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Email: tewfik.lounis@gmail.com

Abstract. The main purpose of this paper is to provide an asymptotically

optimal test. The proposed statistic is of Neyman-Pearson-type when the
parameters are estimated with a particular kind of estimators. It is shown that

the proposed estimators enables us to achieve this end. Two particular cases,

AR(1) and ARCH models were studied and the asymptotic power function
was derived.

Introduction

Local asymptotic normality LAN for the log likelihood ratio was studied for a
several classes of nonlinear time series model, from a LAN the contiguity property
follows, for more details the interested reader may refer to [2], [11], and [4]. Apply-
ing the contiguity property, we construct a statistic for testing a null hypothesis H0

against the alternative hypothesis H
(n)
1 , often a various classical test statistics de-

pends on the central sequence which appears in the expression of the log likelihood
ratio. In the case when the parameter of the time series model is known we obtain
good properties of the test, precisely, the optimality, see for instance [8, Theorem
3].
However, in a general case, particularly in practice, the parameter is unspecified, in
the expression of the estimated central sequence appears an additional term which
is non degenerate asymptotically. The latter, alters the power function of the con-
structed test.
In order to solve this very problem, and on a basis of an estimator of the un-
known parameter, we introduce and define another estimator which does not effects
asymptotically the power function of the test, more precisely the additional term
is absorbed. The principle of this construction is to modify one component of the
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first estimator in order to avoid the additional term, the details of this method are
expanded further in the section (1).
The main purpose of this paper is to investigate the problem of testing two hypoth-
esis corresponding to a stochastic model which is described in the following way.
Let {(Yi, Xi)} be a sequence of stationary and ergodic random vectors with finite
second moment such that for all i ∈ Z, where Yi is a univariate random variable
and Xi is a d -variate random vector.
We consider the class of stochastic models

Yi = T (Zi) + V (Zi) εi, i ∈ Z,(0.1)

where, for given non negative integers q and s, the random vectors Zi is equal
to (Yi−1, Yi−2, . . . , Yi−s, Xi, Xi−1, . . . , Xi−q), the εi’s are centered i.i.d. random
variables with unit variance and density function f(·), such that for each i ∈ Z,
εi is independent of the filtration Fi = σ(Zj , j ≤ i), the real-valued functions T (·)
and V (·) are assumed to be unknown. We consider the problem of testing whether
the bivariate vector of functions (T (·), V (·)) belongs to a given class of parametric
functions or not. More precisely, let

M = {(m(ρ, ·), σ(θ, ·)) , (ρ′, θ′)′ ∈ Θ1 ×Θ2} ,

Θ1 × Θ2 ⊂ R` × Rp, Θ̊1 6= ∅, Θ̊2 6= ∅, where for all set A, Å denotes the interior
of the set A and the script “ ′ ” denotes the transpose, ` and p are two positive
integers, and each one of the two functions m(ρ, ·) and σ(θ, ·) has a known form
such that σ(θ, ·) > 0. For a sample of size n, we derive a test of

H0 : [(T (·), V (·)) ∈M] against H1 : [(T (·), V (·)) /∈M] .(0.2)

It is easy to see that the null hypothesis H0 is equivalent to

H0 : [(T (·), V (·)] =
(
m(ρ0, ·), σ(θ0, ·)

)
,(0.3)

while the alternative hypothesis H1 is equivalent to

H1 : [(T (·), V (·)] 6=
(
m(ρ0, ·), σ(θ0, ·)

)
,

for some (ρ′0, θ
′
0)′ ∈ Θ1 ×Θ2.

In the sequel, our study will be focused on the following alternative hypotheses.

For all integers n ≥ 1, the alternative hypothesis H
(n)
1 is defined by the following

equation

H
(n)
1 : [(T (·), V (·)] =

(
m(ρ0, ·) + n−

1
2G(·), σ(θ0, ·) + n−

1
2S(·)

)
,(0.4)

where G(·) and S(·) are two specified real functions. The situation is different in
the case when the used statistic is the Neyman-Pearson test which is based on the
log-likelihood ratio Λn defined as follows

(0.5) Λn = log

(
fn
fn,0

)
=

n∑
i=1

log(gn,i),

where fn,0(·) and fn(·) denote the probability densities of the random vector (Y1, . . . , Yn)
corresponding to the null hypothesis and the alternative hypothesis, respectively.
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The use of the Neyman-Pearson statistics needs to resort to the following condi-
tions:
Under the hypothesis H0, there exists a random variable Wn such that

Wn
D−→ N (0, τ2),

where
D−→ denotes the convergence in distribution and some constant τ > 0 de-

pending on the parameter φ0 = (ρ′0, θ
′
0)′, such that

Λn =Wn(φ0)− τ2(φ0)

2
+ oP (1).(0.6)

The equality (0.6) is a modified version of the LAN given by [8, Theorem 1]. We
mention that there exist other versions of the LAN , we may refer to [7], [10] and
the references therein. On the basis of the LAN , an efficient test of linearity based
on Neyman-Pearson-type statistics was obtained in a class of nonlinear time series
models contiguous to a first-order autoregressive process AR(1) and its asymptotic
power function is derived, see for instance
([8, Theorem 1 and Theorem 3]). Note that this proposed test is given by this
equality:

Tn = I

{
Wn(ρ0)

τ(ρ0)
≥ Z(α)

}
,(0.7)

where Z(α) is the (1 -α)-quantile of a standard normal distribution Φ(·).
The expression of the obtained test depends on the central sequence Wn(φ0) which
itself depends on the parameter φ0. In a general case the parameter φ0 is unspeci-
fied, so, in order to estimate it, we need to present of a coherent methodology for
the estimation of the parameters of mathematical models. An experimental data
will be examined in the end.
More precisely, under some assumptions, we define and introduce an estimator pre-
serving, asymptotically, the power on Neyman-Pearson test when we replace, in
the expression of the statistics, the parameter φ0 by an appropriate estimator, φ̄n.
Say, this estimator will be constructed on the tangent space with the direction of

the partial derivatives of the central sequences in φ̂n, where φ̂n is a
√
n-consistent

estimator of φ0. In the sequel, φ̄n will be called a modified estimator M.E..
This paper describes a method to estimate parametric models and consists of two
parts essentially:
The first part corresponds to the introducing of a new estimator (Modified esti-

mator) of the unknown parameter of the time series model.More precisely, if φ̂n is
a consistency estimator of unknown parameter φ, and Wn a real random variable
defined on the set Θ1 ×Θ2 such that the following condition is satisfied:

