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ABSTRACT. We give infinitely many examples to show that, even for simple
groups G, it is possible for the lattice of overgroups of a subgroup H to be the
Boolean lattice of rank 2, in such a way that the two maximal overgroups of H
are conjugate in G. This answers negatively a question posed by Aschbacher.
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1. THE QUESTION

In a recent survey article on the subgroup structure of finite groups [1], in the
context of discussing open problems on the possible structures of subgroup lattices
of finite groups, Aschbacher poses the following specific question. Let G be a finite
group, H a subgroup of G, and suppose that H is contained in exactly two maximal
subgroups M; and Ms of GG, and that H is maximal in both M; and Ms. Does it
follow that M; and My are not conjugate in G?7 This is Question 8.1 in [1]. For G a
general group, he asserts there is a counterexample, not given in [1], so he restricts
this question to the case G almost simple, that is S < G < Aut(.S) for some simple
group S. This is Question 8.2 in [1].

2. THE ANSWER

In fact, the answer is no, even for simple groups G. Two or three examples can
be read off from the Atlas of Finite Groups [4], if one knows where to look. For
convenience, let us call a group G an A-group if the question has an affirmative
answer for G, and a non-A-group otherwise. The smallest example of a non-A-group
seems to be the simple Mathieu group M;, of order 95040.
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Theorem 1. Let G = My, and H = As acting transitively on the 12 points
permuted by Myo. Then H lies in exactly two other subgroups of G, both lying in
the single conjugacy class of mazimal subgroups Lo(11).

Proof. The maximal subgroups of G are well-known, and are listed in the Atlas of
Finite Groups [4, p. 33]. From this list it follows that the only maximal subgroups
of G that contain H are conjugates of the transitive subgroup M = Ly(11). The
maximal subgroups of Aut(G) = M;jo:2 are determined in [9], where it is shown
in particular that the normalizers in Aut(G) of H and M are Aut(H) = S5 and
Aut(M) = PGL5(11) respectively. Since PGLs(11) does not contain Sj, it fol-
lows that there are precisely two conjugates of M that contain H, and that these
conjugates are interchanged by elements of Aut(H) \ H. O

Of course, one example answers the specific question, but does not address the
context in which the question was asked. One needs to consider rather how many
examples there are, or whether the phenomenon just exhibited is relatively common
or rare. The problem considered in [9] was to what extent the maximal subgroups
of an automorphism group Aut(S) of a simple group S can be deduced from those
of the simple group itself. The biggest obstruction to such a reduction turns out
to be the existence of what were called type 2 novelties, that is maximal subgroups
of Aut(S) whose intersection with S, say H, lies in exactly one conjugacy class of
maximal subgroup of S.

In fact, type 2 novelties are a good source of examples of non-A-groups, although
the maximality of H in M; is an extra condition that needs to be checked separately.
Indeed, the results of [9] can be used to deduce the existence of one more example,
that is in the sporadic simple group of Held. The relevant subgroup information,
obtained in [3,9], is summarised in [4, p. 104].

Theorem 2. Let G = He and H = (A5 x A5).2.2. Then H is contained in just two
other subgroups of G, both lying in the single class of maximal subgroups isomorphic

to 54(4)2

Proof. Tt is shown in [3] (see also [9]) that there is a unique class of A; x Aj in
the Held group, and that the normalizer of any As x As in G is a group H of
shape (A5 x As).22, in which there is no normal As. It follows that H lies inside a
maximal subgroup M = 54(4):2. Now in Aut(G) the normalizers of H and M are
S502 and S4(4):4 respectively. But S4(4):4 does not contain S5 2, so the elements
of Aut(H) \ H interchange two G-conjugates of M that contain H. O

The above examples constitute the extent of general knowledge at the time of
the publication of the Atlas.

3. DOUBLY-DELETED DOUBLY-TRANSITIVE PERMUTATION REPRESENTATIONS

Both the examples given so far occur in sporadic groups G. There is also at least
one example in which H is sporadic, but G is a classical simple group.

