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ABSTRACT. We establish some new properties and identities of Generalized
Gaussian Numbers (GGN) which are defined recently in [10, 11] parallel to
those of Gaussian coefficients. We present generating functions and some
properties which are very useful for GGN. We obtain some family of sequences
which are unimodal and present the log-concavity property of GGN. Finally,
we give a connection of GGN to the Rogers-Szego polynomials.

1. INTRODUCTION

In enumerative combinatorics, binomial coefficients and Gaussian coefficients are
very important class of fields of studies. While binomial coefficients have interpre-
tation in terms of subset selection, Gaussian coefficients have a classical interpreta-
tion related to counting subspaces of a finite vector space. Binomial and Gaussian
coefficients are already well studied and well discussed in the past (see [3, 6, 7, 13]).

Recently, Generalized Gaussian Numbers (GGN) which in a special case give
Gaussian coefficients are defined and some of their properties parallel to those
of Gaussian coefficients are established. Moreover, GGN have an interpretation
related to the counting of submodules of a finite module [10, 11]. In [10, 11], the
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authors enumerate the codes over finite rings and define new number sequences by
GGN and give some properties.

On the other hand, many integer sequences arising from enumerative combi-
natorics turn out to be unimodal, or even log-concave. Although proving these
properties seem natural, it is sometimes difficult to overcome. A very good survey
for these properties is given in [12]. Such as Gaussian coefficients, GGN play an
important role in enumerative combinatorics since it presents the number of sub-
modules of a finite module and in a special case GGN give binomial coefficients
which are frequently involved in constructing properties of some special numbers.

We summarize some of the fundamental properties of binomial and Gaussian co-
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The construction of properties and identities of some special numbers is done
by binomial coefficients. Hence binomial and Gaussian coefficients (or g-binomials)

efficients. Binomial coefficients, ( " ), satisfy the well known relations: ( Z ) =

play an important role in Number Theory. From [3], Gaussian coefficient [ Z ]
q

is defined by
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Unlike the binomial coefficients Gaussian coefficients have only a limited number

of properties. The following properties of [ Z } are due to [3]. We have the
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triangular recurrence relation
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Some properties parallel to those Eq. (1) and Eq. (2) are given in [10] and [11].
The Rogers-Szego polynomial in a single variable, H,(t), is defined as

Hn(t)zé{ﬂqtk.

For nonnegative integers k1, ko, . . . , ky, such that k1 +ko+. ..+ k., = n, Gaussian
multinomial coefficient (or g-multinomial coefficient) of length m is defined in [14]

* { n ] _ (9)n
k17k23~'~7km q (q)kl(q)kz (q)km

where (¢), = (1 —q)(1 —¢?)...(1—q").
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The homogeneous Rogers-Szego polynomial in m variables for m > 2, denoted
by Hp(t1,t2,...,tm), is defined in [11] as

'} _ n k Em
(1) Haltte.ootw)= Y {k17k2,m’km ] ke
ki+ko+...+km=n q

and Rogers-Szego polynomial in m — 1 variables, denoted H,,(t1,t2,...,tm—1), 18
defined as
Hy(ty,ta, .o time1) = Hy(t1,to, ..o b1, 1).
For any a,r # 1 and n > 1, (a,7), = (a;7), is defined in [141] by
(a,7)n=(1—a)(1—ar)...(1—ar"h),

and (a,r)o = 1.
When a = r, then,

(a,a), = (1 —a)(1—a?)...(1—a").

Denote this number by (a),, shortly.

Rogers-Szego polynomials were first defined by Rogers [8] in terms of their gen-
erating function and some researchers have also studied [, 2, 5] them. They have
an important role in combinatorial number theory, symmetric function theory and
orthogonal polynomials.

In this paper, we prove the log-concavity and unimodality of a sequence defined
by GGN. Moreover, some more properties and identities of the GGN are given.
Finally, we point out Rogers-Szego polynomial [8, 9, 14] and its relation to GGN.

