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ABSTRACT. A Finsler metric of a manifold or vector bundle is defined as a
smooth assignment for each base point, a norm on each fiber space and thus
the class of Finsler metrics contains Riemannian metrics as a special sub-
class. The geometry of complex Finsler manifold has been developed by [7].
In complex Finsler manifolds, the study of theory of curvatures has been an
active field of research over past few decades. In the present article, our main
purpose is to discuss some techniques of decomposition for the well known
Cartan’s first curvature tensor S;'kh' Moreover, we attempted to establish
few significant results that may produce vital connections between complex
Finsler and complex Einstein’s manifolds. Also, by adopting the techniques
of decomposition, various cases and conditions have been developed and their
advantages in the study of theory of relativity & cosmology have been pursued.

1. INTRODUCTION

Since the explanation of various physical systems and Mathematical devices is
much more concerned with the utilization of numerous algebraic quantities involved
in the illustration of geometrical phenomenon and states in which they occur, it
is mandatory to put forward the ideas of such basic algebraic quantities. Certain
types of quantities are commonly identified as scalar, vector and tensors. Among
these the tensors are quite crucial and tedious geometric structures as these are
the only quantities involving three meaningful aspects altogether. That is, a tensor
can suppose to be a tool having direction, magnitude and orientation dependency.
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Different types of tensors, according to their nature are applied to discuss differ-
ent systems, their states and properties. But from geometric point of view, the
geometry from its origin up to its recent extent is all about the curvature tensors.

Among all curvature tensor, yet known to us, Cartan’s-curvature tensors are
very surprising because of having special classes of differentiation obtained with
the help of Cartan’s postulates, which are most popularly used in Finsler geometry.
Although, the Cartan’s curvature tensor is capable to determine the properties
of geometric configurations in Finsler manifolds, but sometimes it seems to be
necessarily convenient to decompose it in order to study the basic aspects of the
manifolds under consideration. Here are few basic concepts of complex Finsler
manifolds and Cartan’s-curvature tensor, which we seem necessary to study the
proposed research topic.

The basic ideas of Finsler manifolds may be traced back to the famous lecture
of Riemann ”Uber die hypotheses, welche der Geometrie zugrunde leigen”. In this
lecture of 1854, Riemann has discussed several new methods by means of which
an n-dimensional manifold can be intimated with a special kind of distance or
metric function. It is supposed that this special metric function should have three
properties in common, namely; the function must be positive definite, its first order
differential must be homogeneous and convex in latter. The distance function ds
between two points whose coordinates are given by z' & z' + dz*, in a complex
Finsler manifold is defined by some function F(z¢,dz%), i.e.,

ds = F(z',d2") Yi=1,2,--- ,n.

If D be the domain (i.e., an open connected set) of an n-dimensional manifold
V., which is completely covered by a coordinate system, such that any point of D is
represented by a set of n independent variables z'(i = 1,2,--- ,n), then the set of
points of I , whose co-ordinates are expressible as the function of single parameter
t is regarded as a curve of V,,. Thus, the equation

(1) 2= 2),

represents a curve C' in V;,. If the equations (1) are of class C', we shall regard the
expression whose components are given by

@) i dz

dt
as the tangent vector to C.
Next, suppose that we are given a function F(z*, 2*) of the line element (z*, 2")
of the curve defined by C in D, then we have the following conditions:

Condition (a): The function F(z%,2*) is positively homogeneous of degree
one in the 2, i.e.,

(3) F(2', k%) = kF (2%, ") with k > 0.

Condition (b): The function F(z*, %) is positive if, not all 2 vanish simul-
taneously, i.e.,

(4) F(2%, ") > 0 with Z(z’i)2 £0.

Condition (c): The function F(z%, ) is convex in z%. It follows from a well
known theorem on complex function that f(z%) on n variables u®, u?,-- - u®
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of a domain D in the manifold is said to be convex, if it contains the whole
segment of a straight line which connects any two of its points. The function
f(u*) is said to be convex in D, if it is defined in D) and if the inequality

ulyy + uly 1 . .

(5) f <()2()> < B {f(uu)) + f(u(z))}

is satisfied for all pairs of the points uél) and ul(é) of D.
Eventually, if in the complex manifold C,, we introduce the fundamental function
F (2%, 2') which is positively homogeneous of degree one with respect to the variables
2" and Z°, then the function F(z¢,2%) > 0 is such that

F(2%, 2" = |k|F(2, Y.
The arc length of the arc 2! = 2%(t) for t; <t < t5 is defined by;
(6) s = F(z*2").
ty

Such manifold is called complex Finsler manifold [17] and is symbolized by F¢.
Moreover, the function F(2%, %) is assumed to be invariant under coordinate trans-
formations.

. . . . . . 2020 0 i
Now, putting F'(2*, 2* def p2 2", 2") and g;;(2°, 2" def M, we observe that
J 0240z7
gi; is a symmetric covariant tensor and that

We shall assume that the fundamental tensor g;; of the complex Finsler manifold
has a rank n and we use g;; and its associate g/ to lower an raise the indices.

1.1. Fundamental Postulates of E. Cartan[8]. The theory of E-Cartan which
treats the Finsler manifolds from an entirely different point of view has played the
most prominent role in the development of Finsler Geometry. In this subsection, we
shall take a brief look on Cartan’s monograph in which he discussed his postulates,
which he defined by means of special classes of covariant derivatives.

In order to be able to endow the Finsler manifold F{”) with a so-called ”Eu-
clidean connection”, Cartan considered the manifold Xs,,_1 of the line elements
(2%, 2%) which is (2n — 1) dimensional, since only the ration of the ! are necessary
to define a direction in the tangent manifold 7},(z%). The coordinates are referring
to the centre of the line element (z¢,2%). All quantities such as tensors are to be
defined by means of the functions of line elements.