Theorem 3. Let G = Q7,(2) and H = Mis. Then H is contained in exactly
two other subgroups of G, both lying in the single conjugacy class of subgroups
isomorphic to Aqs.

Proof. In this case there is a crucial error in [4, p. 147] and one needs to use the
corrected list of maximal subgroups of G from [6] or [2]. Note in particular that
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Aut(G) = 27,(2):2 contains maximal subgroups S12 and Aut(M;2) = M;2:2. Since
S12 does not contain Mi5:2, we have essentially the same situation as in the two
previous examples. The only maximal subgroups of G that contain H are conjugates

of M = Ajs, and there are exactly two such conjugates, swapped by elements of
Aut(H)\ H. O

Analysing this example, it is clear that an important property of Mio that is
being used here is that it has two distinct 2-transitive representations on 12 points,
swapped by the outer automorphism. The smallest simple group with such a prop-
erty is L3(2), which has two distinct 2-transitive representations on 7 points. In
characteristic 7, therefore, there is a doubly-deleted permutation representation,
giving rise to an embedding in Q5(7).

Theorem 4. Let G = Q5(7) and H =2 L3(2) = Ly(7) be a subgroup of G, acting
irreducibly on the 5-dimensional module. Then H is contained in exactly two other
subgroups of G, both isomorphic to Az, and lying in the same G-conjugacy class.

Proof. Reading off the information about irreducible subgroups of Q5(7) and SO5(7)
from [2, Table 8.23], we see that G = 5(7) has a single class of irreducible
subgroups H = L3(2), and these subgroups are contained in maximal subgroups
M = A;. Correspondingly, in SOs5(7) there are maximal subgroups L3(2):2 and
S7. The outer automorphism of L3(2) therefore swaps two (G-conjugate) copies of
Az containing L3(2). O

More generally, for all n > 3 and all prime powers ¢, the simple group L, (g) has
two inequivalent 2-transitive permutation representations on d := (¢" —1)/(¢ — 1)
points. Not all of these give rise to examples of non-A-groups, however. The
case L3(3) < A3 < ©11(13) can be analysed using the classification of maximal
subgroups of orthogonal groups in 11 dimensions in [2], where we find that ©11(13)
contains two classes of L3(3):2, so that L3(3) embeds in both A;3 and L3(3):2.
Similarly, the cases L4(2) < A1 < Q13(¢) for £ = 3,5 are described in [7]. There
is one class of Ag, and two classes of S5, in £213(3), so Ag is not second maximal
in this case. There is one class of A;5, and two classes of Sg, in Q;3(5), so Ag is
contained in three maximal subgroups in this case.

4. INFINITE SERIES OF EXAMPLES

If p is a prime bigger than 7, then there is an embedding L3(2) < A7 < Q§(p),
where € = + just when p is a quadratic residue modulo 7. For simplicity, restrict
to the case ¢ = +. We read off the following properties from [2, Table 8.9]. The
number of classes of Ay is at least 2, and is exactly 2 when p = 3 mod 4. The
same is true for L3(2). In this case, the centre of Qf (p) is trivial, and the outer
automorphism group has order 4, consisting of a diagonal automorphism J, a graph
automorphism v, and their product éy. Now A7 is normalized by + in all cases,
while L3(2) is normalized by 7 provided p = 41 mod 8, and by vy otherwise.
Thus we must restrict to the case p = Tmod 8, and p = 1,2,4 mod 7, that is
p = 15,23,39 mod 56. In these cases, the group Q¢ (p).(y) = SOZ (p) contains two
classes of S7, and two classes of L3(2):2. The automorphism ¢ swaps the two classes
of S7, and swaps the two classes of L3(2):2.