2. RECURRENCE RELATIONS AND GENERATING FUNCTIONS

In this section, some properties and generating functions of GGN are given. As
we already know that the binomial coefficients stand for the number of subsets of a
finite set of a particular size. Gaussian binomial coefficients stand for the number
of vector spaces of a particular dimension of a finite dimensional space. Recently,
a direct calculation of the number of submodules of a particular type of a finite
module is introduced and these numbers are called Generalize Gaussian Numbers

[11].
Theorem 2.1. [11] The number of Z,-submodules of type (ki,kz,..., kn) of the
finite module Zy; where ¢ = p™ (p prime and m a positive integer) is
1 0 o M ) MY P )
[T Il A

where
S m S m
A= H (pm—s-i-l)ka H (pm—j+1)kj_(H (pm—s)ku)(pm—s+l)lcs+1. H (pm—t—&-l)kt "
a=1 Jj=s+1 a=1 t=s+2

Denote the number given in the previous theorem by

q - n
Nk1,k2,m,km(n) - |: k17k27...,km :|Z

where ¢ is a prime power and m is the nilpotency of the generator matrix of the
maximal ideal.
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Definition 2.1. For m = 2 and ¢ = p?, we call the number of Z4-submodules of
type (K1, k2) of the finite moduleZ as Generalized Gaussian Numbers (GGN) and

denote it by N/ . (n) = { k‘nk } .
2 L2 |g

Then, we write by [11]

n
M =[ 1 ], -

(5)
(P*" —p") .. (" = p" T (" = p*) . (p" —pTh

(kalpkz _ pk1+k2) . (p2k1pk2 _ pk1+k2+k1—1)(pk1+k2 _ pkl) . (pkl-‘rkz _ pk1+/€2—1) :
In short, Eq. (5) is written as
k-1 i\ TTRe—1 o
P I 0" =) T2 (0" —pM )
k-1 N TTF2—1 [ fo. .
PR [T (R — ) [, (0P — )
Theorem 2.2. GGN satisfies the following triangular recurrence relation

(7) NZ—(k—l),k(n +1) = NZ—(k—l),k—l(n) +pst—k,k(n)

where ¢ = p°.

(6)

Proof. From Eq. (6), we obtain the following
n n— n—k . n i k=1 / n n— j
pr =R D TR (prtt — ph) T2y (pn T — pr ki)

8) N1 1) =
(8) n*(k*l),k(nJr ) pn—k+1)2+2(n—k+1)k H?:_ok (pr—k+1 — pi) H;:é (pk — pi)

(9)
n?—nk+n n—k ( n % k=2, n n— j
N pr ISy (0" - 00 TT2g (0 — p )

n—(k—1 ,k—l(n) = n—Fk p—— ,
(k=1) pr=k+1)242(n—k 1) (k=1) T["ZF (pn—k+1 — pi) szg (ph—1 — pi)

and
—_ n—k— i k— _ i
PRI 0 - ) TS (o — p )
B n— n— —k—1 n— 7 k-1 i
pn=kPF2(n=kk [T (pn=k — p') T2, (0% — p7)

In order to carry out the equality, we put the denominators of the equalities
(9) and (10) into a common one similar to the denominator of the equality (8).
Multiplying both numerator and denominator parts of equation (9) by

(10)  Ni_44(n)

72(n7k+1)pk71( k 1)’

p p
we obtain
(11)
2 k+3n— —k i TThk—2 _ j
Nq (n) B pn nk+3n k+1(pk _ 1) H?:O (pn 7p2) Hj:O (pn 7pn k+1+g)
—(k=1),k—1\"") = _ _ ko N TTk—1 ;
n—(k—=1) Pkt 1) +2(n—kt 1)k T K (pn—k-+1 — ) I3 (0% — pi)
Multiplying both numerator and denominator parts of equation (10) by
p2n+1pn—k(pn—k—‘,-l)7
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we obtain
(12)

2_ _ _ —k—1 i k—1 — i
pn nk+1+3n k(pn k+1 _ 1) H;L:O (pn _ pz) szo (pn _ pn kJrj)
_ _ —k _ ; k—1 : :
p(n k+1)242(n—k+1)k H?:O (pn k+1 _ pz) Hj:O (pk _ pj)

By multiplying (12) with p* and then summing the result with (11) and by applying
the necessary operations we obtain the result.