Wn(φ̂n) = Wn(φ0)−Dn + oP (1),

where Dn is a specified bounded random function. Then, we shall construct an-
other estimator φ̄n of the parameter φ0 which absorb the error corresponding to the
function Dn.The proprieties of this estimator are expanded further in the section
(1).
The second part corresponds to the applying of this new estimator (Modified esti-
mator) in the problem of the test. In this case the random variable Wn is equal to
the central sequence Vn which appears in the LAN version defined by the equality
(0.6). Under some assumptions, the optimality of the constructed test is obtained
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and its asymptotic power function is derived.
This paper is organized as follows:
Section (1) is devoted for the estimation. In Subsection (1.1), we describe the
methodology used to construct the M.E.. In Subsection (1.2), we give the asymp-
totic properties of the proposed estimator.
In Section (2), we applied the modified estimator in the problem of testing. Section
(3) treats specially the problem of testing in AR(1) in two cases.
In Section (4), we conduct a simulation in order to evaluate the power of the pro-
posed test in AR(1) model.
All mathematical developments are relegated to Section (5).

1. Estimation

Large sample theory of estimation is developed. Attention was confined to para-
metric model. Other problems having a link with the considered problem depend
on the used estimator. More precisely, random functions based on the unspecified
parameter of the model appear. The replacing of this unknown parameter by its
estimator induces an additional term. This latter is not asymptotically degenerate,
the performance of the considered study problem is effected.
For instance, if we consider the problem of testing, the most of the classical statis-
tics tests are based on the central sequence which appears in the expression of the
established local asymptotic normality of the log-likelihood ratio. In this case the
random function corresponds to the central sequence. By replacing the unknown
parameter by its estimator, an additional term appears in the expression of the es-
timated central sequence. Therefore, the power of the constructed test is effected.
Our goal in this paper is to treat this problem in a general case. In order to avoid
this additional term, we develop under some assumptions a method for constructing
another estimator. The principle of this construction is to absorb this additional
term asymptotically.
Next we discuss estimation and testing for AR(1) with an extension to ARCH
models and note that these models lead to some interesting and particular prob-
lems.

In Subsection (1.1), we give under some assumptions, the methodology of con-
structing this estimator.

In Subsection (1.2), we expand further the problem of the consistency of our
constructed estimator. Under some assumptions, the consistency of the modified
estimator is established.
Throughout, φ̂n = (ρ̂′n, θ̂

′
n)′ a

√
n-consistent estimator of the parameter

φ0 = (ρ′0, θ
′
0)′, where

ρ̂′n =
(
ρ̂n,1, . . . , ρ̂n,`

)
, θ̂′n =

(
θ̂n,1, . . . , θ̂n,p

)
,

ρ0
′ =

(
ρ1, . . . , ρ`

)
and θ0

′ =
(
θ1, . . . , θp

)
.

Dn and Wn are the additional term and a real random function respectively.

1.1. Estimation with modifying one component. Our purpose is to construct
another estimator φ̄′n of the parameter (ρ′0; θ′0)′, such that the following fundamental
equality is fulfilled

Wn(φ̄n)−Wn(φ̂n) = Dn,(1.1)
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where Dn is a specified bounded random function.
Our goal, is to find an estimator φ̄n satisfying (1.1) pertaining to the tangent space
Γn, such that, for (X ′, Y ′)′ ∈ R` × Rp, the following equation holds

Γn :Wn((X,Y ))−Wn(φ̂n) = ∂W ′n(φ̂n).
(

(X − ρ̂n)
′
, (Y − θ̂n)

′)′
,

where

∂Wn(φ̂n)′ =
(∂Wn(φ̂n)

∂ρ1
, . . . ,

∂Wn(φ̂n)

∂ρ`
,
∂Wn(φ̂n)

∂θ1
, . . . ,

∂Wn(φ̂n)

∂θp

)
,

and the script ” · ” denotes the inner product.
With the connection with the equality (1.1), the new estimator is then given by
imposing that the value (X ′, Y ′)′ satisfied the following identity

Dn = ∂Wn(φ̂n)′.
(

(X − ρ̂n)
′
, (Y − θ̂n)

′)′
.(1.2)

Clearly, the equation (1.2) has `+p unknown values, so it has an infinity of solutions,
after modification of the jn-th component of the first estimator ρ̂n, we shall propose
an element in tangent space Γn which satisfies the equality (1.2). We obtain then

a new estimator φ̄′n = φ
(1,jn)
n

′
= (ρ̄′n, θ̂

′
n)′ of the unknown parameter φ0, where

ρ̄n
′ =

(
ρ̄n,1, . . . , ρ̄n,`

)
,

and such that: for s ∈ {1, . . . , `}, ρ̄n,s = ρ̂n,s if s 6= jn and ρ̄n,jn 6= ρ̂n,jn .

The use of the notation φ
(1,jn)
n explains that we obtain the new estimator φ̄n of

the parameter φ0 when we change in the expression of the estimator φ̂n the jn
component with respect to the first estimator ρ̂n corresponding to the step n of the
estimation. It follows from the equality (1.1) combined with the constraint (1.2)
that

Wn(φ(1,jn)n )−Wn(φ̂n) =
∑̀
s=1

∂Wn(φ̂n)

∂ρs
(ρ̄n,s − ρ̂n,s) +

p∑
t=1

∂Wn(φ̂n)

∂θt
(θ̄n,t − θ̂n,t),

=
∂Wn(φ̂n)

∂ρjn
(ρ̄n,jn − ρ̂n,jn).(1.3)

By imposing the following condition

∂Wn(φ̂n)

∂ρjn
6= 0,(1.4)

and with the use of the equality (1.2) combined with (1.4), we deduce that

ρ̄n,jn =
Dn

∂Wn(φ̂n)
∂ρjn

+ ρ̂n,jn .(1.5)

In summary, we define the modified estimator by

φ̄′n = φ(1,jn)n

′
=
(
ρ̂n,1, . . . , ρ̂n,jn−1, ρ̄n,jn , ρ̂n,jn+1, . . . , ρ̂n,`, θ̂n,1, . . . , θ̂n,p

)′
.

