with the so-called cartesian product [8, §II.8], which depends on
some ordering of the vertices and does not verify the universal property
of a product. As an example, the categorical product ∆1 × ∆1 is iso-
morphic to ∆3, while the cartesian product is ∆2. Also note that |Kn|
is not homeomorphic to |K|n. However, as Kozlov proves in [16, Propo-
sition 15.23], the geometric realizations of both products have the same
homotopy type, so |Kn| ' |K|n (see also [16, Theorem 10.21]).

The next proposition establishes two natural results about contiguity
of maps on categorical products that can be proved in a straightforward
way.

Proposition 5.3. 1. Let ϕ,ψ : K → L and ϕ′, ψ′ : K ′ → L′ be sim-
plicial maps such that ϕ ∼c ψ and ϕ′ ∼c ψ′. Then ϕ × ϕ′ ∼c
ψ × ψ′ : K ×K ′ → L× L′.

2. Let ϕ ∼c ψ : K → L and ϕ′ ∼c ψ′ : K → L′, then (ϕ,ϕ′) ∼c
(ψ,ψ′) : K → L× L′.
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Corollary 5.4. Let K ∼L be two complexes with the same strong ho-
motopy type. Then Kn ∼ Ln.

At this point we are in conditions to prove the main result of this
section. It is interesting to point out that the corresponding result for the
classical LS-category is cat(X×Y ) ≤ catX+catY when the topological
space X × Y is completely normal [6, Theorem 1.37], while the result
catE + 1 ≤ (catB + 1)(catF + 1) is true for an arbitrary fibration [6,
Theorem 1.41].

Theorem 5.5. Let K and L be finite simplicial complexes. Then

scat(K × L) + 1 ≤ (scatK + 1)(scatL+ 1).

Proof: Suppose that scatK = n and scatL = m, therefore there ex-
ists a categorical covering U0, . . . , Un of K and a categorical covering
V0, . . . , Vm of L. Consider the subcomplexes Ui × Vj ⊂ K × L, for
0 ≤ i ≤ n and 0 ≤ j ≤ m. We want to show that Ui × Vj form a
categorical covering of K × L.

Each inclusion map iUi is in the same contiguity class of a constant
map cui

where ui is a vertex of K; analogously, each inclusion iVj
is

in the same contiguity class of a constant map cvj where vj is a vertex
in L. By Proposition 5.3 the map iUi

× iVj
: Ui × Vj → K × L is in the

same contiguity class of the map cvi × cwj : Ui × Vj → K × L. Clearly,
iUi × iWj = iUi×Vj and cvi × cwj = c(vi,wj), where (vi, wj) is a vertex
of K × L. Therefore the subcomplexes Ui × Vj are categorical.

Now, we shall prove that {Ui × Vj} is a covering of K × L. If
{(v0, w0), . . . , (vq, wq)} is a simplex of K × L then {v0, . . . , vq} is con-
tained in a subcomplex Ui of K and {w0, . . . , wq} is contained in a sub-
complex Wj of L. Then {(v0, w0), . . . , (vq, wq)} is contained in Ui × Vj .
Thus, we conclude that scat(K × L) + 1 ≤ (n+ 1)(m+ 1).

6. Whitehead construction

It is well known that for topological spaces X with “good proper-
ties” there is the following so-called Whitehead characterization of the
topological LS-category (see [6, Theorem 1.55]):

Theorem 6.1. catX ≤ n if and only if the diagonal map ∆: X → Xn+1

factors (up to homotopy) through the so-called fat wedge Tn+1X.

This result is a very useful tool for computing LS-category. In this
section we shall try to adapt it to abstract simplicial complexes.
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First we define a simplicial version of the topological fat wedge TnX
of a topological space X [6, §1.6]. Also, we shall briefly develop the
notion of pointed contiguity class.