Theorem 5. Let p be a prime, and suppose that p = 15,23,39 mod 56. Let G
be the simple group Qf (p) = PSL4(p). Then G contains subgroups L3(2) < A,

Albanian J. Math. 12 (2018), no. 1, 14-31.


http://albanian-j-math.com/magaard.html

ROBERT A. WILSON 27

both normalized by the tranpose-inverse automorphism of L4(p), to L3(2):2 and S7
respectively. In particular, every such L3(2) lies in exactly two copies of Az, and
these two copies of A7 are G-conjugate.

Proof. Consider a pair of subgroups L3(2) < A7 of G, and adjoin ary, where « is an
inner automorphism of Qf (p), to extend Az to S;. This swaps the two classes of
L3(2) in A7. But we can also adjoin 87, where 3 is another inner automorphism,
to normalize L3(2) to L3(2):2. Hence there is an inner automorphism of the form
a7y, that conjugates an L3(2) of one class in A7, to an L3(2) of the other class.
The same argument with the roles of L3(2) and A7 reversed shows that the two
copies of A7 in which L3(2) lies are conjugate in QF (p). O

As a consequence, we have an infinite series of groups PSL4(p), for p any prime
with p = 15,23, 39 mod 56, for which Aschbacher’s question has a negative answer.
There is a similar infinite series of groups PSU(p), for p = 1 mod 8 and p =
3,5,6 mod 7, that is p = 17,33,41 mod 56. This can be read off in a similar way
from [2, Table 8.11].

Theorem 6. Let p be a prime, and suppose that p = 17,33,41 mod 56. Let G be
the simple groups Qg (p) = PSU4(p). Then G contains subgroups L3(2) < Az, both
normalized by the field automorphism of Uy(p), to L3(2):2 and Sy respectively. In
particular, every such L3(2) lies in exactly two copies of Az, and these two copies
of A7 are conjugate in G.

These last two results are essentially contained in [2, Proposition 4.8.4], where
the fact that type 2 novelties arise in these cases is proved. The maximality of H
in M; is a triviality. The authors of [2] remark that type 2 novelties also arise for
other values of p, but the conditions on p cannot be expressed as simple congruence
conditions. There is an analogous embedding L2 (11) < A;1, which one might think
gives similar series of examples in Q5,(p) for certain p. However, Lo(11) is not
maximal in Ay, so this fails.

5. MORE SPECIAL EXAMPLES

As we have just seen, the embedding L3(2) < A7 behaves differently in char-
acteristic 7 (the special case) from other characteristics (the generic case). More
generally, the embedding L, (q) < A4, where d = (¢" — 1)/(q — 1), behaves differ-
ently in the special case (characteristic dividing d), compared to the generic case
(characteristic prime to d).

The special case is easiest to analyse when d is itself prime. In this case, n is
necessarily prime, but ¢ need not be prime. This includes all Mersenne primes
except 3, and others such as (3° —1)/(3 — 1) = 13 and (5% — 1)/(5 — 1) = 31, for
example. We then have embeddings L,(q) < Aq < Q4—2(d). The Singer cycles
in L,(q) are represented as d-cycles in Ay, and as regular unipotent elements in
Qg_2(d). Now there is a unique class of regular unipotent elements in SO,,(d) for
all odd m, and these elements have order d provided m < d. The class splits into
two classes in Q,,(d), and these classes are rational if m = £1 mod 8, and irrational
otherwise.

Since d is prime, the d-cycles in Sy split into two irrational classes in Ay (by
Sylow’s Theorem). The d-cycles are conjugate in Ay to their inverses just when
d =1 (mod 4). Since the regular unipotent elements have unipotent centralizer,
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it follows that they are conjugate in 4_2(d) to their inverses if and only if either
d=1mod4 or d—2==+1mod 8, that is d =1, 3,5 mod 8. Now the Singer cycles
in L,(q) are inverted by the transpose-inverse automorphism, and we want this
automorphism to be realised by an element of SO4_2(d) \ Q4—2(d). This happens
if and only if d = 7 mod 8.