With a same reasoning as the previous case and after modifying the
kn-th component with respect to the second estimator, we shall define a new esti-
mator

φ̄n
′

= φ(2,kn)n

′
= (ρ̂′n, θ̄

′
n)′,
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such that for t ∈ {1, . . . , p}, θ̄n,t = θ̂n,t if t 6= kn and θ̄n,kn 6= θ̂n,kn . We obtain

Wn(φ(2,kn)n )−Wn(φ̂n) =
∂Wn(φ̂n)

∂θkn
(θ̄n,kn − θ̂n,kn).(1.6)

Under the following condition

∂Wn(φ̂n)

∂θkn
6= 0,(1.7)

it follows from the equality (1.2) combined with (1.7), that

θ̄n,kn =
Dn

∂Wn(φ̂n)
∂θkn

+ θ̂n,kn .(1.8)

In summary, we obtain the modified estimator

φ̄′n = φ(2,kn)n

′
=
(
ρ̂n,1, . . . , ρ̂n,`, θ̂n,1, . . . , θ̂n,kn−1, θ̄n,kn , θ̂n,kn+1, . . . , θ̂n,p

)′
.

The estimator φ
(1,jn)
n (respectively, φ

(2,kn)
n ) is called a modified estimator in jn-th

component with respect to the first estimator (respectively, in kn-th component
with respect to second estimator). We denote this estimator by M.E..

Remark 1.1. For each step n of the estimation corresponding a value of the position
jn or kn of the component where the estimator was modified.

1.2. Consistency. Throughout, φ̂n is a
√
n-consistent estimator of the unknown

parameter φ0. The conditions (1.4) and (1.7) are not sufficient to get the consistency
of the modified estimator M.E.. In order to get its consistency, we need to resort
to one of the following additional conditions :

(C.1):

1√
n

∂Wn(φ̂n)

∂ρjn

P−→ c1 as n→∞,

(C.2):

1√
n

∂Wn(φ̂n)

∂θkn

P−→ c2 as n→∞,

where c1 and c2 are two constants, such that c1 6= 0 and c2 6= 0.

Note that
P−→ denotes the convergence in probability.

Our first result concerning the consistency of the proposed estimator is summarized
in the following proposition.

Proposition 1.1. Under (1.4) and (C.1) ( or (1.7) and (C.2)), the estimator

φ
(1,jn)
n ( or φ

(2,kn)
n , ) is a

√
n-consistent estimator of the unknown parameter φ0.

Remark 1.2. In practice, it is not easy to verify the condition (C.1) (or (C.2)). In
the case when the unknown parameter φ0 is univariate, a sufficient condition will
be stated in Lemma (1.3). In this case, we need the following assumption:

(C.3): : For all real sequence (ηn)n≥1 with values in the interval [0, 1], we
have:

1√
n
Ẅn(ηnφ0 + (1− ηn)φ̂n)) = OP (1),

where Ẅn is a second derivative of Wn.
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Now, we may state the sufficient condition which implies assumptions (C.1) corre-
sponding to the case when the parameter of the time series model is univariate.

Lemma 1.3. Let φ̂n be a
√
n-consistent estimator of the parameter φ0. Let c1 be

a constant, such that c1 6= 0, then we have:

(i) Under (C.3), if 1√
n
Ẇn(φ0)

P−→ c1, as n→∞, then ∀A > 0,

P

(∣∣∣∣ 1√
n
Ẇn(φ̂n)− c1

∣∣∣∣ > A

)
→ 0, as n→∞.

Remark 1.4. Consequently, with the applying of the modified estimator and in
the case when the error between two central sequences is bounded. Under some
assumptions, it is possible to absorb this error. This result is stated and proved in
the following proposition.

Proposition 1.2. Let φ̂′n be an estimator (
√
n consitency) of the unknown pa-

rameter (ρ′, θ′)
′
. We assume that there exists a known bounded function Dn, such

that

Wn(φ̂n) = Wn(φ0)−Dn + oP (1).(1.9)

Then, there exists an estimator φ̄n
′

of (ρ′, θ′)′ such that

Wn(φ̄n) = Wn(φ0) + oP (1).

Remark 1.5. These previous results will be used in the problem of testing. If we
consider the problem of testing of the null hypothesis H0 against the alternative
hypothesis Hn

1 corresponding to the equalities (0.3) and (0.4), and when the local
asymptotic normality of log likelihood ratio corresponding to the equality (0.6) is
established. It is possible to construct an optimal test.

2. Testing in parametrical model

The literature on specification testing in parametric model is vast. The goal is
to obtain a test that is consistent. This paper provides a general framework for
constructing specification tests for parametric models.
Now, we are ready to apply the results obtained in the section (1) in the testing
problem. More precisely, under some assumptions, it is possible to preserve asymp-
totically the power function of the constructed test when we replace the unknown
parameter by the modified estimator. Consequently the optimality of the test is
proved and the power function is derived.
Consider again the problem of testing the hypothesis H0 and Hn

1 correspond-
ing to the equalities (0.3) and (0.4) respectively. In the sequel the functions
(ρ, ·) −→ m(ρ, ·) and (θ, ·) −→ σ(θ, ·) are assumed to be twice differentiable on
the sets Θ1 and Θ2 respectively.
Throughout, we assume that the function f(·) is positive with a third derivative,

we denote by ḟ(·), f̈(·) and f (3)(·) the first, the second and the third derivative
respectively. For all x ∈ R, let

Mf (x) =
ḟ(x)

f(x)
.

