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Abstract. This paper is motivated by the Cauty’s result [1] which states that

if X is a dendroid, then 2X and C(X) have the fixed point property. The main
purpose of this paper is to study the fixed point property of the hyperspaces of

arboroids. It is proved, using the inverse systems method and Cauty’s result,
that if X is an arboroid and f : 2X → 2X is a mapping, then f has the fixed

point property. Similar theorem it is proved for f : C(X) → C(X).

1. Introduction

All spaces in this paper are compact Hausdorff and all mappings are continuous.
The weight of a space X is denoted by w(X). The cardinality of a set A is denoted
by card(A). We shall use the notion of inverse system as in [5, pp. 135-142]. An
inverse system is denoted by X = {Xa, pab, A}.

Let A be a partially ordered directed set. We say that a subset A1 ⊂ A majorates
[3, p. 9] another subset A2 ⊂ A if for each element a2 ∈ A2 there exists an element
a1 ∈ A1 such that a1 ≥ a2. A subset which majorates A is called cofinal in A.
A subset of A is said to be a chain if every two elements of it are comparable.
The symbol supB, where B ⊂ A, denotes the lower upper bound of B (if such an
element exists in A). Let τ ≥ ℵ0 be a cardinal number. A subset B of A is said to
be τ -closed in A if for each chain C ⊂ B, with card(B) ≤ τ, we have supC ∈ B,
whenever the element supC exists in A. Finally, a directed set A is said to be
τ -complete if for each chain C of A of elements of A with card(C) ≤ τ , there exists
an element supC in A.

Suppose that we have two inverse systems X = {Xa, pab, A} and Y = {Yb, qbc, B}.
A morphism of the system X into the system Y [3, p. 15] is a family {ϕ, {fb : b ∈ B}}
consisting of a nondecreasing function ϕ : B → A such that ϕ(B) is cofinal in A,
and of maps fb : Xϕ(b) → Yb defined for all b ∈ B such that the following

Xϕ(b)

pϕ(b)ϕ(c)←− Xϕ(c)

↓ fb ↓ fc
Yb

qbc←− Yc
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104 FIXED POINT PROPERTY OF HYPERSPACES OF ARBOROIDS

diagram commutes. Any morphism {ϕ, {fb : b ∈ B}} : X → Y induces a map,
called the limit map of the morphism

lim{ϕ, {fb : b ∈ B}} : limX→ limY

In the present paper we deal with the inverse systems defined on the same in-
dexing set A. In this case, the map ϕ : A → A is taken to be the identity and we
use the following notation {fa : Xa → Ya; a ∈ A} : X→ Y.

We say that an inverse system X = {Xa, pab, A} is factorizing [3, p. 17] if for
each real-valued mapping f : limX→ R there exist an a ∈ A and a mapping
fa : Xa → R such that f = fapa.

An inverse system X = {Xa, pab, A} is said to be σ-directed if for each sequence
a1, a2, ..., ak, ... of the members of A there is an a ∈ A such that a ≥ ak for each k
∈ N.

Lemma 1.1. [3, Corollary 1.3.2, p. 18]. If X = {Xa, pab, A} is a σ-directed inverse
system of compact spaces with surjective bonding mappings, then it is factorizing.

An inverse system X = {Xa, pab, A} is said to be τ -continuous [3, p. 19]
if for each chain B in A with card(B) < τ and supB = b, the diagonal product
∆ {pab : a ∈ B}maps the spaceXb homeomorphically into the space lim{Xa, pab, B}.

An inverse system X = {Xa, pab, A} is said to be a τ -system [3, p. 19] if:
a) w(Xa) ≤ τ for every a ∈ A,
b) The system X = {Xa, pab, A} is τ -continuous,
c) The indexing set A is τ -complete.
A σ-system is τ -system, where τ = ℵ0. The following theorem is called the

Spectral Theorem [3, p. 19].

