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ABSTRACT. We give an explicit dependence of quasiconformal constant on its boundary
function, provided that the mapping is quasiconformal harmonic and maps the unit disk
onto a strictly convex domain. This result refines some earlier results obtain by the first
author and Pavlovi¢ ([11, 27]).

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

1.0.1. Harmonic mappings. The function

11—
P(r,t) = , 0<r<1, te|0,2
(r;) 27 (1 — 2rcost + 12) " 0, 27]
is called the Poisson kernel. Let U = {z : |z| < 1} be the unit disk and T = 90U is the
unit circle. The Poisson integral of a complex function F' € L!(T) is a complex harmonic

mapping given by

(1.1) w(z) = u(z) +iv(z) = P[F|(z) = ; i P(r,t —7)F(e")dt,

where z = re!” € U. If w is a bounded harmonic mapping, then there exists a function
F € L*>=(T), such that w(z) = P[F](z) (see e.g. [4, Theorem 3.13 b), p = oo]). From

now on we will identify F'(t) with F'(e*) and F”(t) with %:t)
We refer to Axler, Bourdon and Ramey [4] for good setting of harmonic mappings.
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1.0.2. Quasiconformal mappings. A sense-preserving injective harmonic mapping w =
u + 1o is called K-quasiconformal (K-q.c), K > 1, if

(1.2) lwz| < klw:|
on U where k = (K — 1)/(K + 1). Notice that, since

V()] := max{[Vw(z)h| : |h] = 1} = w.(2)[ + [wz(2)],
and

U(Vw(z)) == min{|Ve(2)h| : [B] = 1} = [[w.(2)] - [ws(2)].
The condition (1.2) is equivalent with
(1.3) |Vw(z)| < KI(Vw(z)).

For a general definition of quasiregular mappings and quasiconformal mappings we refer
to the book of Ahlfors [1].

For a background on the topic of quasiconformal harmonic mappings we refer [5], [8]-
[22], [23], [26], [27]. In this paper we obtain some new results concerning a characteri-
zation of this class. We will restrict ourselves to the class of g.c. harmonic mappings w
between the unit disk U and a convex Jordan domain D. The unit disk is taken because of
simplicity. Namely, if w : Q@ — D is g.c. harmonic, and a : U —  is conformal, then
w o a, is also q.c. harmonic. However the image domain D cannot be replaced by the unit
disk.

To state the main result of the paper, we make use of Hilbert transforms formalism. It
provides a necessary and a sufficient condition for the harmonic extension of a homeomor-
phism from the unit circle to a smooth convex Jordan curve  to be a g.c mapping. It is an
extension of the corresponding result [ | |, Theorem 3.1] related to convex Jordan domains.
The Hilbert transformation of a function x € L!(T) is defined by the formula

L (" x(r+1) = x(r — 1)

(1.4) ﬁﬂszm:—f/

dt.
T Jo+ 2tan(t/2)

Here [J. ®(t)dt := lim_,o+ [ ®(t)dt. This integral is improper and converges for a.c.
7 € [0, 27]; this and other facts concerning the operator H used in this paper can be found
in the book of Zygmund [31, Chapter VII]. If f = w + 4v is a harmonic function defined
in the unit disk then a harmonic function f = u + 70 is called the harmonic conjugate of f
if u + @ and v + i are analytic functions and @(0) = #(0) = 0. Let x, X € L*(T). Then

(1.5) PIX] = P[xl

where l}(z) is the harmonic conjugate of k(z) (see e.g. [28, Theorem 6.1.3]).

Let D be a strictly convex domain with C? Jordan boundary +. By k. we denote the
curvature of v at z € . We now state a theorem that concerns with quasiconformal
harmonic mappings between the unit disk and strictly convex domains.

Theorem 1.1. (I) Let y be a O convex Jordan curve and let F be an arbitrary absolutely
continuous parametrization.
Then w = P[F) is a quasiconformal mapping if and only if

(1.6) 0 < m = ess inf |F'(7)],

(1.7) M = ||F'| o := ess sup |F'(1)| < o
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and

(1.8) H = |H(F')||oo := esssup |[H(F')(1)| < cc.

(IT) Let vy be a C? convex Jordan curve and k., be the curvature of y at z € ~. Further
let kg = Min,cy Kk, and kK1 = MaX.cy K,. If I satisfies the conditions (1.6), (1.7) and
(1.8), and y is strictly convex, then w = P|F| is K quasiconformal, where
ra (M2 + H) + /(s (O + H?) 2 — (2rgmd)?