Nj o p(ntl) =

([l
Next, we illustrate with a couple of examples.
Example 1. For values k = 4,n = 5,q = 4 we have
N§,4(6) = N§,3(5) + 2 'Nﬁ4(5)-
651 = 155 + 2"31.
(Il
Example 2. For values k = 5,n = 6,q = 4 we have
Ny 5(7) = N34(6) +2° - Ni5(6).
2667 = 651 + 2° - 63.
O
Theorem 2.3. GGN satisfies the following relation as a generating function
(13) (p = )Ny 1(n) = (p" = )Ny o(n — 1)
where q = p2.
Proof.
NT () — @ D" = D" —p) - (0" = PP (" — pF)
(p—1) k1(”) - K242k (k k k k—1
PR = )(F —p) .. (PF PN (P — 1)
PR = Dp(p Tt = 1) p(p" T = P (" — P
PF(pF = 1)(pF —p) ... (p* — pF~1)
_ PRt =Dt =D e =) - Y
pE(pF = 1)(p* —p) ... (pF —p*)
_ =R - ) (T R
pE (P = 1)(p* —p) ... (pF — )
= (p" — I)N;j’o(n —1).
This completes the proof. (Il

Example 3. n=6,q=7p*>=4:
N31(6) = (2° = 1)N5o(5)  (k=3)

624960 = (25 — 1)9920,

2012Albanian J. Math. 91
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Ni1(6) = (2° = 1)Ngo(5)  (k=4)
31248 = (2° — 1)496, and

N31(6) = (2° = 1)N5o(5)  (k=5)

63 = (26 —1).
O
Example 4. n=4,g=p>=9:
2N, (5) = (3° = 1)N5o(4)  (k=3)
2.130680 = (3° — 1)1080
2Nf,1(5) = (35 - 1)N2,0(4) (k? = 4)
2121 =3% — 1.
a

Theorem 2.4. [10] Some of the properties of GGN which are used for generating
Gaussian Numbers are given. (q = p?)

N k(”): On k( n), N;?,o(n)=Nﬁfk,o(n)
ngl gy (1) = kg,kl( n), (ki+kos=n)
N n(n) = Ny o(n) =1
N,o(”) (p )n kNgk( )
khkz(n) N, _ (k1+k2), kQ( n).

Proof. In order to prove the equalities above, we apply Eq. (6) to all of them similar

to those we did in Theorem 2.2 and Theorem 2.3. O
n/(0,k) | (0,1) (0,2) (0,3) (0,4)
1 So(p)
3 Sa(p) p?+p+1 1
4 Ss(p) [ p*4+pP+202 +p+1| pPP4+p’+p+1 1
5 Si(p) | p°+p°+2p p®+p° + 2p* p*+p?
20 + 2% +p+1 | +20°+ 207 +p+1 | +pP+p+1

TABLE 1. Table of values for Ng;(n) and Si(p) = 325, p'.
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n/(k,1) | (0,1) (1,1) (2,1) (3,1)
1 So(p)
2 S1(p) p+1
3 So(p) | p* 4 2p3 +2p% +p pP’+p+1

4 | S5(p) | pTH2° 30+ | pT+ 20 +3p°+ | PP PP+t
+3p* +2p° +p? | +3p* +2p° 4 p?