For the considered problem of testing, we use the classical large sample of Neyman-
Pearson. On the basis on the results of the section (1), under some assumptions,
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we shall prove that, asymtotically the power function of the constructed test is no
effected with the replacing of the unknown parameter by the modified estimator.
This latter is stated in the next theorem:

2.1. Optimality of the proposed test. Throughout, T̄n and τ̄ are the statistics
test and the constant respectively obtained with the subsisting of the unspecified
parameter φ0 by its modified estimator φ̄n in the expression of the test (0.7) and the
constant τ appearing in the expression of the log likelihood ratio (0.6) respectively.

We assume in the problem of testing the two hypothesis H0 against H
(n)
1 that the

LAN of the the model (0.1) is established, in order to prove the optimality of the
proposed test. To this end, we need the following assumption:

(E.1): There exists a
√
n-estimator φ̂n of the unknown parameter φ0 and a

random bounded function Dn, such that

Vn(φ̂n) = Vn(φ0)−Dn + oP (1).

Note in this case that, the random variable Vn corresponds to the central
sequence Wn which appears in the expression of the log likelihood ratio
(0.6).

It is now obvious from the previous definitions that we can state the following
theorem:

Theorem 2.1. Under LAN and the conditions (1.4) (respectively, (1.7)), (C.1)
((C.2), respectively) and (E.1) the asymptotic power of T̄n under Hn

1 is equal to to
1− Φ(Z(α)− τ̄2). Furthermore, T̄n is asymptotically optimal.

Remark 2.2. In practice, the use of the condition (E.1) requires the specification of
the random variable Dn. In this way, we specify this random variable in the problem
of testing corresponding to theAR(1) model. This specially case is expanded further
in the next section.

3. Testing in AR(1) model

In this work, we treat specially the problem of testing for the AR(1) model in
two cases: firstly, we study in the Subsection (3.1) the case when the sequence of
nonlinear model is contiguous to AR(1), and secondly, we discuss in the Subsec-
tion(3.2) the extension to autoregressive conditionally heteroscedastic contiguous
alternative models to AR(1).
In the aim to achieve this, we need, firstly to establish the local asymptotic nor-
mality for the log likelihood ratio, secondly, to specify the random function Dn,
and thirdly to construct a modified estimator and an optimal test. Therefore, we
require some results and assumptions for these two problems of testing.
Throughout, the scripts ”‖ · ‖`+p ” , ”‖ · ‖` ” and ”‖ · ‖p ” denote the euclidian
norms in R`+p, R` and Rp respectively.

3.1. Nonlinear time series contiguous to AR(1) processes. Consider the s-th
order (nonlinear) time series

Yi = ρ0Yi−1 + αG(Y (i− 1)) + εi, |ρ0| < 1.(3.1)

In this case and with the comparison to the equality (0.1), we have

Zi = Yi , T (Zi) = ρ0Yi−1 + αG(Y (i− 1)) and V (Zi) = 1.
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In the sequel, it will be assumed that the model is a stationary and ergodic time
series with finite second moment.
Consider the problem of testing the null hypothesis H0 : α = 0 against the alterna-

tive hypothesis H
(n)
1 : α = n−

1
2 . With the comparison to (0.3) and (0.4), we have

the following equalities:(
m(ρ0, Yi−1), σ(θ0, Yi−1)

)′
=

(
ρ0 Yi−1, 1

)′
, M = {m(ρ, ·), ρ ∈ Θ1} ,

Zi
′ =

(
Yi−1, . . . , Yi−s

)
and S(·) = 0.

Note that this problem of testing is equivalent to test the linearity of the s-th AR(1)
time series model (α = 0) against the nonlinearity of the s-th AR(1) time series

model (α = n−
1
2 ).

In order to study this problem, we require some assumptions and results. We
suppose that the following conditions are satisfied:

: (A.1): There exists positive constants η and c such that for all u with
‖u‖`+p > η, G(u) ≤ c‖u‖`+p.

: (A.2): for a location family {f(εi−c), −∞ < c < −∞}, there exist a square
integrable functions Ψ1, Ψ2 and a constant δ such that for all εi and |c| < δ,
such that : ∣∣∣dkf(εi − c)

f(εi) dck

∣∣∣ ≤ Ψk(εi), for k = 1, 2.

We begin by processing the propriety of the local asymptotic normality, then we
have:

3.1.1. Local asymptotic normality. To aim to establish the local asymptotic nor-
mality for the the local asymptotic normality LAN and according to the equality
(0.5), we require that the following conditions are satisfied under H0:

: (L.1): max1≤i≤n |gn,i − 1| = oP (1),
: (L.2): there exists a positive constante τ2 such that∑n

i=1(gn,i − 1)2 = τ2 + oP (1),
: (L.3): there exists a-Fn mesurable Vn satisfying

∑n
i=1(gn,i−1) = Vn+oP (1),

where Vn
D−→ N (0, τ2).

(L.1), (L.2) and (L.1) imply under H0, the local asymptotic normality LAN for the
log likelihood ratio corresponding to this problem of testing is established . This
version of LAN is given by the following equality:

Λn = Vn(φ0)− τ2(φ0)

2
+ oP (1), with Vn

D−→ N (0, τ2).

Fore more details, refer to ([8, Theorem 1]).
One consequence of the applying of the ([8, Theorem 1]), that, under H0, (A.1)
and (A.2) imply the local asymptotic normality LAN for the log likelihood. More
precisely, we have:

Λn = Vn(φ0)− τ2(φ0)

2
+ oP (1), with Vn

D−→ N (0, τ2),

Vn(ρ0) = − 1√
n

n∑
i=1

Mf (εi)G(Y (i− 1)), and τ2 = E(M2
f (ε0))E(G2(Y (0))).
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For more details, see ([8, Theorem 2]).

3.1.2. The considering test. According to the notation and results of the previous
Subsection, under the conditions (A.1) and (A.2), the proposed test Tn is the
Neyman-Pearson statistic which is given by the following equality

Tn = I

{
Vn(ρ0)

τ(ρ0)
≥ Z(α)

}
.

The asymptotic power of the test is derived and equal to 1−Φ(Z(α)− τ2). Recall
that when ρ0 is known, we obtain an efficiency test, for more details see [8, Theorem
3].
To achieve this problem of testing, it remains to specify the random function Dn,
the method is developed in the next subsection.