Theorem 7. If q is a prime power, and d := (¢" — 1)/(q — 1) is prime, with
d=Tmod8, let H= PTL,(q), M = Ay and G = Q4_2(d). Then H < M < G,
and H and M are unique up to conjugacy in G. Hence H and M extend to H.2
and M.2 in G.2, and H is contained in exactly two G-conjugates of M.

The condition d = 7 mod 8 is satisfied by all Mersenne primes (the case ¢ = 2),
except 3, but not by all primes of the form (¢ — 1)/(¢ — 1). The condition can be
re-written as a condition on the values of ¢ and n modulo 8.

Lemma 1. Ifd = (¢" — 1)/(q — 1), then the condition d = 7 mod 8 is equivalent
to the condition that, either

e g=2andn>2, or

e ¢g=1mod8 and n =7mod 38, or

e ¢g=5mod 8 and n = 3 mod 8.

Only finitely many primes d of the form (¢"™ — 1)/(q — 1) are known, but it
is conjectured that there are infinitely many, including infinitely many Mersenne
primes 2" —1. Currently just 50 Mersenne primes are known, giving rise to examples
with H isomorphic to L3(2), L5(2), L7(2), L13(2), ..., L77232017(2). Less effort has
been expended on finding primes for larger values of ¢, but examples for ¢ = 5 and
n = 3 mod 8 occur when n = 3, 11, 3407, 16519, 201359 and 1888279 (see A004061
in the On-line Encyclopedia of Integer Sequences [8]). I could find no examples
with ¢ = 9 or ¢ = 13, but using GAP [5], one can easily find the examples n = 7,
47 and 71 for ¢ = 17 and n = 7 mod 8.

One can also search for examples by fixing n rather than ¢q. For n = 3, exam-
ples with ¢ = 5 mod 8 and d prime include ¢ = 5,101,173,293,677,701,773. A
search with n = 7 turns up the examples ¢ = 17, 73,89, 353, 1297, 1409, 1489, 1609,
1753, 2609, 2753,3673,4049,4409, etc., and similarly for n = 11, we can take
q = 53,229,389, 709,1213, 2029, 5581, 5669, 5813, 5861, 7229. For n = 19, there are
examples for ¢ = 181,277, 389,509, 797, 1693, 1709, etc. For n = 23, ¢ = 113, 257,
857, 1801; for n = 31, ¢ = 241, and so on.

In particular, examples of negative answers to Aschbacher’s question arise in the
cases of L3(5), L3(101), L11(5), L7(17), and L7(73). An extremely large example
arises from the embedding of L77232017(2) in Ay and Qg _o(d), where d = 277232917 1
is the largest currently known Mersenne prime.

6. MORE GENERIC EXAMPLES

As we have seen, for all n > 3 and for all ¢, the simple groups L, (g) have two
inequivalent permutation representations on d := (¢"™ —1)/(¢—1) points, and hence
we obtain two inequivalent embeddings in A4. In the generic case, when / is a prime
not dividing d, the alternating group A4 embeds irreducibly into Q4_1(€). However,
the conditions on n, ¢, ¢ for this to give rise to a negative answer to Aschbacher’s
question, are subtle and complicated, as we already saw for the smallest case,
n=3q=2.
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The next smallest case is n = 3,¢ = 3. To analyse this case, that is, the
embedding L3(3) < A3 < PQL(p), we may use the information on maximal
subgroups of Q% (p) provided in [2, Tables 8.83 and 8.85]. It follows from these
tables that there are no examples here.

The next smallest case is n = 4,¢ = 2, and the embedding of L4(2) =& Ag into
Ay and thence into orthogonal groups in dimensions 13 and 14. The maximal
subgroups of these orthogonal groups have been determined by Anna Schroeder,
in her St Andrews PhD thesis [7]. In particular, the embeddings into €;3(3) and
213(5) do not give examples.