2K2m3 '

(1.9) K<

The constant K is the best possible in the following sense, if w is the identity or it is a
mapping close to the identity, then K = 1 or K close to 1 (respectively).

2. PRELIMINARIES

Suppose ~ is arectifiable, directed, differentiable curve given by its arc-length parametriza-
tion ¢g(s), 0 < s < [, where | = || is the length of 4. Then |¢/(s)] = 1 and s =
Jo 19’ (t)|dt, for all s € [0,1]. We say that v € C1* if g € C'1.

If v is a twice-differentiable curve, then the curvature of «y at a point p = ¢(s) is given
by ry(p) = |g"(s)|. Let
2.1) K(s,t) =Re[(g(t) — g(s)) - ig'(s)]

be a function defined on [0,] x [0,!]. By K(s+1,t+1) = K(s,t) we extend iton R x R.
Note that ig’(s) is the unit normal vector of 7y at ¢g(s) and therefore, if v is convex then

(2.2) K(s,t) > 0 for every s and t.

Suppose now that ' : R +— - is an arbitrary 27 periodic Lipschitz function such that
Fljo,2x) : [0,27) = ~y is an orientation preserving bijective function.
Then there exists an increasing continuous function f : [0, 27] — [0, /] such that

(2.3) F(7) = g(f(7))-

In the remainder of this paper we will identify [0, 27) with the unit circle S*, and F(s)
with F'(€'®). In view of the previous convention we have

Fi(r) =g'(f(r)) - f'(),
and therefore
(' (™) =1g'(fN- £ ()] = f'(7)-
Along with the function K we will also consider the function K defined by
Kp(t,7) =Re[(F(t) — F(r)) - iF"(7)].
It is easy to see that
2.4) Kp(t,7) = ['(T)K(f (1), f(7)).

Lemma 2.1. [12] If w = P[F) is a harmonic mapping, such that F is a Lipschitz homeo-
morphism from the unit circle onto a Jordan curve of the class C* (0 < a < 1), then for
almost every T € [0, 2| there exists

Jo(eT) = lim Jy,(re'™)

r—1-

and there hold the formula
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t—1
2sin? =

27
» R
(25) Jw(el‘r) — f/(T)/ e[( ( ( )) ( T )) ( (T))]dt
0
Lemma 2.2. If ¢ : R — R is a (¢, L) bi-Lipschitz mapping, such that p(x + a) =
o(x) + b for some a and b and every x, then there exists a sequence of (¢, L) bi-Lipschitz

diffeomorphisms (respectively a sequence of diffeomorphisms) ¢, : R — R such that ¢,,
converges uniformly to ¢, and ¢, (x + a) = () + b.

Proof. We introduce appropriate mollifiers: Fix a smooth function p : R — [0, 1] which is
compactly supported in the interval (—1,1) and satisfies [, p = 1. For e = 1/n consider
the mollifier

1 t
(2.6) pe(t) == P (5) .

It is compactly supported in the interval (—e, ) and satisfies fR pe = 1. Define

o) = o ep. = [ oty = [ olo el

T —

then
Aw) = [ ¢a=epli
It follows that
Z/ 2)dz =€ < |pL(z |<£/ z)dz = L.

The fact that . (x) converges uniformly to ¢ follows by Arzela-Ascoli theorem.
(]

Lemma 2.3. For every bi-Lipschitz mapping ¢ : [0, 7] — [0, 7], ¢'(0) = ¢ (7) we have

.2
essinf(¢'(z))? < m < esssup(¢/(x)).
sin” x

Proof. Assume first that, ¢ is a diffeomorphism such that ¢'(0) = ¢/(n). Let
W) = singb(;z:)'

sinz
Then h is differentiable in [0, 7]. The stationary points of h satisfy the equation

,cosd(x)  cosw

¢ h=0.

sinx sinx
Therefore

W (x) = (¢ (x))* cos® p(x) + sin® p(x).
Since

ozm) - 000) = | " ¢ (2)da

we have that min(¢/(z)) <1 <m
xT

max x(¢'(x)). It follows that
min(¢'())? < H¥(w) < max(9'(x))*

The general case follows from Lemma 2.2. (]
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3. THE PROOF OF THEOREM 1.1
We begin by the following lemma

Lemma 3.1. Let y be a C? strictly convex Jordan curve and let F be an arbitrary parametriza-

tion. Let m = min |F'(7)] and M = max |F'(7)|. Then we have the following
T€[0,27] T€[0,27]

double inequalities:

2 K 2
(3‘1) @ < (t77—) /{1

K1~ 2sin® =t~ Ko
and
2 2
K Kp(t, T K
(3.2) 58 ¢ KoM o 5 g
K1 2sin” 55 Ko

where K and K are defined in (2.1) and (2.4). If ~y is in addition a symmetric Jordan
curve then we have the better estimates

K(t

(3.3) Ko < ,(2’ TL < K1,
2sin TT

and
Kp(t

(3.4) pom? < BT s,
2sin“ T

Proof. Let g be a arch length parametrization function of the curve 4 = ﬁv, where || is

the length of . Let &) = min K, and K; = max <., where &, is the curvature of ¥ at z. It
zey zey
is clear that

(3.5) |’y|l€mz = kz.
Let

Since §’(<) is a unit vector and v is a C? strictly convex curve, there exists a diffeomor-
phism 8 : R — R, 5(0) = 0, (27 + o) = 27 + B(0) such that

(36) g/(a,) — eiﬁ(a').

Therefore

3.7) Glo,<) = fg Sln(ﬁFTg ;f(g))dr'
2sin” Z==

2
On the other hand from

it follows that

(3.8) lig(,r) = ﬁ/(T).
According to (3.6), we obtain first that
2 )
(3.9) / ¢?7do = §(0) — §(2m) =
0
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Thus

2 2
(3.10) /O sin(B(0))do = /O cos(B(o))do = 0.

Therefore
/U sin(B(1) — B(s))dr = / sin(B(s) — B(r))dr.
S [O,2T{']\[§,U]

As (3 is a diffeomorphism it follows that at least one of the following relations hold

(3.11) sin(B(r) — B(s)) > 0for 7 € [s, 0]
or
(3.12) sin(B(s) — B(r)) > 0 for 7 € [0, 27] \ [s, o].

Introducing the change a = (7) we obtain in the case (3.11) that

" _ plo) da
/g sin(B(7) — B(c))dr = /ﬂ(g) sin(a — ﬂ(g))m
(3.13) 1 B() ]
‘ > (< o
- (_)maxT(minT)ﬁ/(T) /ﬁ(g) sin(a — B(s))da
- 2 .o, B(o) — B(<)
~ max, (min,)B/(7) ()
Therefore
‘in2 M ‘in2 M
(3.14) L ) gt T )

min., ,8'(7’) sinZ =<

max, 8/(7)  sin? 2=< 5

2

The case (3.12) can be consider similarly. In this case we apply the fact that (27 + o) =
27 + B(o) and in the same way obtain (3.14).

By taking u = 5= and ¢(u) = w, and using Lemma 2.3 we obtain that

(min, B'(7))* (max, f'())?
From (3.15) we obtain
~2 ~2
(3.16) %0 < Glo,s) < L.
K1 Ko

On the other hand there exists a diffeomorphism o : [0, 27] — [0, 27] such that

F(r) = Iylglo(r))-

Thus

(3.17) F'(1) = |y]o’(1)g' (o(T))
and

(3.18) [F'(7)] = [y]o’ (7).
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Thus
Kp(t,7) = (F(&) = F(7),iF'(r) )
(3.19) = 1120 (7) (3(0(m) = 3(e(B), ig (o(7)) )
— 2o (N)Glo(t), o(r)) - 25in2 T 7).

2
By applying again Lemma 2.3 we obtain

2Sil’l2 o(1t)—o(t)
(3.20) min(o’(t))? < ——2— < max(o’(t))*.
t 2sin” 5+ t
Combining (3.16), (3.19) and (3.20) we obtain
o’ (t)Rg _ Kp(t.T) 2o’ (t)R3
3.21 : /t 2"‘Y|O—( < /t 2 1'
( ) mtln(a (1)) o1 281n2 T—t = mtax(a (t) o

2
Combining (3.21), (3.5) and (3.18) we obtain
Kim3 < Kp(t,T) < K2M3 .
K1 T 2sin® Tt T
This yields (3.2). In particular, if F' = g, where g is natural parametrization of v we obtain
(3.1). In order to prove the statement for symmetric domain, we differentiate (3.7). Then
we have

Ko

sin(B(0) — B(<))  Jo sin(B(r) = B()dr o —¢
2sin’ 255 2sin’ 55 Oty

So G, (5,<) = 0if and only if

6.0 - S(E) = B(E)

sin(é — <)

(3.22) Gyl(o,¢) =

Define the function

sin(8(e) = B(<))

H{(a,s) = sin(o — <)

,0< o —¢| #m.