3.1.3. Specification of the random variable Dn. Our aim is to specify the form of
the function Dn which is defined in (1.9).
In the sequel, the parameter ρ0 is estimated by the

√
n-consistent estimator ρ̂n and

the residual εi is estimated by ε̂i,n = Yi−Yi−1ρ̂n. We have the following statement:

Proposition 3.1. Assume that, under H0, the conditions (A.1) and (A.2) hold

and εi’s are centered i.i.d. and ε0
D−→ N (0, 1). We have

V(ρ̂n) = Vn(ρ0)−Dn + oP (1),(3.2)

where

Dn = −c1
√
n(ρ̂n − ρ0), and c1 = −E

[
Y0G(Y (0))

]
.(3.3)

3.1.4. Modified estimator and optimal test. Under the conditions of the Proposi-
tion (3.1), the modified estimator and an optimal test are given by the following
proposition

Proposition 3.2. The modified estimator is given by the equality

ρ̄n =
Dn

V̇n(φn)
+ ρ̂n,

and the statistic test is given by

T̄n = I

{
Vn(ρ̄n)

τ̄
≥ Z(α)

}
.

Remark 3.1. • The use of the ergodicity of the model imposes to require the

condition E
[
Y−1G(Y0)

]
<∞, therefore we choose the function G(·) in order

to get this condition. For instance, we shall choose G(Y (i− 1)) = 2a
1+Y 2

i−1
,

where a 6= 0.
• With this choice of the function G, the condition (A.1) remains satisfied,

in fact, we can remark that |G(u)| ≤ 2|a|, then for all u with ‖u‖`+p ≥ η
we have G(u) ≤ 2a × ‖u‖`+p × 1

‖u‖`+p ≤
2a
η × ‖u‖`+p, therefore, we shall

choose c = 2a
η .
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3.2. An extension to ARCH processes. Consider the following time series
model with conditional heteroscedasticity

Yi = ρ0Yi−1 + αG(Y (i− 1)) +
√

1 + βB(Y (i− 1)) εi, i ∈ Z.(3.4)

We consider the problem of testing the null hypothesis H0 against the alternative

hypothesis H
(n)
1 such that

H0 : m(ρ, Zi) = ρ0Yi−1 and σ(θ0, ·) = 1,

H
(n)
1 : m(ρ, Zi) = ρ0Yi−1 + n−

1
2G(Y (i− 1)) and σ(θ0, Zi) =

√
1 + n−

1
2B(Y (i− 1)).

Remark that H0, H
(n)
1 correspond to α = β = 0 (linearity of (3.4)) and α = β =

n−
1
2 (non linearity of (3.4)) with the comparison to the equality (0.1), we have

Zi = Yi, T (Zi) = ρ0Yi−1 + αG(Y (i− 1)) and V (Zi) =
√

1 + βB(Y (i− 1)).

Note that when n is large, we have

σ(θ0, Zi) =

√
1 + n−

1
2B(Y (i− 1)) ∼ 1 +

n−
1
2

2
B(Y (i− 1)) = 1 + n−

1
2S(Y (i− 1)).

It is assumed that the model (3.4) is ergodic and stationary. It will be assumed
that the conditions (B.1), (B.2) and (B.3) are satisfied, where

: (B.1): The fourth order moment of the stationary distributions of (3.4)
exists.

: (B.2): There exists a positive constants η and c such that for all u with
‖u‖`+p > η, B(u) ≤ c‖u‖2`+p.

: (B.3): for a location family {b−1f( εi−ab ), −∞ < a < −∞, b > 0}, there
exists a square integrable function ϕ(·), and a strictly positive real ς, where
ς > max(|a|, |b− 1|), such that,∣∣∣∣∣∂2b−1f

(
εi−a
b

)
f(εi) ∂aj ∂bk

∣∣∣∣∣ ≤ ϕ(εi),

where j and k are two positive integers such that j + k = 2.

3.2.1. Local asymptotic normality. Under the conditions (A.1), (B.1), (B.2) and
(B.3), the local asymptotic normality for the LAN corresponding to this problem
of testing is established. In this case we have, under H0:

Λn = Vn(φ0)− τ2(φ0)

2
+ oP (1),

Vn(ρ0) = − 1√
n

{
n∑
i=1

Mf (εi)G(Y (i− 1)) +

n∑
i=1

(1 + εiMf (εi))B(Y (i− 1))

}
,

with Vn
D−→ N (0, τ2),

and τ2 = I0E (G(Y (0))
2

+
(I2 − 1)

4
E (B(Y (0))

2
+ I1E (G(Y (0))B(Y (0)) ,

where Ij = E
(
εj0M

2
f (ε0)

)
where j = 0, 1, 2.

For more details, see ([8, Theorem 4]).
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3.2.2. The considering test. The proposed test is then given by

Tn = I

{
Vn(ρ0)

τ(ρ0)
≥ Z(α)

}
.

This test is asymptotically optimal with a power function equal asymptotically to
1− Φ(Z(α)− τ2)? for more details refer to ([8, Theorem 3]).

3.2.3. Specification of the random variable Dn. By the subsisting ρ0 by its
√
n-

consistent estimator ρ̂n in the expression of the central sequence, we shall state the
following proposition:

Proposition 3.3. Suppose that, under H0 the conditions (A.1), (B.1), (B.2) and

(B.3) hold and εi’s are centered i.i.d. and ε0
D−→ N (0, 1). We have

V(ρ̂n) = Vn(ρ0)−Dn + oP (1),(3.5)

where

Dn = −c1
√
n(ρ̂n − ρ0), and c1 = −E

[
Y0G(Y (0))

]
.(3.6)

3.2.4. Modified estimator and optimal test. Under the conditions of the Proposi-
tion (3.1), the modified estimator and an optimal test are given by the following
proposition

Proposition 3.4. The modified estimator is given by the equality

ρ̄n =
Dn

V̇n(φn)
+ ρ̂n,

and the statistic test is given by

T̄n = I

{
Vn(ρ̄n)

τ̄
≥ Z(α)

}
.