5 Si(p) | p'+2p” +3p% | p'2 4+ 2ptt +4p!® | pl0 4+ 2p% + 3p8
+4p™ + 4p°+ +5p? 4 6p% 4 5p7 | +4p” + 4p°+

3p5 + 2p4 +p3 +4p6 +2p5 + p4+ 3p5 + 2p4 +p3

3+ 20 +2p+ 1

TABLE 2. Table of values for N,le(n)

Using the properties given by Eq. (7), Eq. (13) and the properties given in The-
orem 2.4 we can quickly generate the values of V. 131, ko (n) as shown in the following
table where ¢ = p?.

One may try to obtain the numbers by different primes p and n using Table 1
or Table 2. They may be generalized to any n by Eq. (7), Eq. (13) and Theorem
2.4. Of course these tables are only two small examples of those sequences given by
GGN. On the other hand, we can easily see some properties if we write the entries
of (for example) Table 1 in the following way:

1 p+1 1
1 prp+l plep+l 1
1 P+p+p+l  pripiiaplipsl PP APl
1 PP +pitp+l papiiapterpiaapiapal pepeptep e2ptpel prap apiaprl 1

F1GURE 1. Pascal’s Type triangle

The figure is analogous to Pascal’s Triangle of the usual binomial coefficients.
It has a symmetry like Pascal’s Triangle. This figure is also the same as Gaussian
coefficients. The properties are similar to those in Gaussian coefficients. However,
the properties which are obtained by Table 2 are not exactly the same as the usual
Gaussian numbers or binomial coeeficients since GGN is more general than the
others.
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3. LoQ-CoNcAvITY, UNIMODALITY OF THE SEQUENCES AND ROGERS-SZEGO
PorLyNOMIALS

We prove that some of the number sequences which are obtained from GGN
are log-concave. We present a family of sequences which are unimodal. We also
generalize these sequences. Here ¢ is always equal to p?.

Definition 3.1. [12] A sequence is said to be unimodal if for some 0 < j < n
we have ag < ay < ... < a; > aj41 > ... > a, and is said to be logarithmically
concave (or log-concave for short) if a? > a;_1a;41 forall 1 <i <n —1.

Theorem 3.1. The sequence N} ,(n) satisfies the log-concavity property.

Proof. In order to prove, we have to show that the fraction

(ng,o(n>)2
ngfl,o(n)NgH,o(n)

is larger than 1.

2 2n 2 gty (2 n+k—1\72
(ng,o(”)) = [((Z;% ))((Z% k+1§ _ ((Z}j2k_§k+k—l))
2n n n _ n+l 2n _ . nt+k—1-1
(14) N () = 2 (k(pl) p]; )()]Z 2(k ]i) Lk).(.p. (p2klipkl+k)11)
g _ (p*" = p") (" —p" ™). (pP" — p" )
Nk+1 o(n)

o (p2(k+1) _pk+1)(p2(k+1) — pkt2) ... (pz(k+1) — phtl+htl-1y

From the equalities given by Eq. (14), we write

(NEom)?
ng—l,o(n)ng-Q—l,O(n)

@2 —p™) (2" —p" ). (2" —pntE L) @2 —p™)...(p*"—pn k1)
_ (P2F —pF) (p2F —pk+1) ... (p2k —pF+h—T1) (p2k _pk)(p2k —pk+1)...(p2F —pFFk—1)
p2n _pntk—1 (p2n_pn)(p2n _pntl)  (p2n_pnth—1-1) (p2m _pn).. (p2" _pntk+i—1)

p2n—pnth—1  (2(h—1) _pk—1) _(p2k _ph—1+k—1-1) (p2(kt1) _pk+1) (p2(k+1) _pk+1thF1i-1)

1
(p2F —pF)(p2F —pF+1)...(p2F —p2F—T)
p2n_pn+k
(P2—D) _pk—1) _(p2(k—1) _p2k—3)(p2(k+1) _pk+1) (p2(k+1) _p2k+1)(p2n _pntk—1)