Theorem 1.2. [3, Theorem 1.3.4, p. 19]. If a τ -system X = {Xa, pab, A} with
surjective limit projections is factorizing, then each map of its limit space into the
limit space of another τ -system Y = {Ya, qab, A} is induced by a morphism of
cofinal and τ -closed subsystems. If two factorizing τ -systems with surjective limit
projections and the same indexing set have homeomorphic limit spaces, then they
contain isomorphic cofinal and τ -closed subsystems.

Let us remark that the requirement of surjectivity of the limit projections of
systems in Theorem 1.2 is essential [3, p. 21].

A fixed point of a function f : X → X is a point p ∈ X such that f(p) = p.
A space X is said to have the fixed point property provided that every mapping
f : X → X has a fixed point.

In the sequel we shall use the following result.

Theorem 1.3. Let X = {Xa, pab, A} be a σ-system of compact spaces with limit X
and onto projections pa : X → Xa. Let {fa : Xa → Xa} : X → X be a morphism.
Then the induced mapping f = lim {fa} : X → X has a fixed point if and only if
each mapping fa : Xa → Xa, a ∈ A, has a fixed point.

As an immediate consequence of this theorem and the Spectral theorem 1.2 we
have the following result.

Theorem 1.4. Let a non-metric continuum X be the inverse limit of an inverse
σ-system X = {Xa, pab, A} such that each Xa has the fixed point property and each
bonding mapping pab is onto. Then X has the fixed point property.
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The following result enables to prove Theorem 1.6 as the application of Theorem
1.4.

Theorem 1.5. [7, Theorem 1.6, p. 402]. If X is the Cartesian product X =∏
{Xs : s ∈ S}, where card(S) > ℵ0 and each Xs is compact, then there exists a

σ-directed inverse system X = {Ya, Pab, A} of the countable products Ya =
∏
{Xµ :

µ ∈ a}, card(a) = ℵ0, such that X is homeomorphic to limX.

Theorem 1.6. Let S be an infinite set and Q = Π{Xs : s ∈ S} Cartesian product
of compact spaces. If each product Xs1 ×Xs2 × ...×Xsn of finitely many spaces Xs

has the fixed point property, then Q has the fixed point property.

Proof. We shall consider the following cases.
Case 1 card(S) = ℵ0. We may assume that S = N. The proof is a straightfor-

ward modification of the proof of [10, Corollary 3.5.3, pp. 106-107]. Let f : Q→ Q
be continuous. For every n ∈ N define

Kn = {x ∈ Q : (x1, ..., xn) = (f(x)1, ..., f(x)n)}.
It is clear that for every n the set Kn is closed in Q and that Kn+1 ⊂ Kn. For
every n ∈ N, let on be a given point of Xn and pn : Q → X1 × ...× Xn be the
projection. Define continuous function fn : X1 × ...×Xn → X1 × ...×Xn by

fn(x1, ..., xn) = (pnf)(x1, ..., xn, on+1, on+2, ...).

By assumption of Theorem fn has the fixed point property, say (x1, ..., xn). It
follows that

(x1, ..., xn, on+1, on+2, ...) ∈ Kn.

We conclude that {Kn : n ∈ N} is a decreasing collection of nonempty closed
subsets of Q. By compactness of Q we have that

K = ∩{Kn : n ∈ N}
is nonempty. It is clear that every point in K is a fixed point of f .

Case 2 card(A) ≥ ℵ1. By Theorem 1.5 there exists a σ-directed inverse system
X = {Ya, Pab, A} of the countable products Ya =

∏
{Xµ : µ ∈ a}, card(a) = ℵ0,

such that Q is homeomorphic to limX. By Case 1 each Ya has the fixed point
property. Finally, by Theorem 1.4 we infer that Q has the fixed point property. �

A space X is said to be rim-metrizable if it has a basis B such that Bd(U) is
metrizable for each U ∈ B.