In the manifold F\), a metric is defined by means of a function F(2¢ %) sat-
isfying the three conditions of Finsler manifold, but the manifold X5, _1 is said to
be endowed with Euclidean connection if the following construction is imposed on
Xop—1.

I: A metric with symmetric components g;;(z%, %) is given such that the
square of the distance between the centres z° and z* + dz* of the neigh-
boring elements (z%, %) and (2% + dz, 2*) + dz! is given by the expression

(8) gij(z, 2)dz'dz7 .

Because, the dz* form the components of a contravariant vector, it follows
that the square of the length of an arbitrary contravariant vector will be
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defined by
(9) Gij (Z, Z)XzXJ

II: An analytic expression would came into existence, which would represent
the variation of the vector X* when its element of support (z¢, 2%) experi-
ences an infinitesimal small change and becomes (z¢ + dz?, * + dz%). This
variation of X*¢ will be represented by means of a covariant (or absolute)
differential:

(10) DX’ =dX' + Cp, (2, 2) X dz" + T3, (2, 2) X*d",

where the coefficients C}, and '}, are the functions of the element of
support. Naturally, the first postulate can be applied to these by proceeding
like below:

If a vector X' is transposed from (2%, %) to (z° + dz%, ' + dz*) by parallel
displacement, i.e., if the actual change dX? in X* is in accordance with the
equation;

(11) DX'=0ordX'=—C},X"dz' — T, X"d",

then the length of X’ as given equation (8) remains invariant.
III: The third postulate of E-Cartan contains the following four logics:

A: If the direction of a vector X* coincides with that of its elements of
support (2%, 2%). its length is to be equal to F(z¢, X?).

B: Let X* andY”? represent two vectors with a common element of sup-
port (z¥,2%). When the latter undergoes an infinitesimal rotation
about its own centre z* and becomes (2*, ¥ 4+ dz*), while the compo-
nents X’ and Y? remain invariant, then their corresponding covariant
differentials (10) will be DX* and DY and the following symmetric
condition will hold good:

(12) gij (2, ) X'DY? = g;;(2,2) X DY,

C: If the direction of a vector with fixed components X* coincides with
that of its element of support, then its covariant differential given by
equation (10) corresponding to an infinitesimal rotation of its element
of support about its own centre vanishes identically.

D: When the displacement of a vector is such that the element of support
is transported parallel to itself from z* to zF +dz*, the coefficients like
I't, which appear in the covariant differential (10) will be symmetric
in their lower indices h and k. In view of these conditions, we now
conclude that following analytic aspect, which may be very useful to
study the Cartan’s curvature tensor and their covariant differentiation.

In view of equation (9), condition (A) obviously yields

(13) F2(2%, ") = g;;2°40.

Under the above conditions, [8] also gave a new form of equation (9) as below:
(14) DX'=dX'+ T} X" d2,

where he put the expression

(15) FZ; = ?cj - Clihrszr'
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In view of the above expression, we now outline some properties of the covariant
differentiation as discussed by [8]:

1.2. Properties of covariant differentiation. In view of the formula given by
equation (10), we have the extended form of derivation of a tensor of any rank as
below:

(16) DT’Lll2 i _dT'LlZQ +Z 1112 A1t e

Jij2-Js J1j2-- Je Jij2-Js

S
(Cipd" + T dz")y = " miveie o (CF pdi" +T% ,dz").
0=1
In fact, there is no ambiguity that the tensor T of type (r,s) is a function of the
element of support (z,2). That is why the term dT involves the variation of the
latter. Evidently it is quite clear that if we take this fact into account, we may
easily observe that this differentiation technique obeys the usual laws of covariant
differentiation viz. differential of the sum is equal to the sum of the differential and
the product of ordinary differentiation.
[8] also considered the covariant differential of a contravariant vector X' =
X(z, %) with respect to the unit vector 2" in the direction of element of support
as follows:

i 0x? i
(17) DX (Fa 7 + A} th) DI +X|hd2h7
where he used X, = g);;j - %)Z( 9% + Iy X",

Now, in order to aim our purpose of study, we briefly discuss Cartan’s curvature
tensor as given by [8]. We take into account a commutation formula arising from the
covariant derivatives as given in equation (17). Evidently, there exist two different
processes of partial derivation, namely the process X which is defined in equation
(17) and the process;

; X'’
(18) X, = < o + AL, X >

and hence in view of these differentiation processes, the equation (17) can be written
as
(19) DX' = X', DI" + X, d=".

Further, we consider the commutation formula given in equation (18) corresponding
to repeated application on indices as

i i X’ oX'i
(20) X|th|khF<Fkah Fh8k>+
r 0Ay,  0A] S
+X {F( - az'hk> AL Th—AmhATk}_

QAL B DAL,
zk oz

minding equation (18), we have

(21) X'lnk = X' jn = {Far X' |0 = Fan X'} + S X7,

Using the result F' ( ) = F; AL, — Fun A%, in equation (20) and re
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where we have written [5]:

(22) S;kh = AikA% - Af«hA§k-

This tensor is called the Cartan’s first curvature tensor and we shall consider this
one for our decomposition studies. Here are few identities, which the Cartan’s first
curvature tensor satisfies:
(23) Sikn = —Sink
i.e., Cartan’s first curvature tensor is anti-symmetric in its last index pair.