1
B e e T O e e b e T
. (pZ(kfl) _ pk*l)(pZ(kfl) _ pk) L (pQ(kfl) _ p2k73)(p2(k+1) _ karl) L

. (pZ(kJrl) 2k+1)(p2n o anrk:fl)

-Pp
We multiply both numerator and denominator parts of the last equality by k2.
Then the last equality is equal to

p2(k+1) _ pk+1)<p2n _ pn+k—1)
(p2(k71) _ pk72)(p2n _ pn+k)

Multiplying the Eq. (15) by p*, we obtain

(15) k:Q(
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p4k2(p2(k+1) _ pk+1)(p2n _ pn-l-k—l)
(p2(HD) — pht2)(p2n — pntk)

(16)

Now it is obvious that Eq. (16) is greater than 1. O

Example 5. ¢ =4,n =4:

2
(N3,(4))% = 4202, N (4) = 420, N3, (4) =15, 2= =28> 1,
q=4,n=>5:
(Ni5(5))2 = 930%, N 5(5) = 155, N4 5(5) = 155, 2% =36 > 1,
q=4,n=6:
(N4,(6))? = 364560%, Ni,(6) = 78120, Nj,(6) = 651, 7?;;61‘;3?3;1 ~ 2614 >
1. O
Example 6. ¢ =9,n = 3:
(N9 1(3))2 = 1567, Ng1(3) = 13, N§,(3) =13, 1060 — 144> 1
q=9,n=>5:
(N9o(5))% = 8820902, Nio(5) = 980, Ni,(5) = 882090, 5520900 ~ 900 >
1. U
Lemma 3.2. The sequence Ny |(n) is unimodal where k < n — 1.
Proof. We write below the sequence for all possible values of £k =0,1,2,...,n—1

and any ¢ = p:
Ng,l(n) N{I,l(”) qu,l(n) N372’1(n) Ngq,l(n)

We apply Eq. (5) to the entries of the sequence:

(©2012Albanian J. Math. 95
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(17)

p _p n— n—
NG 1(n) = o P Lypm 4 p 1,

" —p")P" —p) _ p (" —Dp@" '~ 1)

Mat) = Ga e —p) = - e
:pn72(pn71+pn 2 +1)(p n 3++1)
N () = & =@ =" =) p " = Dt " Dpt " - 1)
21 (»° —p*)(P° — p") (P> — p?) p3(p2—1) (p 1)p (p— 1)
_P T " DO 4 p D"+ p 4]
p+1
@y = @)@ =P — ") (p" — p)
M) = =)
= (pjl)Q PR T L+ )" T+ )+ 1)
(P D)
Ny () = =P ) ) = p )

(p2n73 — pnfl)(p2n73 _ pn) . (p2n73 _ p2n74)(pn71 _ pn72) :

We multiply both numerator and denominator parts of the equality (17) by
p3("=2) and have

NO L () = PO =) P = " )
n—2,1 - (p2n _ pn+2)(p2n _ pn+3) o (an _ pZn 1)(pn 1 pn— 2)
(18) _ Pt =D e = Dt —p )

P2 (p? = Dp*Hp - D"t —p?)
=p" 2" A+ DM D).

Finally, in a similar way we obtain

(19) NI i) =p" 24+ p" 4+ D"+ L
If n is odd then the middle term, (%)%h term, is Nﬁ%,l(n). The sequence is

increasing until the middle term and decreasing after it.

If n is even then we have two middle terms, N%ﬁl(n), N%H’l(n), whose values
are the same. This may be ensured by the equalities given by (17)-(18). Moreover,
5th equality of Theorem 2.3 guarantees this result.