Remark 3.2. We mention that the limiting distributions appearing in Proposition
(3.1) and Proposition (3.3) depend on the unknown quantity bn = (ρ̂n − ρ0),
i.e., in practice ρ0 is not specified, in general. To circumvent this difficulty, we
use the Efron’s Bootstrap in order to evaluate bn, more precisely, the interested
reader may refer to the following references : [6] for the description of the Boot-
strap methods, [1], [9] for the Bootstrap methods in AR(1) time series models and
[Fryzlewicz et al.(2008)] for the ARCH models.

We shall now apply the results of the Section(1) and theorem (2.1 ) in order to
conduct simulations corresponding to the representation of the derived asymptotic
power function. The concerned model is the Nonlinear time series contiguous to
AR(1) processes with an extension to ARCH processes which are detailed in the
Subsections (3.1) and (3.2) respectively.

4. Simulations

In this section we consider particular classes which results already figure in the
Subsections (3.1) and (3.2). We illustrate these results by doing simulations. We
represent simultaneously the power functions, with the true parameter, with the
consistency estimator of this parameter and with the modified estimator of this
parameter respectively. This representation is given in term of the value of a which
appears in the expressions of the random functions G and S. When n is large, we
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compare the power functions.
The first aim of the conducted simulation is to evaluate the performance of the mod-
ified estimator. The second aim is to obtain a best power by the use of the modified
estimator. The considering problem of testing concerns the linearity against a con-
tiguous (to AR(1)) sequence of no alternative nonlinear models. An extension to
contiguous autoregressive conditional heteroscedastic model is treated.
Simulations are carried out with comments in Subsections (4.1) and (4.2) for these
problems of testing.

Throughout, we suppose that εi’s are centered i.i.d. where ε0
D−→ N (0, 1), in this

case, we have:
E(εi) = 0, E(ε2i ) = 1, and E(ε4i ) = 3.

4.1. Simulations: Nonlinear time series contiguous to AR(1) processes.
In this subsection, current simulation are carried out. All this results and repre-
sentations are detailed in the subsection (3.1).
We assume, under H0 that the conditions (A.1) and (A.2) are satisfied. We treat the
case when the unknown parameter φ0 = ρ0 ∈ Θ1 ⊂ R, under H0, the considering
time series model can also rewritten

Yi = ρ0Yi−1 + εi where |ρ0| < 1.(4.1)

In the case when the parameter ρ0 is known, the test Tn is optimal and its power
is asymptotically equal to 1− Φ(Z(α)− τ2), for more details see
[8, Theorem 3]. In a general case, when the parameter ρ0 is unspecified, firstly, we

estimate it with the least square estimators L.S.E. ρ̂n =
∑n
i=1 YiYi−1∑n
i=1 Y

2
i−1

,

secondly, under the conditions (1.4) and (C.1), the modified estimator M.E. ρ̄n ex-
ists and remains

√
n-consistent, making use of (1.5) in connection with the Propo-

sition (3.2) it follows:

ρ̄n =
Dn

V̇n(ρ̂n)
+ ρ̂n =

−c1(ρ̂n − ρ0)
V̇n(ρ̂n)√

n

+ ρ̂n,(4.2)

with the substitution of the parameter ρ0 by its estimator ρ̄n in (3.5), we obtain
from Theorem (2.1), the following optimal statistics test

T̄n =

{
Vn(ρ̄n)

τ(ρ̄n)
≥ Z(α)

}
where τ̄2 = E(M2

f (ε̄0,n))E(G2(Y0)),

and ε̄0,n = Y0 − Y−1ρ̄n.

In this case, we have, We choose the function G like this

G :
(
x1, x2, · · ·, xs, xs+1, xs+2, · · ·, xs+q

)
−→ 5a

1 + x21
where a 6= 0.

It follows from Theorem (2.1) that T̄n is optimal with an asymptotic power function
equal to 1− Φ(Z(α)− τ2(ρ̄n)).
In our simulations, the true value of the parameter ρ0 is fixed at 0.1 and the sample
sizes are fixed at n = 30, 35, 40, 45, 50, 55, 60 and 65. For a level
α = 0.05, the power relative for each test estimated upon m = 1000 replicates. We
represent simultaneously the power test with a true parameter ρ0, the empirical
power test which is obtained with the replacing the true value ρ0 by its estimator
M.E. ρ̄n corresponding to the equality (4.2), and the empirical power test which is
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obtained with the subsisting the true value ρ0 by its least square estimator L.S.E.
ρ̂n (an estimator with no correction).
We observe that, the two representations with the true value and the modified
estimator M.E. are close for large n and large a.

4.2. Simulations: An extension to ARCH processes. These results concern
the problem of testing which is described in the subsection (3.2).
In this case, we assume under H0, that the conditions (A.1), (B.1), (B.2) and (B.3)
are satisfied. On a basis of the results of the Propositions (3.3) and (3.4) and by
following the same previous reasoning as the previous Subsection, it follows that:

T̄n = I

{
Vn(ρ̄n)

τ(ρ̄n)
≥ Z(α)

}
,
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such that

τ̄2 = Ī0,nE (G(Y (0))
2

+
(Ī2,n − 1)

4
E (B(Y (0))

2
+ Ī1,nE (G(Y (0))B(Y (0)) ,

Īj,n = E
(
ε̄j0,nM

2
f (ε̄0,n)

)
, j = 0, 1, 2, and ε̄0,n = Y0 − Y−1ρ̄n.

In this case, we choose the functions G and B like this

G = B :
(
x1, x2, · · ·, xs, xs+1, xs+2, · · ·, xs+q

)
−→ 3.5a

1 + x21
where a 6= 0.

In our simulations, the true value of the parameter ρ0 is fixed at 0.1 and the sample
sizes are fixed at n = 30, 35, 40, 45, 50, 55, 60 and 100. For a level α = 0.05, the
power relative for each test estimated upon m = 1000 replicates.