Let K be an abstract simplicial complex and fix some vertex v0 of K
as a base point. For each j = 1, . . . , n let

(1) Kj = π−1
j ({v0}) = K × · · · × {v0} × · · · ×K

be the subcomplex of Kn spanned by the vertices whose j-th coordinate
is the base point v0.

Definition 6.2. For n ≥ 1 the n-th fat wedge TnK is the subcomplex
K1 ∪ · · · ∪Kn ⊂ Kn.

For instance, T 1K = {v0} is a point and T 2K is the wedge K ∨K.
Note that TnK is not a full subcomplex of Kn.

A pointed map (that is, a simplicial map preserving the base points)
ϕ : (K, v0)→ (L,w0) induces a simplicial map Tnϕ : TnK → TnL, which
is the restriction of ϕn : Kn → Kn.

Proposition 6.3. Let ϕ,ψ : K → L be two contiguous simplicial maps
preserving the base points. Then the induced maps Tnϕ, Tnψ : TnK →
TnL are contiguous.

Proof: The maps ϕn, ψn : Kn → Ln are contiguous by Proposition 5.3.
Moreover they send each subcomplex Kj into itself.

Corollary 6.4. Let (K, v0) ∼ (L,w0) be two pointed simplicial com-
plexes with the same pointed strong homotopy type, that is, we assume
that the homotopy equivalences ϕ, ψ between K and L, as well as the se-
quences of contiguous maps defining the relations ψ◦ϕ ∼ 1K and ϕ◦ψ ∼
1L, preserve the base points. Then TnK ∼ TnL.

We are now in position to discuss the Whitehead formulation of the
simplicial LS-category. In order to be systematic we follow the ap-
proach of [6, §1.6], by defining a so-called simplicial Whitehead cat-
egory scatWhK and trying to compare it to the simplicial LS-cate-
gory scatK.

Definition 6.5. We say that scatWhK ≤ n if the diagonal map ∆: K →
Kn+1 factors through the fat wedge Tn+1K up to contiguity class. That
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is, there exists some simplicial map δ : K → Tn+1K such that I ◦ δ ∼ ∆,
where we denote by I : Tn+1K ⊂ Kn+1 the inclusion:

Tn+1K
� � I // Kn+1

K

δ

OO

∆

99

Theorem 6.6. scatK ≤ scatWhK.

Proof: Assume that scatWhK = n, and let δ : K → Tn+1K be as in
Definition 6.5. Let πj : Kn+1 → K be the projections onto each factor.
Let Kj ⊂ Tn+1K, j = 1, . . . , n+ 1, be the subcomplexes defined in (1).

Since I ◦ δ ∼ ∆, there exists a sequence I ◦ δ = ϕ1, ϕ2, . . . , ϕm = ∆
of maps such that ϕi and ϕi+1 are contiguous. Call Lj = ∆−1(Kj)
the preimages of the Kj ⊂ Tn+1K defined above. Clearly, K = L1 ∪
· · · ∪ Ln+1. It only remains to show that each subcomplex Lj ⊂ K
is categorical, that is, each inclusion map Ij : Lj ⊂ K is in the same
contiguity class that a constant map.

Since ϕi ∼c ϕi+1 : K → Kn+1 it follows that

πj ◦ ϕi ◦ Ij ∼c πj ◦ ϕi+1 ◦ Ij : Lj → K.

Now, πj ◦ϕ1 ◦ Ij = πj ◦ I ◦ δ ◦ Ij , which is the constant map cv0 because
∆(Lj) ⊂ Kj . On the other hand, πj ◦ ϕm ◦ Ij = πj ◦ ∆ ◦ Ij is the
inclusion Ij . Then Ij ∼ cv0 .

We have found n+ 1 categorical subcomplexes covering K, therefore
scatK ≤ n.

In this section we shall prove that the converse inequality of Theo-
rem 6.6 is not true, by exhibiting an example of a complex K such that
scatK = 1 while scatWhK > 2. The proof of the next propositions is
inspired by a result about finite co-H-spaces proved in [14].

First we prove that the simplicial Whitehead category is an invariant
of the pointed strong homotopy type.