Hence the sequence N, (n) is unimodal.
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For odd n
Ng,l(n) N{I,l(") N5,1(n) N@,l(n) Ng—z,l(") Ng—m(")
v v e NN hN
For even n
Ng,1(”) Nf,l(n) N§,1(”) N%,l(”) N%+1,1(”) Ng—m(n)
a a a - NN\

(]

Example 7. ¢ =4,n =6:
Noa(6)  N{4(6)  N3i(6) Ny, (6)  Nyj,y(6) 5.1(6)
63 31248 624960 624960 31248 63
q=4n="7:

Noa() N{W(T) Nga(7)  Nsa(7) Niy(7) Nia() Nga(7)

127 256032 21165312 90708480 21165312 256032 127

q=9,n=3:
Nga(3)  NPa(3)  N3i(3)

13 156 13

No1(4) NP (4)  N3i(4) N3h(4)

40 4680 4680 40.

Lemma 3.3. The sequence N} ,(n) is unimodal where k <n — 2.

Proof. We can give the proof in the similar way as in Lemma 3.2. We write below

the sequence for all possible values of k = 0,1,2,...,n — 2 and any q = p*:

Ng,z (n) Nf,2(n) Ng,z(") e Nq—3,2(n) Ng—Q,z(n)

n

We apply Eq. (5) to the entries of the sequence:

e @ =DE"=p) @+ P+ .+ D" P P+ ]
(20) Noaln) = P -1)@*-p) p+1

(©2012Albanian J. Math. 97
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(21)
oy = @ =P —p) (" —p?)
Nia(n) = (p* —p*)(P® — p)(P® — p?)
B pn—3(pn—1 +pn—2 4+ + 1)(pn—2 +pn—3 + .+ 1)(pn—3 +pn—4 4+ 4+ 1)

p+1
o o P P (i P (i P (i pY)
(22) N{,(n) = st
(23)
N!_45(n)= " = p™)(p* — ") . (PP = PPN (P — p ) (™ — p"T?)

(p2n74 _ pnfl)(p2n74 _ pn) . (p2n74 _ p2n75)(pn71 _ pn73)(pn71 _ pn72)
pn—3(pn—1 +pn—2 4+ 1)(pn—2 _|_pn—3 4+t 1)(pn—3 +pn—4 R 1)
p+1 '

(24)
@ - =P =" - )" ")
(p2n—4 _ pn—l)(an—4 _ pn) . (p2n—4 _ p2n—5) pn—l _ pn—3)(pn—1 _ pn—2)
B e R E 01 A 8 A U o )
p+1
Hence, the expressions in the above equations have the following relations
Eq. (20) < Eq. (21) < Eq. (22) < ...
The inequality continues in the same way until the term N %2 (n) for even n and
N,‘,{%Q(n) (also N,‘,{%Hg(n)) for odd n. After the terms NéQ(n) and N,‘,{%Hg(n),
the sequence is decreasing because of the equalities given by (20)-(24). This proves
the Lemma. (]

N572,2(n) =

Example 8. ¢=4,n=6:

Noo(6)  Nio(6)  Nyo(6)  Nis(6)  Nio(6)
651 78120 36456 78120 651
q=4,n="7:
Noo(T) Nio(7)  Noo(T)  Nio(7) Nio(7)  Niu(7),
2667 1322832 26456640 26456640 1322832 2667
q=25n=3:
806 4030 806.

O

Theorem 3.4. The sequence Ng] ks (n) is unimodal where k1 +ky <n and q = 2.
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Proof. By Theorem 2.4, Lemma 3.2 and Lemma 3.3 we obtain the result. (]
In the following theorem, we give a connection between GGN and Rogers-Szego
polynomials.
Prior to the theorem, we first write (6) as

A B

k1—1 ko—1
™ I @ =) e I " =)

n =0 7=0

(25) |: kl,kg :|Z ki—1 ko—1

pkl +k1ko H (pk1 pl)pklkg H (pk'g _an)
=0 m=0
c D

Theorem 3.5. The following equality holds:

(26) AHy(ty to,ts) = > N-tpesele
k1+ka+kz=n

where A = pPritnka=2n®—ke®=2kiks gng N = { klnkzz ] (¢ =p?).