If we lower the index of this curvature tensor by writing S;jrn = gr;j S}k, We
have

(24) Sijkn = —Sjikh-

2. TECHNIQUES FOR THE DECOMPOSITION OF CARTAN’S I-CURVATURE
TENSOR FIELD

General 279 order tensors in the three dimensional manifolds contain nine inde-
pendent components, but sometimes it is desirable to reduce the dimensionality of
such tensor fields in a meaningful way as this process may let us know the physical
state represented by a tensor. Various techniques for tensor decompositions are
available to reduce the dimensionality or to transform the tensor in such a way
that describes important aspects about those for which they are standing for. In
order to decompose the Cartan’s I-curvature tensor in complex Finsler manifolds,
we shall make use of the following four techniques:

1: Technique of symmetric-antisymmetric Decomposition [22, 18, 3, 19, 1, 16,
11, 10]
2: Technique of eigenvector-eigenvalues Decomposition [22, 18, 13, 14, 23, 21,
15, 12]
3: Technique of isotropic-deviator Decomposition [22, 18, 24, 4]
4: Technique of singular value decomposition (SVD)[22, 18, 19, 20, 2, 1, 16, 6]
To use the aforementioned decomposition techniques, for the sake of feasibility, we
first factorize the Cartan’s I-curvature tensor in terms of the outer/open product
of two second order tensors, each having 3%-components in a three dimensional
complex Finsler manifold as follows [3]:
(25) Sirn = G [

J
Here, for the exhibition of physical significance due to such factorization, we would
consider the first mixed tensor lying at the right side of equation (25) as an Einstein
tensor and the second one covariant tensor as to describe the degree of curvature of
a surface given by the function F(z%, 2%). Also, a powerful reason behind this kind of
assumption arises from one of the feature of Finsler manifold that the fundamental
function intimated with F,(LC) is homogeneous in its first order differential.

It is remarkable that for the right hand side mixed tensor of rank 2, the property
of symmetry and skew-symmetry is not an intrinsic one, as it is evident from the
well known transformation law of mixed tensor’s symmetry/anti-symmetry that
the property of symmetry/anti-symmetry of a mixed tensor between a pair of dis-
similar indices (one covariant and other contravariant) is not invariant under the
transformation.
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2.1. Technique 1: Decomposition of S]i-kh using technique first. Let us de-
compose the two tensors of equation (25) one by one as follows:

Theorem 2.1. Under the technique (1), the tensor G of Eq.(25) (which is preas-
sumed to be an Einstein one) produces the following decomposition form:

o1 1
(26) 1651 = UGN+ 1GEp.a=a.8.0 + UGG = 1GElp.a=acp.9

Proof. One can straightforwardly demonstrate this theorem by keeping in mind
that ”any tensor can be expressed as a sum of its symmetric and antisymmetric
parts” [22, 18, 3, 19, 1, 16, 10, 11]. Thus under this assumption, the Einstein tensor
G; can be expressed as follows:

1 ) P 1 . ;
(27) (@ E+ [c -]
Symmetric part  Antisymmetric part
where Gi(z,2) := R — 54! is an Einstein tensor in terms of Ricci tensor and

curvature scalar.
Also, the purely covariant form of this Einstein tensor can be found as

(28) Gik = 9inGY = gin(Ry — 5%) = Ry, — 5 Jik-
Now, Eq. (27) in matrix form can be written as
' . G¢ G% G5 G& é‘ GS
(29) ||Gh|l = 5 G? Gg G+ | GE Gg G +
G, Gy G G, Gy G]
) Gy G GY Gy G GY
Gl Gy oGP Gl GY oGP
+ 9 a g{ Y o o ’Bv o ’
G, Gy G} Gy, Gy &7
where G, G3,GY ... ect. are the components of G;- in 3-dimensional complex

Finsler manifold.
For the sake of convenience, we write the Eq. (29) as in the following notations:

o1 1
1651 = UGN+ 1GElpa=as.y + UGG = 1GElp.0=acp.
O

Theorem 2.2. Covariant differentiation of Eq.(2.2) yields an analytic expression
which represents a relation between variation in Einstein tensor G; and functions
of element of support C}, (z,%) & I‘;‘.h(z7 2).

Proof. Making use of the concept of covariant differentiation given by Eq. (16), we

now differentiate Eq.(2.2) with respect to z! as below:

; 1 1
D||G5| = D[§(Symmetric part)] + D[i(Antisymmetric part)] of Eq. (29).
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Differentiation of Eq. (2.2) yields a lengthy but straightforward relation as below:

(30) DIGH =3 [{dHGpllJrII sz AN Golldz + T7(z, 2)[|Gylld=®—
—IICJSII(Z,Z)IIGfHdZ — Tgs (2, 2IGRNd="} + {dl|GEIL + [ CLI(z, AN G lld=+
+ T (2 DGy lldz = | CLll(z, A Gl d2” — (%Z’)IIG?HdZS}]+%[{dIIGSII+
H IR (2 AN Golldz® + T7,(2, 2)[|Golldz® — [|Cgsl (2, 2 GRNId2 — T (2, 2)x
1G7 ="} = {dl|GEII + [1CH I (2, 2)[| G [l d=* + T (Z,fl')IIGEIIdZS—IIC,’JSII(Z,Z")><

|Galldz* - T, (= |G d="}).

Most probably, the Eq. (30) predict an analytic expression which connects the
variation of Einstein tensor with various components of tensorial and non-tensorial
quantities such as CP (z, z) and I'?_(z, 2) etc., which are themselves the functions
of element of support (2, 3%).