Theorem 1.7. [8, Theorem 9, p. 205]. Let X = {Xa, pab, A} be an inverse system
of compact spaces and surjective bonding mappings pab. Then:

1): There exists an inverse system M(X) = {Ma,mab, A} of compact spaces
such that mab are monotone surjections and limX is homeomorphic to
limM(X),

2): If X is σ-directed, then M(X) is σ-directed,
3): If X is σ-complete, then M(X) is σ-complete,
4): If every Xa is a metric space and limX is locally connected (a rim-

metrizable continuum), then every Ma is metrizable.

REMARK. Let us observe that the projections ma : limM(X) → Ma, a ∈ A,
are monotone. In the case of the locally connected spaces or the rim-metrizable
continua, we have the following result.
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Theorem 1.8. [8, Theorem 10, p. 207]. Let X = {Xa, pab, A} be a σ-system of
compact spaces and surjective bonding mappings pab. If limX is a locally connected
space (a rim-metrizable continuum), then there exists an a ∈ A such that the
projection pb is monotone, for every b ≥ a.

For a compact space X we denote by 2X the hyperspace of all nonempty closed
subsets of X equipped with the Vietoris topology. C(X) and X(n), where n is
a positive integer, stand for the sets of all connected members of 2X and of all
nonempty subsets consisting of at most n points, respectively, both considered as
subspaces of 2X .

For a mapping f : X → Y define 2f : 2X → 2Y by 2f (F ) = f(F ) for F ∈ 2X .
It is known that 2f is continuous, 2f (C(X)) ⊂ C(Y ) and 2f (X(n)) ⊂ Y (n). The
restriction 2f |C(X) is denoted by C(f).

An element {xa} of the Cartesian product
∏
{Xa : a ∈ A} is called a thread of X

if pab(xb) = xa for any a, b ∈ A satisfying a ≤ b. The subspace of
∏
{Xa : a ∈ A}

consisting of all threads of X is called the limit of the inverse system X = {Xa,
pab, A} and is denoted by limX or by lim{Xa, pab, A} [5, p. 135].

Let X = {Xa, pab, A} be an inverse system of compact spaces with the natural
projections pa : limX → Xa, for a ∈ A. Then 2X = {2Xa , 2pab , A}, C(X) =
{C(Xa), C(pab), A} and X(n) = {Xa(n), 2pab | Xb(n), A} form inverse systems. For
each F ∈ 2limX, i.e., for each closed F ⊆ limX the set pa(F ) ⊆ Xa is closed
and compact. Thus, we have a mapping 2pa : 2limX → 2Xa induced by pa for each
a ∈ A. Define a mapping M : 2limX → lim 2X by M(F ) = {pa(F ) : a ∈ A}.
Since {pa(F ) : a ∈ A} is a thread of the system 2X, the mapping M is continuous
and one-to-one. It is also onto since for each thread {Fa : a ∈ A} of the system
2X the set F ′ =

⋂
{p−1
a (Fa) : a ∈ A} is non-empty and pa(F ′) = Fa. Thus, M

is a homeomorphism. If Pa : lim 2 X → 2Xa , a ∈ A, are the projections, then
PaM = 2pa . Identifying F with M(F ) we have Pa = 2pa .

Lemma 1.9. . Let X = limX. Then 2X = lim 2X, C(X) = limC(X) and X(n) =
limX(n).

2. The arboroids as the inverse limit space of dendroids

A continuum X with precisely two non-separating points is called a generalized
arc.

A simple n-od is the union of n generalized arcs A1O,A2O, ..., AαO, each two
of which have only the point O in common. The point O is called the vertex or the
top of the n-od.

By a branch point of a compact space X we mean a point p of X which is the
vertex of a simple triod lying in X. A point x ∈ X is said to be end point of X if
for each neighborhood U of x there exists a neighborhood V of x such that V ⊂ U
and card(Bd(V )) = 1.

Let S be the set of all end points and of all branch points of a continuum X. An
arc pq in X is called a free arc in X if pq ∩ S = {p, q}.

A continuum is a graph if it is the union of a finite number of metric free arcs.
A tree is an acyclic graph.