Proposition 6.7. If (K, v0) ∼ (L, v0) is a pointed strong equivalence as
in Corollary 6.4, then scatWhK = scatWh L.

Proof: Let scatWh L = n. Consider the following diagram and the strong
equivalences Kn+1 ∼ Ln+1 (Corollary 5.4) and Tn+1K ∼ Tn+1L (Corol-
lary 6.4).
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Kn
ϕn

//
Ln

ψn
oo

Tn+1K

IK

??

Tn+1ϕ //
Tn+1L

Tn+1ψ

oo

IL

BB

K

δK

OO

∆K

GG

ϕ //
L

ψ
oo

δL

OO

∆L

HH

With the obvious notations, from the relations ψ◦ϕ ∼ 1K and ϕ◦ψ ∼ 1L
it follows that

ψn+1 ◦ ϕn+1 ∼ 1Kn+1 , ϕn+1 ◦ ψn+1 ∼ 1Ln+1 ,

as well as

Tn+1ψ ◦ Tn+1ϕ ∼ 1Tn+1K , Tn+1ϕ ◦ Tn+1ψ ∼ 1Tn+1L.

Moreover, from the definitions, we have

IL ◦ Tn+1ϕ = ϕn ◦ IK , IK ◦ Tn+1ψ = ψn ◦ IL,

as well as

∆L ◦ ϕ = ϕn ◦∆K , ∆K ◦ ψ = ψn ◦∆L.

Define

δK := Tn+1ψ ◦ δL ◦ ϕ.
Since, from hypothesis, IL ◦ δL ∼ ∆L, it follows

IK ◦ δK = (IK ◦ Tn+1ψ) ◦ δL ◦ ϕ
= ψn ◦ (IL ◦ δL) ◦ ϕ ∼ (ψn ◦∆L) ◦ ϕ
= ∆K ◦ (ψ ◦ ϕ) ∼ 1K .

Then scatWhK ≤ scatL. The other inequality is proved in the same
way.

Clearly, we may assume that the base point v0 is in the core K0,
hence eliminating dominated vertices is a pointed equivalence (K, v0) ∼
(K0, v0).
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Corollary 6.8. The simplicial Whitehead category of a complex equals
that of its core, scatWhK = scatWhK0.

We are now in a position to prove the main results of this section.

Lemma 6.9 ([4, Proposition 2.7]). Let K0 be a minimal complex and
let ϕ : K0 → K0 be a simplicial map which lies in the same contiguity
class as the identity. Then ϕ is the identity.

Theorem 6.10. Let K be a simplicial complex such that scatWhK ≤ 1.
Then K is strongly collapsible, which is equivalent to scatK = 0.

Proof: If scatWhK = 0 then the result follows from Theorem 6.6.
If scatWhK=1 we have, from Corollary 6.8, that scatWhK0 = 1. This

means that there exists a simplicial map ϕ : K0 → T 2K0 such that i◦ϕ ∼
∆, where ∆: K0 → (K0)2 is the diagonal map. Let π1, π2 : (K0)2 → K0

be the projections of the categorical product. Then

i ◦ ϕ ∼ ∆ =⇒ π1 ◦ i ◦ ϕ ∼ π1 ◦∆ = 1 =⇒ π1 ◦ i ◦ ϕ = 1

because K0 is a minimal complex (Lemma 6.9). Remember that in the
proof of Theorem 6.6 we denoted by L1 (respectively, L2) the subcom-
plex ϕ−1({v0} ×K) (resp. ϕ−1(K × {v0})). Then, for v ∈ L1 we have
v0 = π1 ◦ i ◦ ϕ(v) = v because ϕ(v) ∈ L1, which shows that L1 = {v0}.
Analogously, π2 ◦ i ◦ ϕ = 1 = π2 ◦∆ proves that L2 = {v0}. Then the
core K0 = L1 ∪ L2 = {v0} is a point, that is, the complex K has the
strong homotopy type of a point.