) z

Proof. By using the notation introduced in Eq. (25), part A can be rewritten as

P kﬁl " —p) =t — (S - Gy a4
I ! Loy

(L-GNO- ) 0=, G

—O)-09. .-G 7 Ehen

similarly part B can be rewritten as

(27) A= pPh

ka—1
PR ] R —p) =
§=0
kika, (n—ki)ks o ln—kl _ ln—krl—l _ ln—kl—kz-&-l
" "p (1 (p) ) (p) ). (1 (p) )
A=GNA=(G)). (=) ™) (35 2)n—t
28 B = nka P P P — nkao p’p ,
B8 B=r T ey s Gy P D,
part C' can be rewritten as
. ky—1
pkl +k1k2 H (pkl _pl) _
1=0
k12 +kika, k1% 1 _ lkl _ lkl—l _ lkl—k1+1
p P (1 (p) )1 (p) ). (1 (p) )
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11
29 C — 2k51 +kiko s
(29) (p p) )
and finally part D can be rewritten as
Pt 2 1 1 1
PR T @ —pm) =P Reph (1= (2)F) (1= (2)F 1) (1= ()RRt
ket p p p
11
30 D= pk1/€2+7€2 -
(30) (p p)

Then, by using the new expressions of A, B,C, D in (25)

p2nk1 (3:3)n pnk2 (£:3)n—k
(31) [ n } LA T i 3 e
ki, ko 2, p2k1®+kiks (% %)klpklkﬁkf(%,%)h
Take 1 =
p
(32)
{ n } :p2nk1+nk272k127k2272k1k2 (4, Dn(q, Ok,
k17k2 . (q,q)n—kl(Q7q)k1(QaQ)n—kl—kz(QaQ)kg
For (q) = (¢,q)n in (32),
(33) { " } — p2rkitnka =2k —ky? 2k ks (@Dn(@Dn—t,
k1, k2 (@2 (@ (Dt (D

The following two equalities are well known:

nol_ (@n n—ki | @ek
k1 . T @k ( Dk’ ko . T @k —ko (Drq
Then, (33) is equal to the number

(34) p2nk1+nk22k12k222k1k2|: n ] [n—lﬁ } )
q q

k1 ko

Moreover, if we do some abbreviation in (33), we obtain (35):

2 2 (Q)n
(35) p2nk1 +nk2 2k1 kg 2k1 k2
(q)kl (q)k‘g (q)’nfkl*kQ
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_ 2nk1+nk2—2k12—k22—2k1k2 n
(36) =D |: kl,kg,nfklka :|

2 2
(k3 =n — kl _ k2, A — p2nk1+nk272k1 —ko 72](31’(?2)

n n
37 =A
(87) {kl,kz Lq [kl,kz,kg L
—_———

q—multinomial coef ficient

. n n _ N
We let N = { oy ko }Zq. Then { oy g, s L = 3.
The underlined expression in (36) and (37) is due to the definition given in [14].
The homogeneous Rogers-Szego polynomial in 3 variables is the following:

2 _ n k1 ko ik
Hy(ty ta,ts) = > |:k1,k27]€3:| thgh ks,
k1+ko+kz=n q
N
A
where N = [ i nk } is GGN and A is equal to the number
1, K2

q
A — p2nk1+nk2—2k12—k22—2k1k2 .

Then the result is obvious:

(38) AHy(ty to,ts) = > N-tpesele
ki1+ka+kz=n

4. CONCLUSION

In this paper, we have developed some functions and properties for Generalized
Gaussian Numbers which are related to the number of submodules of a finite mod-
ule. We present that some families of sequences which are obtained via GGN are
log-concave and unimodal and we give some examples. As a future work, these
studies may be generalized to GGN for any m and some further relations may be
obtained between GGN and Rogers-Szego polynomials.
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