A continuum X is tree-like (arc-like) if for each open cover U of X, there is a
tree (arc) XU and a U-mapping fU : X → XU (the inverse image of each point is
contained in a member of U).
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Every tree-like continuum is hereditarily unicoherent.
A non-metric hereditarily unicoherent continuum which is arcwise connected by

generalized arcs is said to be an arboroid. A metrizable hereditarily unicoherent
continuum which is arcwise connected is said to be a dendroid. Every arboroid is
tree-like [4, Corollary, p. 20]. If X is an arboroid and x, y ∈ X, then there exists a
unique arc [x, y] in X with endpoints x and y. If [x, y] is an arc, then [x, y]�{x, y}
is denoted by (x, y).

A point t of an arboroid X is said to be a ramification point of X if t is the only
common point of some three arcs such that it is the only common point of any two,
and an end point of each of them.

A point e of an arboroid X is said to be end point of X if there exists no arc
[a, b] in X such that x ∈ [a, b]�{a, b}.

Let Y X be the set of all mappings of X to Y . If Y is a metric space with a

metric d, then on the set Y X one can define a metric d̂ by letting

d̂(f, g) = sup
x∈X

d (f(x), g(x)) .

Proposition 1. Let X be any tree-like continuum, let P be a polyhedron with a
given metric d, r > 0 a real number and f : X → P a mapping. Then there exist a
tree Q, a mapping g : X → Q and a mapping p : Q → P such that g(X) = Q and

d̂(f, pg) ≤ r.

Proof. Let K be a triangulation of P of mesh not greater than r/2. Let ai be the
vertices of K, and let St ai be the open star of K around the vertex ai. Hence,
{St ai} is an open covering for P , and so is U = {f−1(St ai)} for X. There exist
a tree Q and a mapping g : X → Q such that g is an U-mapping and g(X) = Q.
There exists a triangulation L of Q with vertices bj such that the cover V = {g−1(St
bj)} refines the cover U . Let x be a point of X and let s be a simplex of Q with
vertices bj1 , ..., bjk containing g(x). This means that

{
g−1(St bj1), ..., g−1(St bjk)

}
is a collection of some g−1(St bj) containing x. It follows that g−1(St bj1)∩ ... ∩
g−1(St bjk) 6= ∅. We infer that St bj1∩ ... ∩ St bjk 6= ∅. Let p : Q → P be a
simplicial mapping sending each vertex bj of Q into a vertex ai having the property
that g−1(St bi) ⊂ f−1(St ai). It remains to prove that d(f, pg) ≤ r. Now, for each
g−1(St bij ) we have some f−1(St aij ) with g−1(St bij ) ⊂ f−1(St aij ). From g−1(St

bj1)∩ ... ∩ g−1(St bjk) 6= ∅ it follows that f−1(St bj1)∩ ... ∩ f−1(St bjk) 6= ∅, i.e.,
that there exists a simplex σ of K with vertices bj1 , ..., bjk such that f(x) ∈ St σ.

Clearly, pg(x) ∈ St σ. Finally, d̂(f, pg) ≤ r. �

Proposition 2. If X = {Xa, pab, A} is an inverse system of tree-like continua
and if pab are onto mappings, then the limit X = limX is a tree-like continuum.

Proof. Let U = {U1, ..., Un} be an open covering of X. There exist an a ∈ A and
an open covering Ua = {U1a, ..., Uka} such that

{
p−1
a (U1a), ..., p−1

a (Uka)
}

refines
the covering U . There exist a tree Ta and a Ua-mapping fUa : Xa → Ta since Xa is
tree-like. It is clear that fUapa : X → Ta is a U-mapping. Hence, X is tree-like. �

Proposition 3. If X is a tree-like continuum, Q a tree and f : X → Q is a
mapping, then f(X) also is a tree.

Proof. This follows from the fact that a subcontinuum of a tree is a tree. �
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The following result is an expanding theorem of tree-like continua into inverse
σ-systems of metric tree-like continua.