Example 6.11. The complex K in Figure 6 has scatK = 1 so it is
not strongly equivalent to a point. From Theorem 6.10 its Whitehead
simplicial category is at least 2. Then scatWhK > scatK.

7. Cofibrations

We now briefly discuss the notion of cofibration in the simplicial set-
ting.

The “homotopy extension property” is a very important notion in
topology. A cofibration is a map A → X which satisfies the homotopy
extension property with respect to all spaces. It is well known (see [13,
p. 14] or [17, p. 68]) that if A is a subcomplex of a CW-complex X
then the pair (X,A) has the homotopy extension property. Therefore, if
L ⊂ K is a subcomplex of a simplicial complex, the pair (|K|, |L|) of the
geometric realizations has the (topological) homotopy extension prop-
erty. We want to define a purely combinatorial analogue for a simplicial
pair(K,L).
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Definition 7.1. A simplicial map i : L→ K has the contiguity extension
property if given two simplicial maps ϕ,ψ : L→M which lie in the same
contiguity class, ϕ ∼ ψ, and given an extension of ϕ (that is, a simplicial

map ϕ̃ : K → M such that ϕ̃ ◦ i = ϕ), there exists an extension ψ̃ of ψ

with ϕ̃ ∼ ψ̃:

L

i

��

ϕ //

ψ
// M

K

ϕ̃

==

ψ̃

==

Example 7.2. Let K0 be the core of the complex K. Then the inclu-
sion i : K0 ⊂ K is a simplicial cofibration. In fact, as explained before,
there is a simplicial retraction r : K → K0 such that r ◦ i = 1K0

and

i ◦ r ∼ 1K . Then one can take ψ̃ = r ◦ ψ because ϕ̃ ∼ ϕ ◦ r.
As an application of Theorem 6.10, we shall show that there are sim-

plicial pairs (K,L) that do not have the extension property.

Theorem 7.3. Let K be a connected simplicial complex with scatK =
n. Assume that there is a categorical covering L1, . . . , Ln+1 of K such
that all the pairs (K,Lj) have the contiguity extension property. Then
scatWhK = n.

Proof: Due to Theorem 6.6 we only have to prove that scatWhK ≤ n.
By hypothesis, each inclusion Ij : Lj → K is in the same contiguity class
that some constant map, whose image is a vertex vj . Since two such
constant maps are contiguous if and only if the vertices vi, vj lie on the
same simplex, and K is connected, we can suppose that all the vertices
are equal, say to some base point v0. Taking i = Ij , ϕ = Ij , ψ = v0,

and ϕ̃ = 1K , the simplicial extension property gives maps ψ̃j ∼ 1K such

that ψ̃j(Lj) = {v0}. Define the map

δ : K → Tn+1K, δ(v) = (ψ̃1(v), . . . , ψ̃n+1(v)).

It is well defined, because each vertex v is contained in some Lj , hence

ψ̃j(v) = v0, meaning that the j-th coordinate of δ(v) is the base point.
Moreover δ is a simplicial map. In fact, for any simplex σ ∈ K we
have that δ(σ) is a simplex in Kn (Definition 5.1). Moreover, σ must
be contained in some Lj , and δ(Lj) ⊂ Kj . Then δ(σ) ∈ Kj ⊂ Tn+1K.
Now, let

ψ̃j = ϕ1
j ∼c · · · ∼c ϕmj = 1K
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be the sequence of contiguous maps connecting ψ̃j and 1K (clearly we
may assume that the length m does not depend on j). Then the maps

(ϕ̃k1 , . . . , ϕ̃
k
n+1) : K → Kn+1, k = 1, . . . ,m,

define a sequence of contiguous maps between J ◦δ = (ψ̃1, . . . , ψ̃n+1) and
∆ = (1, . . . , 1). Hence J ◦ δ ∼ ∆, which means that scatWhK ≤ n.