This analytic expression may be of great geometrical as well as physical significance
in the study of various properties of Einstein’s manifolds when treated with Finsler
Geometry. O

In order to study some possible/probable connections between Einstein and
Finsler manifolds, we consider a special case where the covariant differentiation
given by Eq. (30) vanishes.

Theorem 2.3. The vanishing of the analytic expression (30) i.e., D||G%|| =
implies the existence of an Einstein’s field equation of the form:

||R;||(z, Z) = [||TZ|| + ||T||](z 2) = ¢ (Stationary value),
where T} is the well known energy-momentum tensor and T is its trace.

Proof. Let us use the usual Einstein’s tensor G; = R;- };(5], where Rz being the
Ricci tensor as well as R being the curvature scalar of complex Finsler manifold. If

we assume the vanishing of an analytic expression (30), we have

% i R )
(31) D||&5] = D||R; — 5651l = 0.

Now to derive the Einstein’s field equations, we introduce a field tensor which is of
the same rank and type with symmetric properties as the Ricci tensor RY. Hence,
in our case, we introduce an energy-momentum tensor T; which is such that

(32) D||T}|| (2, 2) = 0.
The equality of Eq. (31) and Eq. (32) implies
(33) D|GH]| = DR, ~ 4] o« DT,
or
_ R _
(34) D||G;ll = DIIR; — 5 6l = 7IIT51 = 0,

where 7y is a constant of proportionality and in the study of theory of relativity, will
be called cosmological constant. Thus, if we integrate Eq. (34) over the complex
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Finsler manifold Fr(lc) with respect to some coordinate 2!, we would have a well
known Einstein’s field equation in th complex Finsler manifold as below:

@) [ DIGGE 20 = [ DIR = 38z 2! -

= /(@ (DT} (=, %)]dz' = some constant of integration.
F

n

The above expression is due to the well known Euler’s condition fttol F(24, 2 dt =

stationary, where % = %. The expression (35) on simplification yields

i . i Ry ; i .

(36) NGjlI(z,2) = IR; — 55ll(=, 2) =IT(= 2) =
= ¢ (stationary value).
Evidently, Eq. (36) stands for the Einstein’s field equation in local component form.
Moreover, if we contract Eq. (36) with respect to indices i and j, we have
. R .

I1Gill(2,2) = IR = S I(2,2) = WT7[|(2, 2) = ¢ (stationary value).
Thus with the help of expression mentioned just above, our field equation (36)
implies

i . i L : .

(37) 18511(z, 2) = Al T3 ]| + 585 TN(=, 2) = c (stationary value),
which is again the field equation used for analytical purposes. O

Definition 2.4. There is a special case when the complex Finsler manifold is empty.
Then in such case, the energy-momentum tensor must vanish, i.e., T; = 0. Hence
from Eq. (37) || R}||(2, %) = 0. This condition gives rise to a special Finsler manifold
which is Ricci flat and thereby called ”Ricci flat complex Finsler manifold”.

In order to discuss the Eq. (25) completely, we now proceed to decompose the
tensor fi;, using technique (1). Further, from the standpoint of physical significance,
we assume that this second rank covariant tensor describes the degree of curvature
of the Finsler surface given by the fundamental function F(z?, 2%).

Theorem 2.5. Under the technique (1), the splitting of tensor fxy, of Eq.(25)
(which is preassumed to be a degree of curvature of Finsler surface) produces the
following decomposition form.:

1 1
(38) ||fkh|| = 5[”qu“ + ||fqp”]pyq:aﬁw + §[prq|| - qup”]p,q:a,ﬁ,'v

Proof. We can straightforwardly proof this theorem by keeping in mind that ”any
tensor can be expressed as a sum of its symmetric and antisymmetric parts” [22, 18,
3, 19, 1, 16, 10, 11]. Thus under this assumption, the tensor f, can be expressed
as follows:

(39) [%(fkh + fur)] + [%(fkh — fur)]

Symmetric part Antisymmetric part
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which in matrix form can be written as

1 faa fozﬁ fa’y foza faB fa’y
(40)  lfunll = 5 foa  fos foy |+ | fsa S [fay +
Jra v fyy Jra v fyy
1 faa f(xﬁ fa'y fo/a f(xﬁ f(x'y
t3 foa Jep foy | = | fea fos S8y :
Jra T S NSO BV R
where foa, fap ... etc. are the components fi; in 3-dimensional complex Finsler

manifold.
Now, for the feasibility, we can write the Eq. (40) as in the following notations:

1 1
”fth = §[||qu\| + ”fqu]p,q:aﬁﬁ + §[prq|| - qup”]p,q:aﬁﬁ
|

Theorem 2.6. Covariant differentiation of Eq.(2.14) yields an analytic expression
which represents a relation between variation in degree of curvature fyy, of a Finsler
surface F(z*,2") and functions of element of support C}, (2, 2) & F;h(z, 2).

Proof. We again make use of the concept of covariant differentiation given by (16)
for the Eq. (38) as follows:
Differentiating Eq. (38) covariantly with respect to z! we obtain

(41) DIl frnl = %[{d\lqull — I £rall(I1CslI(2, 2)d2® + 7, (2, 2)d2") —

— I forll(1CGs1I(2, 2)d2° + T4 (2, 2)d2") } + {dl fapll = [ frall(11CGs (2, 2)d2°+
+T4s(2,2)d2") = (| for[(1Cpsll(2, 2)d2° + Ty(2, 2)d=2") ) + %[{dllqull = I frgx
1(1Cps [l (2, 2)d2" + T7(2, 2)d2") =
= e l(1Cs Ml (2, 2)d2° + T (2, 2)d=2") } = {dll fop || = | Frpll(1Cgs I (2, 2)d2"+

+ 0452, 2)d2") = (| for[[(1Cpsll(2, 2)d2° + T(2, 2)d=) 1]
O

Theorem 2.7. With the following trivial assumption

A1l: Introducing a fundamental tensor g;; in Eq. (38) which is of same rank
and type as frn, such that Dg;; = 0.