Theorem 2.1. If X is a tree-like non-metric continuum, then there exists a σ-
system Xσ = {X∆, P∆Γ, Aσ} of metric tree-like continua X∆ and onto mappings
P∆Γ such that X is homeomorphic to limXσ.

Proof. Let us observe that Propositions 1-3 are the conditions (A)-(C) in [9, p.
220]. Then from Mardešić’s General Expansion Theorem [9, Theorem 2] it follows
that there exists an inverse system X = {Xa, pab, A} of metric tree-like continua Xa

and onto bonding mappings pab such that X is homeomorphic to limX. It remains
to prove that there exists such σ-system. The proof is broken into several steps.

Step 1. For each subset ∆0 of (A,≤) we define sets ∆n, n = 0, 1, ..., by the
inductive rule ∆n+1 = ∆n

⋃
{m(x, y) : x, y ∈ ∆n}, where m(x, y) is a member of

A such that x, y ≤ m(x, y). Let ∆ =
⋃
{∆n : n ∈ N}. It is clear that card(∆) =

card(∆0). Moreover, ∆ is directed by ≤. For each directed set (A,≤) we define

Aσ = {∆ : ∅ 6= ∆ ⊂ A, card(∆) ≤ ℵ0 and ∆ is directed by ≤}.

Step 2. If A is a directed set, then Aσ is σ-directed and σ-complete. Let {∆1,
∆2, ..., ∆n, ...} be a countable subset of Aσ. Then ∆0 = ∪{∆1, ∆2, ..., ∆n, ...}
is a countable subset of Aσ. Define sets ∆n, n = 0, 1, ..., by the inductive rule
∆n+1 = ∆n

⋃
{m(x, y) : x, y ∈ ∆n}, where m(x, y) is a member of A such that

x, y ≤ m(x, y). Let ∆ =
⋃
{∆n: n ∈ N}. It is clear that card(∆) = card(∆0).

This means that ∆ is countable. Moreover ∆ ⊇ ∆i, i ∈ N. Hence Aσ is σ-directed.
Let us prove that Aσ is σ-complete. Let ∆1 ⊂ ∆2 ⊂ ...⊂ ∆n ⊂ ... be a countable
chain in Aσ. Then ∆ = ∪{∆i : i ∈ N} is countable and directed subset of A, i.e.,
∆ ∈ Aσ. It is clear that ∆ ⊇ ∆i, i ∈ N. Moreover, for each Γ ∈ Aσ with property
Γ ⊇ ∆i, i ∈ N, we have Γ ⊇ ∆. Hence ∆ = sup{∆i : i ∈ N}. This means that Aσ
is σ-complete.

Step 3. If ∆ ∈ Aσ, let X∆ = {Xb, pbb′ , ∆} and X∆ = limX∆. If ∆, Γ ∈ Aσ
and ∆ ⊆ Γ, let P∆Γ: XΓ → X∆ denote the map induced by the projections
pΓ
δ : XΓ → Xδ, δ ∈ ∆, of the inverse system XΓ.
Step 4. If X = {Xa, pab, A} is an inverse system, then Xσ = {X∆, P∆Γ,

Aσ} is a σ-directed and σ-complete inverse system such that limX and limXσ are
homeomorphic. Each thread x = (xa : a ∈ A) induces the thread (xa : a ∈ ∆)
for each ∆ ∈ Aσ, i.e., the point x∆ ∈ X∆. This means that we have a mapping
H : limX → limXσ such that H(x) = (x∆ : ∆ ∈ Aσ). It is obvious that H is
continuous and 1-1. The mapping H is onto since the collections of the threads
{x∆ : ∆ ∈ Aσ} induces the thread in X. We infer that H is a homeomorphism
since limX is compact.