We remark that, when n and a are large, we have a similar conclusion as the
previous case.
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5. Proof of the results

Proof of the Proposition 1.1. Consider the following fundamental decomposi-
tion:

(φ(1,jn)n )′ = (φ̂n)′ + (Ojn)
′
,(5.1)

where

O′jn = (Ojn,i)
′
i∈{1,...,`+p}, such that Ojn,i = 0 when i 6= jn,

and Ojn,jn = ρ̄n,jn − ρ̂n,jn .

Firstly, we have φ̂n
P−→ φ0.

Secondly we can deduce from (1.5) that:

Ojn,jn =
Dn

∂Wn(φ̂n)
∂ρjn

=
1√
n
Dn

1

1√
n
∂Wn(φ̂n)
∂ρjn

.(5.2)
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Since Dn is bounded, we can remark that 1√
n
Dn

P−→ 0.

From (C.1), there exists some constant c1 6= 0, such that

1√
n

∂Wn(φ̂n)

∂ρjn

P−→ c1.

From (1.4) and since the function x→ 1
x is continuous on R− {0}, it follows that

the random variable 1
1√
n

∂Wn(φ̂n)
∂ρjn

P−→ 1
c1
, it results that the couple(

1√
n
Dn; 1

1√
n

∂Wn(φ̂n)
∂ρjn

)
converges in probability to the couple

(
0 ; 1

c1

)
.

Since the function (x, y)→ xy is continuous on R×R, it result from (5.2), that the

random variable Ojn,jn
P−→ 0

c1
= 0, therefore

Ojn
′ = (0, . . . 0, Ojn,jn , 0 . . . 0)′

P−→ (0, . . . 0, 0, 0 . . . 0)′.(5.3)

Consider again the equality (5.1). Since the function (x, y) → x + y is continuous

on R`+p × R`+p, it results from (5.3) that φ
(1,jn)
n converges in probability to φ0 as

n→∞.
Note that the last previous convergence in probability follows immediately with
the use of the continuous mapping theorem, for more details, see for instance [3] or
[12].
By following the same previous reasoning, we shall prove the consistency of the

estimator φ
(2,kn)
n .

Note that φ
(1,jn)
n is

√
n-consistent estimator of the parameter φ0 and√

n(φ
(1,jn)
n − φ0) = OP (1), where OP (1) is bounded in probability in R`+p.

In fact, it follows from (5.1) that:

√
n(φ(1,jn)n − φ0) =

√
n(φ̂n − φ0) +

√
nOjn = OP (1) +

√
nOjn .

Since
√
nOjn,jn = Dn

1
1√
n

∂Wn(φ̂n)
∂ρjn

and under (C.1), it results that

√
nOjn = OP1(1), where OP1(1) is bounded in probability in R.

We deduce that:

√
n(φ(1,jn)n − φ0) = OP (1).(5.4)

Note that with a similar argument and with changing φ
(1,jn)
n , (C.1) and (1.4) by

φ
(2,kn)
n , (C.2) and (1.7) respectively, we obtain

√
n(φ(2,kn)n − φ0) = OP (1).(5.5)

Proof of the Lemma 1.3. In this case φ0 = ρ0 ∈ Θ1 ⊂ R, we denote by ρ̂n the√
n-consistent estimator of ρ0.

Let A > 0, from the triangle inequality combined with a classical inequality, we
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obtain:

P

(∣∣∣∣ 1√
n
Ẇn(ρ̂n)− c1

∣∣∣∣ > A

)
= P

(∣∣∣∣ 1√
n
Ẇn(ρ̂n)− 1√

n
Ẇn(ρ0)

∣∣∣∣+

∣∣∣∣ 1√
n
Ẇn(ρ0)− c1

∣∣∣∣ > A

)
≤ P

(∣∣∣∣ 1√
n
Ẇn(ρ̂n)− 1√

n
Ẇn(ρ0)

∣∣∣∣ > A

2

)
+ P

(∣∣∣∣ 1√
n
Ẇn(ρ0)− c1

∣∣∣∣ > A

2

)
.

Firstly, we have

P

(∣∣∣∣ 1√
n
Ẇn(ρ0)− c1

∣∣∣∣ > A

2

)
→ 0 as n→∞,(5.6)

Secondly, we have∣∣∣∣ 1√
n
Ẇn(ρ̂n)− 1√

n
Ẇn(ρ0)

∣∣∣∣ =
1√
n

∣∣∣Ẅn(ρ̃n)
∣∣∣ ∣∣∣ρ̂n − ρ0∣∣∣(5.7)

=
1√
n

∣∣∣∣ 1√
n
Ẅn(ρ̃n)

∣∣∣∣ ∣∣∣√n(ρ̂n − ρ0)
∣∣∣,(5.8)

where ρ̃n is a point between ρ0 and ρ̂n, then there exists a sequence ηn with values
in the interval [0, 1], such that ρ̃n = ηnρ0 + (1− ηn)ρ̂n.

This implies that
|ρ̃n − ρ0| ≤ (1− ηn)|ρ̂n − ρ0| ≤ |ρ̂n − ρ0|.

This last inequality enables us to concluded that ρ̃n is
√
n-consistency estimator

of ρ0, it follows from (C.3) applied on the equality (5.8) that

P

(∣∣∣∣ 1√
n
Ẇn(ρ̂n)− 1√

n
Ẇn(ρ0)

∣∣∣∣ > A

2

)
→ 0 as n→ 0.(5.9)

Thus we obtain (i).

Proof of Proposition 1.2. It suffices to choose under (1.4) and (C.1) the estima-

tor φ̄n = φ
(1,jn)
n , (or to choose under (1.7) and (C.2) the estimator φ̄n = φ

(2,kn)
n ,).

Proof of Proposition 3.1. Since (A.1) and (A.2) hold, we deduce from
([8, Theorem 1]), that the local asymptotic normality LAN for the log likelihood
ratio is established.

εi’s are centered i.i.d. and ε0
D−→ N (0, 1), making use of the results of [8,

Theorem 2], we have

Wn(ρ0) = − 1√
n

n∑
i=1

Mf (εi)G(Y (i− 1)).

The estimated central sequence is

Wn(ρ̂n) = − 1√
n

n∑
i=1

Mf (ε̂i,n)G(Y (i− 1)).