Remark 7.4. It is interesting to point out that from Theorem 7.3 and
the proof of Theorem 6.6 it follows that scatK = scatWhK if and only
if there is a categorical covering L1, . . . , Ln+1 where each pair (K,Lj)
has the contiguity extension property.

As a corollary, some categorical covering of the complex K in Figure 6
fails to verify the hypothesis of the preceding theorem, because scatK=1
but scatWhK > 2.

Example 7.5. The subcomplex L = K\σ, of the complex K in Figure 6,
where σ = {a, b, c}, has not the contiguity extension property. Let v be
the upper vertex of K (see Figure 6). Since L is strongly collapsible to v,
the inclusion ϕ = i : L → K and the constant map ψ = cv : L → K lie
in the same contiguity class. Fix ϕ̃ = 1K : K → K to be the identity. If
there exists ψ̃ ∼ 1K such that ψ(L) = {v} there must be some sequence

ψ̃ ∼c ϕ1 ∼c · · · ∼c 1K of contiguous maps. However, since a, b, c ∈ L, the
simplicial map ϕ1 must be constant, and we obtain that 1K is contiguous
to a constant map, which is a contradiction because scatK 6= 0.

Example 7.6. A simpler example was communicated to us by N. Scov-
ille: let K be the 1-dimensional complex in Figure 7, with vertices a,
b, c and let σ be the 1-simplex joining the vertices b and c. Then the
subcomplex L = K \ σ has not the contiguity extension property.

b

a

c

σ

Figure 7. The subcomplex L = K \ σ has not the
contiguity extension property.
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8. Graphs

8.1. Arboricity. This section is focused on the study of the simplicial
LS-category in the one-dimensional case, that is, on graphs. The well
known graph-theoretical notion of arboricity will play a central role in
this study. Basically, arboricity is based on the cardinality of minimal
decompositions of a graph into disjoint spanning forests, i.e., acyclic sub-
graphs, which are non-necessarily connected and cover all the vertices.

The aim of this section is to prove that arboricity coincides (up to
one) with both simplicial and geometric simplicial categories.

Remark 8.1. In [1], Aaronson and Scoville introduced a so-called dis-
crete LS-category in the simplicial setting. They proved that, for the
1-dimensional case, it is equivalent to arboricity.

Let us start with some basic notions on graph theory. A general ref-
erence is Harary’s book [12].

Definition 8.2. Let G be a graph. A cycle in G is an alternating
sequence of distinct vertices and edges, v0, e1, v1, . . . , vn−1, en, vn, where
the incident vertices of each edge ei are vi−1 and vi respectively, and
such that v0 = vn.

Under a topological point of view, cycles are triangulations of the
circle S1.

Definition 8.3. A forest is a graph without cycles, alternatively it can
be called acyclic graph. A tree is a connected forest.

Definition 8.4. The arboricity of a graph G, denoted by Υ(G), is the
minimum number of edge-disjoint spanning forests into which G can be
decomposed.

Nash-Williams [19] determined the arboricity of a general graph:

Theorem 8.5 ([12, Theorem 9.10]). Let G be a nontrivial graph and let
qn be the maximum number of edges in any subgraph of G with n vertices.
Then

Υ(G) = max
n

⌈
qn

n− 1

⌉
.

Example 8.6. For the particular case of complete graphs (see Figure 4)
it follows the following formula: Υ(K2n) = n = Υ(K2n−1).

8.2. Categorical subgraphs and forests. Now we prove some results
which will be used later in this section.
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Remark 8.7. Every standard elementary collapse in a graph is the dele-
tion of a so-called leaf vertex v and the unique edge vv′ containing v.
Thus v is dominated by v′ and hence, in graphs, every elementary col-
lapse is an elementary strong collapse.

Lemma 8.8. Let G be a connected graph and let L ⊂ G be a subgraph
containing at least one cycle C. If ϕ : L → G is a simplicial map con-
tiguous to the inclusion iL : L → G, then ϕ(L) contains the cycle C.
Moreover ϕ(L) ⊂ L and ϕ|C is the inclusion iC : C → G.