Step 5. Every X∆ is a metric tree-like continuum. Apply Proposition 2.
Step 6. Every projection P∆ : limXσ → X∆ is onto. This follows from the

assumption that the bonding mappings pab are surjective.
Finally, Xσ = {X∆, P∆Γ, Aσ} is a desired σ-system. �

Now we shall prove an expanding theorem of arboroids into inverse σ-systems of
dendroids.

Theorem 2.2. If X is an arboroid, then there exists a σ-system X = {Xa, pab,
A} of dendroids Xa and onto mappings pab such that X is homeomorphic to limX.
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Proof. Firstly we recall that each arboroid is tree-like [4, Corollary, p. 20]. Then
from Theorem 2.1 it follows that there exists an inverse σ-system X = {Xa, pab,
A} of metric tree-like continua Xa and onto bonding mappings pab such that X is
homeomorphic to limX. It remains to prove that there every Xa is a dendroid. By
the fact that Xa is tree-like it follows that Xa is unicoherent. Moreover, it is metric.
It remains to prove that Xa is arcwise connected. Let a, b be a pair of points of Xa.
There exists a pair x, y of points of X such that a = Pa(x) and b = Pa(y). There
exist a unique arc xy in X with end points x and y since X is arcwise connected.
Now, Pa(xy) is arcwise connected [13]. This means that there is an arc ab with end
points a and b. Thus, Xa is a dendroid. �

A non-metric or generalized dendrite is a locally connected arboroid. From
Theorem 2.2 we obtain the following result.

Theorem 2.3. If X is a generalized dendrite, then there exists a σ-system Xσ =
{X∆, P∆Γ, Aσ} of metric dendrites X∆ and onto monotone projections P∆ such
that X is homeomorphic to limXσ.

Proof. From Theorem 2.2 we have a σ-system Xσ = {X∆, P∆Γ, Aσ} of metric
dendroids X∆ and onto mappings P∆Γ such that X is homeomorphic to limXσ. It
suffices to prove that every X∆ is locally connected. This follows from [14, Lemma
1.5, p. 70]. Moreover, by Theorem 1.8 it follows that there exists an a ∈ A such
that the projection Pb is monotone, for every b ≥ a. �

By similar method of proof we have the following result.

Theorem 2.4. If X is a rim-metrizable arboroid, then there exists a σ-system
Xσ = {X∆, P∆Γ, Aσ} of dendroids X∆ and onto monotone projections P∆ such
that X is homeomorphic to limXσ.

A λ-dendroid is an hereditarily decomposable, hereditarily unicoherent contin-
uum. A λ-dendroid is tree-like [4, Corollary, p. 20].

Theorem 2.5. If X is a non-metric rim-metrizable λ-dendroid, then there exists
a σ-system X = {Xa, pab, A} of metric λ-dendroids Xa and onto mappings pab
such that X is homeomorphic to limX.

Proof. From Theorem 2.1 it follows that there exists a σ-system X = {Xa, pab, A}
of metric tree-like continua Xa and onto mappings pab such that X is homeomorphic
to limX since λ-dendroid X is tree-like.We infer that each Xa is unicoherent. It
remains to prove that every Xa is hereditarily decomposable. By Theorem 1.8 there
exists an a ∈ A such that the projection pb is monotone, for every b ≥ a. Using
Theorem 14 of [2, p. 217] (see also [12, p. 297]) we conclude that every Xa is
λ-dendroid. �

3. The fixed point property of the hyperspaces of arboroids

Now we shall investigate the fixed point property of the hyperspaces of arboroids.
Let us recall the following known results.

Theorem 3.1. [1, Theorem 1, p. 1]. For every dendroid X, every tree T0 contained
in X and every ε > 0, there exists a tree T contained in X and containing T0 and
an ε-retraction of X onto T .
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Theorem 3.2. [1, Corollaire 1, p. 1]. If X is a dendroid, then 2X and C(X) have
the fixed point property.

By this theorem and Theorems 1.4 and 1.9 we shall prove the following result.

Theorem 3.3. If X is an arboroid, then 2X has the fixed point property.