A2: To illustrate connection between the metric ds*> = F(z,%) and the Car-
tan’s curvature tensor of the Finsler continuum, we assume z = F(z, %)
to be a two dimensional smooth curved surface in 3-dimensional complex
Finsler manifold. Where the assumption of smoothness is in the sense that
at each point, surface possesses a tangent plane.

we can explore that the second rank covariant tensor frn describes theory of various
curvatures, viz. principal curvatures of a Monge’s surface and many more.

Proof. In view of the assumptions Al and A2, the equation of the surface in complex
Finsler manifold in Monge’s form can be written as 2z, = F(z, 2), where z; being
some complex coordinate. The function F(z,2) is supposed to be differentiable
as many times as desirable. Since the fundamental function F(z, %) is a positive
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homogeneous function of degree one in 2%, thereby using the well known Euler’s
theorem on homogeneous function, we have

(42) Fii(z,%2) = F(z,2),

(43) Fuizi(2,2)8 =0,

where the notations Fy: and Fj:;; are used to denote the derivatives of F(z, 2) with
respect to #* and 2'27 respectively.

Clearly, [F(2,2)](z,2=0) & [F:i(z, 2)](z,2=0) = 0. Also, [Fsizi(2,%)](z,2=0) = 0.
Thus by definition of fundamental function F'(z, 2), we have
(44) F(2,2') = [gi(z")dz"d="]'/2,

where g;;(2%) are the coefficients independent of 2?. This metric defined by Eq.
(44) is the metric in Riemannian manifold. Moreover, since
0?F?(z,%)

%1027

then from Eq. (7), the surface equation can be written as

1
F(z,2):= §F2(z,é) and g;;(2,2) =

1 1 o
(45) F(z,%) = 5FQ(z,z') = §gij(z,z‘)dz”dz'j = 2.

Now, by our assumption Al, we introduce f;; in place of g;; in Eq. (45), which
yields

1 . .
(46) F(z,2) = §fij(z, 2)dz'dZ = z,

2 2 3
where this f;;(z, £) is equal to %Zii(cng) and hence able to determine the degree of

surface at any point P of the manifold.

Further, as the normal section of the Monge’s surface zp = F(z,2) of given
complex Finsler manifold must have greatest and the least curvatures which will
be called the principal curvatures. Thus to determine the principal curvatures say
kq and Ky, we should determine the eigenvalues (latent roots) of | fi;[|(z, 2). The
latent root equation of the matrix || f;;]|(z, 2) is written as

(47) |fij — Adij| =0,

where X is called indeterminate.
Eq. (47) on expansion in usual way yields the following:

(48) )‘3 + Az(faafﬁﬁf'y'y) + )\(foz’yf’yoz + faﬁfﬁ'y + f’yﬁfﬂv - fﬁBf'y'y*
- fozafw - faafﬁﬁ) + (faafﬁﬁfw - fozafﬁvaﬁ - faﬁfﬁvfw + faﬁfwaf67+
+ favfb’vaﬁ - fcwfwfﬁﬁ) =0.

But, as we have given the logic that for our Monge’s surface, there may be only
two principal curvatures k, and k. Then if we vanish one of the index say =, Eq.
(48) will be reduced to the following form:

(49) A2 = M(faa + f58) + (faafss — fapfsa) = 0.

This expression produces the following facts:

(50) Ko+ Ko = (faa + fpp) and Kakp = (faafss = fapfoa) = |fijl-
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If the coordinates dz* and d2’ involved in the Eq. (46) are measured in the direction
of the principal axis, we would have

Ke O
=% 0.

(51) 2y = F(z,%) = %na(dzi)Q + %mb(dz'jf + -

Also, in a general direction, the Gaussian curvature would be weighted mean of the
minimal and maximal values of x, and k;. Hence

and thus

(52) Klp = kako = | fijl (2, 2),
while the mean curvature
1
(53) W= 5(/@1 + Kp).
Thus, we have shown that how a second rank covariant tensor describes the theory
of various curvatures. O

We, now, proceed to discuss a special case which would provide a methodology
to let us know that whether the underlying complex Finsler manifold is an Einstein
one or not.

Theorem 2.8. The constancy of Gaussian curvature tensor yields the necessary
and sufficient condition for a complex Finsler manifold to be an Einstein one.

Proof. As it is known to us that a manifold with constant Riemannian curvature
tensor is an Einstein one. In the similar way, we now check for the constancy of
Gaussian curvature Eq. (52) for Finsler manifold. If the Gaussian curvature of the
surface z = F(z, 2) becomes constant at any point P of the Finsler manifold, we
shall say that the Finsler manifold is an Einstein one. For this purpose, we use
scalar representation of Gaussian curvature given by Eq. (52) as follows:

The Gaussian curvature of the Finsler manifold defined at any point with respect
to a two directions (z, %) is given by

[Kijkh(z,é)éiéthZk]
[9in(2,2)gjk (2, 2) — 9ij (2, £)grn (2, 2)) 2820 20 ZF°
But Eq. (52) also stands for the Gaussian curvature deduced from the Cartan’s
first curvature tensor, thereby from Eq. (52) and Eq. (54), we have

(55a) [Klp = [R(z,%,2)]p = |[il(2,2) = g é)gjk([j{;j)hk_(;j()i Dgen (2 2)]

(55b)  [Klplgin(z, 2)g5k(2, 2) — 95 (2, 2)grn(z, 2)] = kijni(z, 2) = [fi51(2, 2).
Transvecting Eq. (55) with ¢"* and summing over i and k from 1 to N, we obtain

Kl (65 gjn(z, 2) — Ngij(z, £)] = " (2, £) Kijnr (2, 2) = | fi51(2, 2),

(54) R(z, % 7) =

or
(56) Klpgij(z,2)[1 — N] = Kij(2, 2) = | fi;](z, 2).
Again transvecting with ¢* and summing over ¢ and j from 1 to N, we get

[K]pgij(z, )97 (2, 2)[1 = N] = Kij(2, 2)g" (2, 2) = | fij (2, 2),
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which implies
N(1 = N)K]p = K(z,2) = | fi;](z, 2).