Proof: Every edge e in L satisfies that ϕ(e) ∪ e is a simplex in G (for
graphs, “simplex” means a vertex or an edge), so, equivalently ϕ(e) ⊆ e;
therefore, either ϕ(e) = e or ϕ(e) is one of the extreme vertices of e.
This implies that ϕ(L) ⊆ L.

Let C be a cycle contained in L and let us consider the restrictions
to C of ϕ and the inclusion iL, denoted by ϕ|C and iC respectively, which
are also contiguous as consequence of the fact that the composition of
contiguous maps is contiguous. So, if ϕ maps every edge of the cycle C
onto itself then ϕ(C) = C and hence ϕ(L) contains the cycle C. Other-
wise, there exists an edge e1 in C such that ϕ(e1) 6= e1; we can suppose
without loss of generality that ϕ(e1) = v0. Now let us consider the
edge e2 which is adjacent to e1 in v1 6= v0. Since the map ϕ is simplicial,
we have ϕ(v1) = v0, which is a contradiction with ϕ(e2) ⊆ e2. Finally,
we conclude that all the edges in C remain fixed by ϕ so ϕ(L) contains
at least one cycle.

Remark 8.9. Let P ⊂ G be a a path in a graph, such that there is
a simplicial map ϕ : P → G contiguous to the inclusion iP : P → G.
By the same argument of the proof above, any edge e contained in P
satisfies that either ϕ(e) = e or ϕ(e) = u, where u is one of the extreme
vertices of e with degree 1, i.e. u is a so-called leaf vertex of P . Thus, we
conclude that the only possible reductions induced by a simplicial map
contiguous to the inclusion are given by standard collapses.

The next result establishes the equivalence for graphs between the
notions of categorical subcomplex and acyclic subgraph.

Theorem 8.10. Let G be a connected graph and let L ⊆ G be a subgraph.
Then L is categorical in G if and only if L is a forest.

Proof: Let us suppose that there exists a categorical but non-acyclic
subgraph L ⊂ G. By definition, there exists a vertex v ∈ G such that the
inclusion i = iL : L→ G and the constant map c = cv : L→ G are in the
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same contiguity class, which gives a sequence iL = ϕ1 ∼c · · · ∼c ϕm = cv
of directly contiguous maps ϕi : L→ G.

Now, since iL ∼c ϕ2 and L contains at least one cycle C, by taking
into account the previous lemma we conclude that ϕ2(L) contains at
least the cycle C. Moreover, (ϕ2)|C = iC is the inclusion iC : C ⊂ G.
Now, ϕ2 ∼c ϕ3 implies, by composing with the inclusion ϕ2(L) ⊂ L,
that iC = (ϕ2)|C ∼c (ϕ3)|C . That means, by applying the lemma again,
that ϕ3(C) is the cycle C, and by repeating the argument we shall arrive
to a cycle that can be deformed into a point, which is impossible. Hence
we conclude that L is an acyclic subgraph of G, that is, L is a forest.

Conversely, let us assume that L is a forest, so L is a disjoint union of
trees Ti with i = 1, . . . , n. It is clear that each inclusion map Ti ⊂ G is
in the same contiguity class as the constant map sending the tree Ti onto
one of its vertices vi. Since G is connected, there is at least one path
in G joining every vertex vi with a given vertex v0. Then the inclusion
of L is in the same contiguity class as the constant map v. Hence L is a
categorical subcomplex in G.

Lemma 8.11. Let G be a connected graph. For every covering of G
by forests there exists a covering of G by trees with the same number of
elements.

Proof: Let F1, . . . , Fk be a covering of G by forests. Since G is connected,
it follows that given two trees T and T ′ in a forest Fi and any vertices
v ∈ T and v′ ∈ T ′, they can be linked by means of a path in G. By
adding such a path to Fi, and removing, if necessary, the edges of the
path which create cycles and are not contained in Fi, we link the trees T
and T ′ of Fi (see Figure 8).