Proof. By Theorem 2.2 there exists a σ-system X = {Xa, pab, A} of dendroids such
that all the bonding mappings pab are surjective and the limit limX is homeomor-
phic to X. Now we have the inverse system 2X = {2Xa , 2pab , A} whose limit is 2X

(Lemma 1.9). It is clear that the mappings 2pab are onto if the bonding mappings
pab are onto. Now we can apply Theorem 1.4 since, by Theorem 3.2, every 2Xa has
the fixed point property. Hence, 2X has the fixed point property. �

Let X = {Xa, pab, A} be a σ-system. If we consider the inverse system C(X) =
{C(Xa), C(pab), A}, then C(pab) are not always the surjections. This is the case
only if pab are weakly confluent mappings [11, Theorem (0.49.1), p. 24]. This
means that we can apply Theorem 1.4 on the system C(X) = {C(Xa), C(pab), A}
only if pab are weakly confluent mappings. Let us recall that a mapping f : X → Y
is weakly confluent provided that for each subcontinuum K of Y there exists a
component A of f−1(K) such that f(A) = K [11, (0.45.4), p. 22]. Each monotone
mapping is weakly confluent. It follows that expanding Theorem 2.2 is not enough
for proving the fixed point property of C(X) when X is an arboroid. For this reason
we shall consider the fixed point property for 2X and C(X) if X is a rim-metrizable
arboroid.

Theorem 3.4. If X is a rim-metrizable arboroid, then C(X) has the fixed point
property.

Proof. By Theorem 2.4 there exists a σ-system X = {Xa, pab, A} of dendroids such
that all the bonding mappings pab are monotone surjections and the limit limX is
homeomorphic to X. It is clear that the mappings C(pa) are onto if the bonding
mappings pa are monotone. Now we can apply Theorem 1.4 since, by Theorem
3.2, every C(Xa) has the fixed point property. Hence, C(X) has the fixed point
property. �

Similarly, by Theorem 2.3, on can prove the following result.

Theorem 3.5. If X is a generalized dendrite, then 2X and C(X) have the fixed
point property.

Let Y be a topological space. The cone Cone(Y ) over Y is the quotient space
obtained from Y × [0, 1] by shrinking Y × {1} to a point. This point is called the
vertex of Cone(Y ). The subset Y × {1} of Cone(Y ) is called the base of Cone(Y ).

The following result generalize Theorem 22.15 of [6, p. 195].

Theorem 3.6. Let X = Cone(Y ), where Y is an arboroid. Then 2X has the fixed
point property. Moreover, if Y is rim-metrizable, then C(X) has the fixed point
property.

The suspension Σ(Y ) over a topological space Y is the quotient space obtained
from Y × [−1, 1] by shrinking Y × {−1} and Y × {1} to different points point.

By the similar method of proof one can get the following result which generalize
Theorem 22.16 of [6, p. 196].
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Theorem 3.7. Let X = Σ(Y ), where Y is an arboroid. Then 2X has the fixed
point property. Moreover, if Y is rim-metrizable, then C(X) has the fixed point
property.

4. Fixed point property for a product of arboroids

In the sequel we shall use the following result.

Proposition 4. [5, Exercise 2.5.D.(b), p. 143]. Let S(s) = {X(s)α, p(s)ab, A} be
an inverse system for every s ∈ S. Then

Π{S(s) : s ∈ S} = {Π{X(s)a : s ∈ S},Π{p(s)ab : s ∈ S}, A}

is an inverse system and lim(Π{S(s) : s ∈ S}) is homeomorphic to Π{limS(s) : s ∈
S}.

In this Section we shall generalize the following result in two directions.

Theorem 4.1. [1, Corollaire 2, p. 1]. Each product of dendroids has the fixed point
property.

Theorem 4.2. Let X =
∏
{X(s) : s ∈ S} be a product of arboroids such that

w(X(s)) = τ for every s ∈ S and for cardinal number τ . Then X has the fixed
point property.