Substituting [K]p = Nlﬁz_j\a) = |fijl(z, 2) in Eq. (56), we obtain

(57) |figl (2, 2) = Kij (2, 2) = ——9i (2, 2),
which is the necessary and sufficient condition for a complex Finsler manifold to be
an Einstein one. (]

2.2. Technique 2: Decomposition of Cartan’s I-curvature Tensor Field
by means of Eigenvalue-Eigenvector Method. As from the standpoint of
various mathematical and engineering applications, eigenvalue problems are among
the most crucial problems in connection with matrices and tensors. Also, the
study of such latentroot problems in quantum mechanics is highly insisted due to
having spectrum (a set of eigenvalues) and the spectral radii (the largest of the
absolute values of latentroots) of any tensor field. Further it is known that a set of
special vectors and scalar values, customarily called eigenvectors and eigenvalues are
associated with second rank tensors. Various analysis and visualization techniques
use such sets of latentroots and latentvectors and are particularly crucial in the
visualization of topological structures of and tensor field.

The eigenvectors of a tensor have the property that when the inner product of
the original tensor and an eigenvector is taken, the consequence will be a vector
which is a scalar multiple of the original eigenvector. That is if T" is any tensor and
X is its eigenvector then T'X = AX, where A are the solutions of this equation and
are the eigenvalues of T

Here we again consider the open product given by Eq. (25) and use the technique
(2)[22, 18, 13, 14, 23, 21, 15, 12] separately for each of the tensor residing to the
right hand side in Eq. (25).

In case of 3-dimensional complex Finsler manifold, we have the Einstein’s tensor
G’(z, £) in matrix form as follows:

Gs Gy G2
i S\ B
(58) 1G51(2,2) = Gg GQ G§
Go Gy & ij=a,B8,y

Here, because of the manifold under consideration being complex Finsler, it is
evident that each of the nine components of the above matrix will be the functions
of so called element of support (z, 2) and hence will be the complex entries.

Now, by definition of latentroot-latentvector approach, we consider an eigenvector
X; having the components X, X, X, such that the characteristic equation for the
given Einstein’s tensor becomes

(59a) G X; = AX; or,
(59b) (G — AdY)
If we omit the null vector X; = 0, the Eq. (59) implies

(60) |Gl — A6i| =0,
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which for a 3-dimensional complex Finsler-Einstein’s tensor expands to

Gi—-X  GY G
_ 8 _
(61) D(\) = GS  Gy-x Gf =0,
GY, Gy GI-2A

where D()) stands for the characteristic determinant.
Now, using Crammer’s rule and simplifying the Eq. (61), we obtain

(62) D) =X —T'\N+ 1A - I* =0,

where I', I? and I3 are the invariants defined by relations

(63a) I'=Gi=(Gs+G+GY)
o Lo ii iy (| Ga G Gy G Gg G
G: Gg G2
(63c) P =ejGiGiGrE=| GS G} Gf
G, G} &

In view of the above decomposition formulae, we now proceed to discuss an impor-
tant theorem as below:

Theorem 2.9. The characteristic equation (62) of Einstein’s tensor G;- will have

it mized type (i.e. purely real as well as complex) latentroots if the Einstein’s
tensor is self-conjugate

ii: purely real latentroots if the Einstein’s tensor is pure

iii: purely complex latentroots if the Finstein’s tensor is hybrid

Proof. If we employ the basic feature of self-conjugacy of Einstein’s tensor G; (z,2),
i.e. the this tensor is self-conjugate if [9]:

(64) Gi(z,2) = ( v

v

QR
(RSANRS
QQ
RITIR T
N———

which implies
(65) Gj(z,2) = Gj(z,2).

Then each components of the matrix given by Eq. (58) will satisfy the relation
(65).
Applying the above methodology to our characteristic equation (62), we have
(66) D(A\) =\ — Gz, 2)\* + §[Gi(z, £)G5(2, 2) — G5(2,2)Gi(2, 2)]
— eijnGi(2,2)G(2,2)GR (2, £) = 0,

where we have substituted the values of invariants I'', I? and I® from Eq. (63a), Eq.
(63b) and Eq. (63c) respectively.
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Applying Eq. (64) to Eq. (66), we obtain
Gt GE A GH
— )3 _ )2 Iz 7 -z M
(67) DN =X — A (GZ ez >+2[< Gk

Gr GE G Gv .
(3 8)(8 &)

el Gg>

v

AN
G G

¢ €
Gt & :

QR
TEEE

~—
QA —
NN
)
(AN

TIRRTR

QR
=ETE

Simplifying Eq. (67) by keeping Eq. (65) in mind, we have

(68) D(\) = A3 — N2(GLGH — GRGY) + %[(Gﬁ@ﬁ — GIGh)
x (GLGy = GYGY) — (GLGY — GLGE) (GGl — GLGR)] — eiji(z, 2)x
[(GUGl — GLGE)(GLGY — GLGY) (GG — Gggg)] =0.

p

From Eq. (68), one can immediately conclude that the eigenvalues and hence the
corresponding eigenvectors of the Einstein’s tensor G;- (2, 2) will be of mixed type,
i.e. some of them will be purely real and some will be complex.