Then it can be extended in [0, 27] x [0, 27] because of symmetry of v. Namely if o —¢ = m,
we have (o) — 8(¢) = . Thus by L'Hopital’s rule we have H(o,0 + 7) = /(o) =
H(o,0). By putting z = 0 — ¢ € [0,7] and ¢(x) = B(z + ) — B(s) and applying
Lemma (2.3), instead of (3.16) we obtain

(3.23) ko < H(o,s) < Ry

and consequently

(3.24) Ro < G(o,<) < R

By repeating the previous proof we obtain (3.3) and (3.4). ]

From Lemma 3.1 it follows at once the following theorem.

Theorem 3.2. If w = P|[F) is a harmonic diffeomorphism of the unit disk onto a (symmet-
ric) convex Jordan domain D = inty € C?, such that F is (m, M) bi-Lipschitz, then

2,3 2773
Kgm < Ju(e) < KM

(3.25) (kom® < Ju(e7) < k1 M?),
K1 Ko
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Proof. From (2.5) we obtain

27
3.26 Juw(e'T) = _—
(3.26) (e7) o 2sin? =ton

From (3.2) and (3.4) we obtain (3.25). ([l

Proof of Theorem 1.1. The part (I) of this theorem coincides with [ |, Theorem 3.1]. Prove
the part (II). We have to prove that under the conditions (1.6), (1.7) and (1.8) w is K — qua-
siconformal, where K is given by (1.9). This means that, according to (1.3), we need to
prove that the function

_wef 4wz 1+ p

(3.27) K(z) = =
we| = wz| 1 —u|
is bounded by K.
It follows from (1.1) that w,, is equals to the Poisson-Stieltjes integral of F”:
) 1 2m
wy(re') = — P(r,7 —t)dF(t).
27T 0

Hence, by Fatou’s theorem, the radial limits of F’; exist almost everywhere and liI{l F, (re”) =
r—1—

Fj(7) a.e., where Fy is the absolutely continuous part of F'.
As rw, is harmonic conjugate of w, it turns out that if F' is absolutely continuous, then

Tlir{lﬁ F.(re'™) = H(F')(1) (a.e.),

and
lim Fw(re”) = F'(1).

r—1—

1 lw, |2
2 21 12 ©
e+ fu? = 5 (hor 2+ 25

it follows that

. 1
(3.28) Jim (Ju? 4wz ) < SOFIE + 1H (F)1%)-
On the other hand, by (3.25)
2.3
(329) N (T e P
r—1- K1

From (3.28) and (3.29) we obtain

530 L A 5 A - (€019
’ r=1- w2 — w2 T 2K2m3 ’
ie.
3.31 1 </ =——.
By Lewy’ theorem, }Zj is a subharmonic function bounded by 1. From (3.31) it follows
that
"lU5| Cc-1
lw,| —VC+1
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Further
K- VC+1++v/C—-1 :C"F\/m
JOT1-Vo-1
_ e (I + I (F))12) + /(R (112 + [[H (F7)]12))2 — (2H%m3)2.

2K2m3
The last quantity is equal to 1 for F' being identity because all the constants appearing at

the quantity are 1 in this special case. Moreover, if F is close to identity in C? norm, then
the quantity is close to 1. O

Remark 3.3. For symmetric domains, in view of Theorem 3.2, instead of (1.9) we can
obtain the following estimate

112 + I (EN) 13 + VUE 1 + THE)[Z)? — (2rom?)?
2Kkom3 '

K<

Example 3.4. If F is the arc-parametrization of a C? convex Jordan curve v, then m =
|IF']|cc = 1. We assume w.l.g. that the length of v is 27. Furthermore since F'(s) =
¢'#(%) by applying Lemma 2.3 again we obtain

1 [T F(r+1) —F’(T—t)dt

T Jo+ 2tan(t/2)

1 ™ |eiﬁ(7+t) _ eiﬁ('r—t)|
< —

/0+ 2tan(t/2)

[H[F'](7)] =

< dt
s

(B(T+t);ﬂ(7—t) ) ’

1 [ 2 ‘sin
= dt
T /0+ 2tan(t/2)
1 [T sint
< F"(s)|— —dt = K.
< sup| (S)lﬁ/o tan(t/2) M

k1(1+ k3) + (k1 (1 + K3))? — 4k{
2/1(2)

So

K <

and for symmetric domains

L+ ki + /(1 +£3)% —4k3

K <
- 2K0

If ~v is the unit circle, then kg = 1 = x;. Both estimates are asymptotically sharp; if the
curve «y approaches in C? topology to the unit circle centered at origin, then the quasicon-
formal constant tends to 1.

In particular if 7 is the ellipse v = {(z,y) : #2/a® +y?/b*> = 1},a < b,
ko =1/band k1 = 1/a.

| = 27, then
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