Proof. If for every s ∈ S we have an arboroid X(s), then, for every s ∈ S, there
exists a σ-directed inverse system X(s) = {Xa(s), pab(s), A(s)} such that X(s)
is homeomorphic to limX(s) and every Xa(s) is a dendroid (Theorem 2.2). If
w(X(s1)) = w(X(s2)), s1, s2 ∈ S, then A(s1) = A(s2) and we may suppose that
A(s) = A for every s ∈ S. By Theorem 4 the family Π{X(s) : s ∈ S} = {Π{Xa(s) :
s ∈ S},Π{ pab(s) : s ∈ S}, A} is an inverse system and lim(Π{X(s) : s ∈ S})
is homeomorphic to Π{limX(s) : s ∈ S}. From Theorem 4.1 it follows that each
Π{Xa(s) : s ∈ S} has the fixed point property. Finally, from Theorem 1.4 it follows
that Π{X(s) : s ∈ S} has the fixed point property. �

For card(A) = 1 we have the following result.

Corollary 4.3. Every arboroid has the fixed point property.

QUESTION. Is it true that the assumption ”of the same weight” in Theorem
4.2 can be omitted?

We close this section with the result which generalize Theorem 4.1 in the another
direction.

Theorem 4.4. Let X be an arboroid and let {Dm : m ∈ M} be a family of
dendroids. The X ×Π{Dm : m ∈M} has the fixed point property.

Proof. By Theorem 2.2 there exists a σ-directed inverse system X = {Xa, pab, A}
such that X is homeomorphic to limX and every Xa is a dendroid. From Theorem
4 it follows that X ×Π{Dm : m ∈M} is homeomorphic to the limit of the system

X×Π{Dm : m ∈M} = {Xa ×Π{Dm : m ∈M}, pab × identity, A}.

Each Xa × Π{Dm : m ∈ M} has the fixed point property (Theorem 4.1). Finally,
by Theorem 1.4, X ×Π{Dm : m ∈M} has the fixed point property �
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5. The fixed point property of the hyperspaces of the products of
arboroids

In this section we shall use the following result from [6, Exercise 22.20, p. 197].

Proposition 5. Let X = Π{Xi : i ≤ n ≤ ∞} be a product of metric continua.
Assume that for each i and each ε > 0 there is a continuous function fi,ε : Xi →
fi,ε(Xi) ⊂ Xi, where fi,ε(Xi) is locally connected and fi,ε is within ε of the identity
map on X. Then 2X and C(X) have the fixed point property.

We shall prove that Proposition 5 is true for every product of metric continua.

Theorem 5.1. Let X = Π{Xa : a ∈ A} be a product of metric continua. Assume
that for each a and each ε > 0 there is a continuous function fa,ε : Xa → fa,ε(Xa) ⊂
Xa, where fa,ε(Xa) is locally connected and fa,ε is within ε of the identity map on
X. Then 2X and C(X) have the fixed point property.

Proof. By Theorem 1.5 if X =
∏
{Xa : a ∈ A}, where card(A) > ℵ0 and each

Xa is compact, then there exists a σ-directed inverse system X = {Ya, Pab, A}
of the countable products Ya =

∏
{Xµ : µ ∈ a}, card(a) = ℵ0, such that X is

homeomorphic to limX. Moreover, Pab : Yb → Ya is a projection. This means
that if Xa, a ∈ A, are continua, then Pab, a ≤ b, are monotone. We infer that
the systems 2X = {2Xa , 2pab , A} and C(X) = {C(Xa), C(pab), A} have the the
surjective bonding mappings. This means that one can apply Theorem 1.4 since
each 2Xa and C(Xa) has the fixed point property (Theorem 5) and the projections
Pa : limX→Ya are surjections. �

Applying Theorems 3.1 and 5.1 one can get the following result which generalize
Theorems 3.2 and 3.3.

Theorem 5.2. Let X = Π{Xa : a ∈ A} be a product of dendroids. Then 2X and
C(X) have the fixed point property.
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