We, now, consider the case (ii) when Einstein’s tensor is pure, i.e. the tensor
G (2, £) possesses the components of the form:

(69) Gi(z,2) = ( %ﬁ Gog )

Then under this condition, the characteristic Eq. (66) for Einstein’s tensor yields
GHo 0 A GE O Gy 0
— 3 _ )2 o B - w . v ~
o =r e (G ) al(F g ) (T e )

(G 0N (G0N (G0 Y (G0
0 Gl 0o Gy )T HN o G 0 Gy

Again in view of the self-conjugacy condition (65), the Eq. (70) implies

(71) D(A) = X* = N2(GLGL) + %[(Gﬁ:éﬁ:)((;z@w — (GLGE)x
(GG — ein (2, 2)[(GLGH) (GLGy) (GeGe)] = 0,

which evidently shows that under purity condition of G; (z,2), it’s latentroots and
hence the corresponding latentvectors will be purely real.

Taking account of the case (iii), when components of Einstein’s tensor become
hybrid, i.e. when

(72) Gi(z2,2) = ( Gog %5‘ )



82 CARTAN’S CURVATURE TENSOR IN COMPLEX FINSLER MANIFOLDS

Under the hybrid nature Eq. (72), the characteristic determinant Eq. (66) will take
the form:

s e 0 GEN X[ O GE 0 G
(73) DY =X A(G;j o”)*z[ Gt 0 Gy 0

(0 o OGN e 0 CEY( 0 GrY,
G0 Gy 0 =2 gr o Gy 0

RS

In view of self-conjugacy, the Eq. (73) yields
_ A _ > _
(74) DN = X* = N (GLGY) + SUGRGR)(GIGY) — (GGy)

(GEGH)] — eanlz, £)[(GEGE) (GEGE)(GEGE)] = 0.

From Eq. (74), its obvious that the latentroots as well as the corresponding la-
tentvectors of Einstein’s tensor will be purely complex. (]

Now, by observing the proof of Theorem (2.9), we can easily estimate the tick-
lishness of the process of checking pure and hybrid nature of Einstein’s tensor.
The process of checking seems to be quite lengthy, because under this process one
would need to check the pure and hybrid nature for each of the components of ma-
trix given by Eq. (58). Therfore, for such a purpose, we shall utilize the two well
known operators O and *O3" defined by [9] (page 133). The O and *O operators
are defined as follows:

1
(752) O3l = S (618 — FYE)),
1
(75b) *Oh = 5(5;5:1 + FSEM).
Moreover the operators O and *O satisfy the following relations:
(76a) O + *O = A, where A being the identity operator,
(76Db) 0.0 =0,
(76¢) 0.x0 =0,
(76d) *0.0 = O,
(76e) *0. x O = 0.

To omit the ambiguity regarding pure or hybrid nature of Einstein’s tensor, we now
use the above cited properties of operators O and *O.

Definition 2.10. The FEinstein,s tensor G; (2, %) is declared to be pure or hybrid
according to the following facts:

1: Gi(z,2) is pure if OGi(z,2) = Gi(z,2) or xOG'(z,%) =0,
2: G'(z,2) is hybrid if OG'(z,%) = 0 or xOGY(z, 2) = Gi(z, 2)

In view of the Definition (2.10), we now claim the following:

Proposition 2.11. Finstein’s tensor G; (2, 2) is hybrid in nature.
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Proof. The proof of the proposition follows directly from the Definition (2.10) and
the relations (75a) and (75b).
Applying Eq. (75a) and Eq. (75b) to G;(z, 2) one by one, we have

(77) O%GI(z,%) = %(65—63; — FyF)Gi(2,2) = %@55?@?—
~ FPRIG(2,) = (G}~ Gi)(2,2) =0
and
(78) *O05iGh(2,2) = %(ﬁéi + FF)G(2,2) = %(5§5i02+
FEPFIGI)(=,2) = 5(Gh+ Gz, 2) = Gz, 2).

Now, comparing Eq. (77) and Eq. (78) with Definition (2.10), we conclude that
Einstein’s tensor is hybrid.

Moreover, we can predict the hybrid nature of Einstein’s tensor by considering
the work of [9], who has been verified that the fundamental metric tensor g;; and
the Ricci tensor R;; both are hybrid in 7 and j. As the Einstein’s tensor is the
composition of Ricci tensor and metric tensor, so evidently it is hybrid and hence
will have purely complex latentroots as well as latentvectors. ([

Eventually, it remains to discuss eigenvalue-eigenvector decomposition for the
second tensor fiy(z, %) (which is preassumed to be the degree of curvature) of Car-
tan’s I-curvature tensor given by Eq. (25). Applying similar cases and conditions
which have been applied for the Einstein’s tensor in the preceeding sections, we
can easily decompose fi,(z,2) and we can lucidly observe that the decomposition
of this tensor has almost similar results as calculated for Einstein’s tensor.