In the dimension 14 case, however, it seems that there is a small but crucial error
at exactly the point that interests us here: maximal subgroups Sg are eliminated
from the lists of maximal subgroups of Pﬂﬁ(p) by the assertion, contained in the
proof of [7, Propn. 6.4.17(iv)], that Sg < Si5, which is manifestly false for this
embedding. Indeed, Propositions 6.4.4 and 6.4.5 in [7] give the true picture, and
show that Ss is indeed a maximal subgroup of SOj,(p) for suitable congruences of
e and p. In the cases when the outer automorphism group of Q5,(p) is just 22, the
calculations are quite straightforward. These are the cases when ep = 3 mod 4.

Theorem 8. Let p = 19,23,31,47 mod 60, and let G = Qf,(p). Let H = Ag be
a subgroup of G acting irreducibly in the 14-dimensional representation. Then H
is contained in exactly two maximal subgroups of G, both isomorphic to Ais, and
conjugate to each other in G.

Proof. Indeed, it is shown in [7] that for p = 19,23, 31,47 mod 60, there are two
conjugacy classes of subgroups Sp5, maximal in SO, (p), and swapped by the di-
agonal automorphism §. Moreover, it is shown that the intersection of Si5 with
Qﬂ(p) is A15. Now the same argument applies to the group Ss, acting irreducibly
in the 14-dimensional representation. Since for this embedding, Sg does not lie in
Sy5, it follows that Sg is maximal in SO, (p) in these cases. O

Exactly the same argument applies to the cases p = 13,29,37,41 mod 60 in
Q74(p). Tt is possible that analogous examples also exist when ep = 1 mod 4, but
in this case the outer automorphism group is Dg, and there are four classes each of
Sg and Si5, so the situation is more complicated.

7. UNBOUNDED RANK

From what we have done so far, if there are infinitely many Mersenne primes,
then there are examples of non-A-groups of arbitrarily large Lie rank. However, in
this section we shall show that this condition can be removed, by considering the
generic rather than the special case.

Note first that, for n even, the representations of L,,(2) of dimension d— 1, where
d = 2" — 1, extend to emebeddings of L, (2):2 in SO4(p) for all p, while for n odd
this happens only when the field of order p contains square roots of 2, that is, when
p = £1 mod 8. Hence, for example, the embeddings L5(2) < As; < Q5,(p) provide
examples of non-A-groups whenever all of the following conditions are satisfied:

e cp =3 mod 4,

e p=+1mod 8, and

e p=1,2,4,8 16 mod 31.
That is to say, for e = + we require p = 39, 47,63, 95,159 mod 248, while for ¢ = —
we require p = 1, 33,97, 225,233 mod 248.
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For the purpose of demonstrating that examples of non-A-groups exist of arbi-
trarily large rank, and of arbitrarily large characteristic within a given rank, it is
sufficient to consider any infinite subset of such primes. For simplicity, we restrict
to the case when e = —, and further to the case when p = 1 mod 4(d — 1). In this
case, the embedding of L, (2) into A; and thence into Q; ,(p) gives an example
of a negative answer to Aschbacher’s question. Of course, there are many other
examples.

Theorem 9. Let p be a prime, and € = %, such that ep = 3 mod 4. Let n > 3,
and suppose that p is a square modulo d := 2™ — 1. If n is odd, suppose also that
p=+lmod8. Let G = Q5 {(p), and H = L,(2) a subgroup of G. Then H is
contained in exactly two maximal subgroups of G, which are isomorphic to Ag and
conjugate to each other.

Proof. The above conditions ensure that G has outer automorphism group of order
4, and that both L, (2):2 and Sy embed in SO5_, (p) but not in Q5_, (p). Hence we
have the same configuration as in all the other examples above. O

We have now shown that there is no bound on the Lie rank of non-A-groups.
In these examples, there are two conjugacy classes of L,(2) in Q5_,(p), and two
conjugacy classes of Ag, interchanged by the diagonal automorphism. If instead
ep = 1 mod 4, then there are four classes of each, and the outer automorphism
group of Q5 _;(p) is Dg. In [2], two of the reflections in Dg are described as graph
automorphisms -, and the other two as ¢, but unfortunately the two conjugates
of v are not distinguished from each other. For any particular choice of v, two of
the four classes of A4 extend to Sy, and the other two classes are interchanged.