Fi Ti
v

v′

v

v′

Figure 8. Converting a forest into a tree.
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Repeating the argument for the remaining trees, we obtain one tree Ti
containing Fi. Finally, carrying out the same procedure on every forest
of G, we obtain a covering of G by trees T1, . . . , Tk.

8.3. Main result. We now state the main result of this section.

Theorem 8.12. Let G be a connected graph. Then gscatG = Υ(G)−1.

Proof: Let us suppose that Υ(G) = k + 1, so by definition there exists
a covering of G with k + 1 edge-disjoint spanning forests. By means of
Lemma 8.11 we can construct a covering of G with k + 1 trees. Since
the trees are strongly collapsible we conclude that gscatG ≤ k.

Conversely, let us assume that gscatG = k. It means that there
is a covering of G with k + 1 strongly collapsible subsomplexes. By
Theorem 8.10, these complexes are trees T0, . . . , Tk. Starting from a
tree Ti, we can obtain a spanning forest Fi by adding all the isolated
vertices which are not covered by Ti. Next, if an edge is contained in
several forests, in order to obtain a covering by edge-disjoint forests, we
remove it from all these forests but one. Hence Υ(G) ≤ k + 1.

Corollary 8.13. For any graph G, we have scatG = gscatG=Υ(G)−1.

Proof: Apply again Lemma 8.8 and Theorem 8.10 separately on each
connected component of G.

In Section 3, the behaviour of scat under barycentric subdivisions
was studied. Actually, it was proved that scat(sdK) ≤ scatK. In the
one-dimensional case there are examples where this inequality is strict
(see Example 3.6). Also there are examples of 2-dimensional complexes

where scat(sdN K) remains constant for all N and is strictly greater
than the topological LS-category of the geometric realization cat |K|
(see Example 3.6).

In contrast, in the one-dimensional case it holds the geometric cate-
gory of the first barycentric subdivision always reaches the topological
category of the geometric realization. In fact, the following result states
that this is possible for a certain kind of “local” barycentric subdivision.

Remember that any finite CW complex X satisfies catX ≤ dimX,
therefore cat |K| = 1 for a non-contractible graph.

Proposition 8.14. Let G be a connected graph. If G is a tree then
scatG = cat |G| = 0. Otherwise, let G′ be the subdivision obtained
from G by only bisecting those edges out of a spanning tree in G. Then
scatG′ = cat |G| = 1.
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Proof: Let us consider a spanning tree T in G. It is well known [13,
Proposition 1A.2] that there is a bijection between the edges out of a
spanning tree and the basic cycles generating the one-dimensional ho-
mology of a graph. Now, after every edge out of T is barycentrically
subdivided, the subdivision G′ of G can be covered by two different (non
disjoint) spanning trees T1 and T2 constructed as follows (see Figure 5):
T1 is an expansion of T which is obtained by adding one edge (one of the
subdivided ones) on every leaf vertex of T ; analogously, T2 is obtained
by adding the other edge (not previously added to construct T1) to all
the leaf vertices of T . By definition both T1 and T2 are spanning trees
covering G′ and hence scatG′ = cat |G| = 1.

Example 8.15. Notice that for certain graphs, as the complete ones Kn,
the simplicial LS-category equals the topological LS-category of the re-
alization of the graph by bisecting a fewer number of edges than the
stated one by the above proposition. For example, for K5 only three
edges must be bisected in order to get scatK ′5 = 1 (see Figure 9).

v1

v0 v2
v02

v03
v23

v4 v3

Figure 9. Bisection of three edges to obtain the cate-
gory of the geometric realization.

Corollary 8.16. Let G be a connected graph. Then scat(sdG) = cat |G|.

Remark 8.17. Taking into account the above results, it is interesting
to point out that, in the one-dimensional case, the difference scatG −
scat(sdG) = scatG− cat |G| can be arbitrarily large, as can be checked
by considering the complete graph Kn.
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