By Taylor expansion with order 2, we have :

Wn(ρ̂n)−Wn(ρ0) = Ẇn(ρ̂n)(ρ̂n − ρ0) +
1

2
Ẅn(ρ̃n)(ρ̂n − ρ0)2,
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where ρ̃n is a point between ρ0 and ρ̂n and

Ẇn(ρ̃n) =
−1√
n

n∑
i=1

Yi−1G(Y (i− 1)).

Note that

Rn =
1

2
Ẅn(ρ̃n)(ρ̂n − ρ0)2 =

1

2
√
n

1√
n
Ẅn(ρ̃n)

(√
n(ρ̂n − ρ0)

)2
.

Since the estimator ρ̂n is
√
n-consistent, it results that(√

n(ρ̂n − ρ0)
)2

= OP (1),

from the assumption (C.3), it follows that

Rn = oP (1),

finally we deduce that,

Wn(ρ̂n)−Wn(ρ0) = Ẇn(ρ̂n)(ρ̂n − ρ0) + oP (1).(5.10)

This implies that

Ẇn(ρ̂n)√
n
− Ẇn(ρ0)√

n
=
Ẅn(ρ̌n)√

n
(ρ̂n − ρ0) + oP (1) =

1√
n

Ẅn(ρ̌n)√
n

√
n(ρ̂n − ρ0) + oP (1),

(5.11)

where ρ̌n is between ρ̂n and ρ0, and Ẅn is the second derivative of Wn. From the
assumption (C.3), we have

1√
n

Ẅn(ρ̌n)√
n

= oP (1),

since the estimator ρ̂n is
√
n-consistent, it result that

Ẇn(ρ̂n)√
n
− Ẇn(ρ0)√

n
= oP (1),

this implies that

Ẇn(ρ̂n)√
n

=
Ẇn(ρ0)√

n
+ oP (1).(5.12)

With the use of (5.12), the equality (5.10) can also rewritten

Wn(ρ̂n)−Wn(ρ0) =
Ẇn(ρ̂n)√

n

√
n(ρ̂n − ρ0) + oP (1),

=
Ẇn(ρ0)√

n

√
n(ρ̂n − ρ0) + oP (1).(5.13)

It follows from the assumption (C.1) combined with the ergodicity and the station-

arity of the model that, the random variable 1√
n
Ẇn(ρ0) converges in probability to

the constant c1, as n→ +∞, where

c1 = −E
[
Y0G(Y (0))

]
,

therefore there exists a random variable Xn, Xn
P−→ 0 such that

1√
n
Ẇn(ρ0) = c1 +Xn.
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We deduce from the equality (5.13) and the
√
n-consistence of the estimator ρ̂n,

that

Wn(ρ̂n)−Wn(ρ0) = c1
√
n(ρ̂n − ρ0) + oP (1) = −Dn + oP (1),

where Dn = −c1
√
n(ρ̂n − ρ0).

Recall that the second derivative Ẅn is equal to 0, this implies that the assumption
(C.3) is satisfied.

Proof of Proposition 3.2. This proposition is one consequence of the results of
Subsection (1.1). More precisely the direct application of the definition (1.5) ( or
(1.8)).

Proof of Proposition 3.3. The assumption (C.1) remains satisfied. From ([8,
Theorem 4]), assumptions (A.1), (B.1), (B.2) and (B.3) imply the local asymptotic
normality LAN for the log likelihood ratio. The proof is similar as the proof of
Proposition (3.1), in this case, for all ρ ∈ Θ1, we have

Ẅn(ρ) =
−1√
n

n∑
i=1

Y 2
i−1B(Y (i− 1))2Ṁf (ρ).

By a simple calculus and since the the function f is the density of the stan-
dard normal distribution, it is easy to prove that the quantity 2Ṁf (ρ) is bounded,

therefore, there exists a positive constant w such that 2Ṁf (ρ) ≤ w, then

| 1√
n
Ẅn(ρ)| ≤ w 1

n

n∑
i=1

Y 2
i−1|B(Y (i− 1))|.

With the choice B(Y (i− 1)) = 2a
1+Y 2

i−1
with a 6= 0, it results that

| 1√
n
Ẅn(ρ)| ≤ 2w|a| 1

n

n∑
i=1

Y 2
i−1.

By the use of the ergodicity of the model and since the model is with finite second

moments, it follows that the random variable 1
n

∑n
i=1 Y

2
i−1

a.s−→ k, where k is some
constant, this implies that the condition (C.3) is straightforward.

Proof of Proposition 3.4. The proof is similar as the proof of the Proposition (
3.2).

Proof of the Theorem 2.1. Since it assumed that local asymptotic normality
LAN for the log likelihood ratio is established, then we have

Λn = Vn(φ0)− τ2(φ0)

2
+ oP (1).

In this case the random variable Wn is equal to Vn.

From the conditions (1.4) ((1.7), respectively), (C.1) ((C.2), respectively), it results
the existence and the

√
n-consistency of the modified estimator φ̄n corresponding

to the equation (1.5) ((1.8), respectively).
The combinaison of the condition (E1) and the Proposition (1.2) enable us to get
under H0 the following equality

Vn(φ̄n) = Vn(φ0) + oP (1).
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This last equation implies that with oP (1), the estimated central and the central
sequences are equivalent, in the expression of the test (3.2), the replacing of the
central sequence by the estimated central sequence has no effect.
LAN implies the contiguity of the two hypothesis (see, [5, Corrolary 4.3]), by Le

Cam third lemma’s (see for instance, [7, Theorem 2]), under H
(n)
1 , we have

Vn
D−→ N (τ2, τ2).

It follows from the convergence in probability of the estimator φ̄n to φ0, the conti-
nuity of the function τ : · −→ τ(·) and the application of the continuous mapping
theorem see, for instance ([12]) or [3], that asymptotically, the power of the test is
not effected when we replace the unspecified parameter φ0 by it’s estimator, φ̄n,
hence the optimality of the test.

The power function of the test is asymptotically equal to 1 − Φ(Z(α) − τ2(φ̄n)).
The proof is similar as [8, Theorem 3].
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