8. OTHER CLASSICAL GROUPS

So far, all our examples with G a classical group have occurred when G is in
fact orthogonal. There is no bound on the characteristic, and there is no bound
on the rank. All three families of orthogonal groups (plus type, minus type, and
odd dimension) occur. It would be interesting to know if the other classical groups,
linear, unitary or symplectic, can occur.

Of course, the isomorphisms L4(p) = Qf (p) and Us(p) = Q~(p) imply the
existence of examples in linear and unitary groups, but do examples exist in linear
and unitary groups of larger dimension? So far, I have not found any examples.
The large outer automorphism groups in these cases make the analysis very delicate.
There are potential examples of the form L3(4) < Uy(3) < Lg(p), but there are three
classes of each of L3(4) and Uy(3), and the embeddings between them are not given
explicitly in [2]. Hence one needs extra detailed information to resolve these cases.
It seems likely, however, that this configuration does not give any examples.

In the case of symplectic groups, over fields of odd prime order, the outer au-
tomorphism group has order 2, which is the ideal situation for us. If one looks
through the tables of maximal subgroups of symplectic groups in dimensions up to
12 given in [2], one finds, besides the case L3(2) < A7 < S4(7) already discussed,
just one series of potential examples, given by the embeddings A5 < Ls(p) < Sg(p)
for p a prime, p = £11,£19 mod 40. However, in this case the embedding of 2A,
in Spe(p) also goes via the tensor product Spa(p) o GO3(p), so this A5 lies in more
than two maximal subgroups of Spg(p).
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On the other hand, Anna Schroeder’s PhD thesis [7] contains the lists of maximal
subgroups of S14(¢) and their automorphism groups. There one finds two more
potential infinite series of examples, given by the embeddings Jo < Sg(p) < S14(p)
and Ly (13) < Sg(p) < S14(p) for suitable primes p. The relevant congruences are
p = £11,+19 mod 40 for Jy, and p = +3,+27, 429, +35, +43, £51 mod 104 for
Lo(13). Tt is straightforward to check, in the same way as before, that these do
indeed give examples of negative answers to Aschbacher’s question.

Theorem 10. Let p = £11,+£19 mod 40, and let G = S14(p). Let H =2 J5 be a
subgroup of G. Then H is contained in exactly two maximal subgroups of G, both
isomorphic to Sg(p), and conjugate to each other in G.

Theorem 11. Let p = £3,+27, 429, £35, 43, £51 mod 104, and let G = S14(p).
Let H = Ly(13) be a subgroup of G contained in M = Sg(p). Then H is contained
in exactly two maximal subgroups of G, both conjugate to M.

9. FURTHER REMARKS

Far-reaching as the above examples are, they have little, if any, impact on As-
chbacher’s programme. This is because they all occur in sporadic or classical groups,
whereas Aschbacher is only proposing to use this approach for exceptional groups
of Lie type. Our examples therefore merely show that his question is still too broad,
and that the question needs to be restricted to a smaller class of groups than the
class of almost simple groups.

The maximal subgroups are known completely for five of the ten families of ex-
ceptional groups of Lie type, and, of the remaining five, Eg seems least likely to be
a source of examples, since it admits neither diagonal nor graph automorphisms.
Similarly, Fy admits no diagonal automorphisms, and admits a graph automor-
phism only in characteristic 2. Probably the most promising places to look for
examples of non-A-groups are in Fg with a graph automorphism, and in Fr with
a diagonal automorphism. On the other hand, it is entirely conceivable that every
finite exceptional group of Lie type is an A-group.
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