The eigenvalue-eigenvector decomposition of fxp(z, 2) yields some great geomet-
rical significances. Some of the significances are discussed as follows:

2.3. Geometric configuration of fi,(z, ) and its latentroots-latentvectors.
Likewise the planar geometry of vectors, the second rank covariant, contravariant or
mixed tensors have the natural geometries in the form of quadric surfaces. Generally
the surface which is represented by general equation of second degree in z,y and z
is called quadric surface or conicoid and is defined as

(79) ax + by + cz + 2fyz + 2gzx + 2hay + 2ux + 2vy + 2wz+
+d=0,

which can be reduced to any standard form like ellipsoid, hyperboloid of one sheet
and two sheets and elliptic paraboloid etc.
In the similar way, we can write the quadratic surface of fi(z, 2) as

faa focﬁ fom
(80) [rk-frnrn] = 1, with | fen(2,2)| = fsa fos  fov

Fra fvs I ) kheapa

Expansion of the determinant of fin(z, 2) yields

(81) faozzi + f,BﬂZ,[Qa + f’y’yzf%: + (faﬁ + fBa)ZaZﬁ + (foc’y + f’ya)zaz'y+
+ (foy + fy8)z82¢ = 1,
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which are a subset of quadric surface and can be reduced to ellipsoid, real or
imaginary elliptic cylinders, hyperboloid etc. If we consider only the symmetry of
fen(z, %), then 3 a 1 — 1 correspondence between fi(z,2) and the quadric surface.
Even for a general tensor, there is a symmetric plus a family of non-symmetric
tensors which produce the same surface. This fact is due to the components f,5 +
faa, fay + fya and fzy, + fy5 involved in Eq. (81).

If in any coordinate system frn(z,2) becomes diagonalized, the Eq. (81) of
quadric surface reduces to the form:

(82) /\12(21 + )\22’[23 + /\32:,2Y =1,

which is again a quadric surface having its geometric axes aligned with that specific
coordinate system and of course the eigenvectors.

If all the latentroots are distinct, then clearly latentvectors will be orthogonal. If
the latentroots are positive as well as distinct, the tensor fgp(z, 2) is geometrically
an ellipsoid with a circular cross section with two of its axes equal in length.

If all the eigenvalues are equal, the tensor fi(z,2) is geometrically a sphere.
Also, there is a relation among the invariants I',I? and I® of fy,(z,2) and its
eigenvalues say A1, Ao and A3 given by

(838‘) Il = fkk(zaz) = (faa + fﬂﬁ + f”/'y)(zwé) =M+ X+ )\37
1

(83b) I? = Q(fkkfhh — fenfne) = AA2 + XAz + Az,

(83c) I? = exn(frnfunfin) = MA2As.

These are called principal invariants of fi(z, 2) and geometrically concerned with
the quadric surface given by Eq. (80).

3. RESULTS AND DISCUSSIONS

Here is the brief discussion over some vital results obtained from our article
written in favor of decomposition techniques.

e Whatever be the rank of tensor, it can be firstly factorize into arbitrary
number of tensors by means of open product so that each individual tensor
could be decomposed with simplest decomposition techniques without seek-
ing the higher order SVD techniques. Though the process may go on quite
lengthy, but with this, checking actual geometric configurations of origi-
nal tensor could seem rather convenient. As in our case the factorization
of Cartan’s first curvature tensor evolves two very surprising components
namely Einstein’s tensor and degree of curvature and both of them are
widely used in the analysis of geometry of gravitation and differential ge-
ometry of curved surfaces.

e By adopting the process of covariant differentiation given by equation (16),
for the symmetric and anti-symmetric part of Einstein’s tensor, we have
developed an expression, which most probably predicts some complicated
relations among the components of Einstein’s tensor and various tensorial
and non-tensorial quantities as given by equation (30). Of course, this
relation is vitally important as it describes direct or indirect correlation
between components of complex Einstein’s tensor and Christoffel’s second
kind bracket symbol, Ricci tensor, scalar curvature, Riemann metric tensor
as well as a third order tensor C? (z, %) etc.
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e By introducing an energy-momentum tensor and after then Euler’s well
known stationary integrability condition, we have derived Einstein’s field
equation. Thus by first decomposition technique, we have shown that Car-
tan’s curvature tensor is able producing Einstein’s field equation and hence
applicable to induce features of complex Finsler manifolds in Einstein’s
manifold.

e There is given a special case which evokes that if the energy momentum
tensor and hence the components of Ricci’s tensor vanishes the complex
Finsler manifold reduces to a special manifold which should be called Ricci
flat complex Finsler manifold.

e We exposed the second factorized part of Cartan’s first curvature tensor
in such a way that it describes the degree of curvature of smooth complex
Finsler surface. The surface is assumed to be Monge’s surface which will
have greatest and least curvatures called principal curvatures. By decom-
posing second factorized part, we have calculated such principal curvatures
for our Monge’s surface.

e After calculating the latentroots of second factorized component of Cartan’s
first curvature tensor, we have calculated the Gaussian and mean curvatures
of the Monge’s surface. Thus we have shown that it is possible to derive the
Gaussian, mean and principal curvatures from the given Cartan’s curvature
tensor.

e We have illustrated that if the Gaussian curvature tensor at any point of
the Monge’s surface becomes constant, then the complex Finsler manifold
will turn into complex Einstein’s manifold.

e In order to check the nature of latentroots/latentvector of Cartan’s first
curvature tensor using technique 2 we have introduced the case of self con-
jugacy, case of purity and hybridness of Einstein’s tensor. Thus by merely
checking the nature of latent roots/latent vectors, one can easily discuss
the metric signatures and hence the complete characteristics of complex
Finsler manifolds.

e For the feasibility and to avoid the heavy calculations, we have introduced
the Yano’s O and *O operators and shown that what would be the effects
of pure and hybrid nature of any tensor over its latentroots/latentvectors.

e We have given the geometric significance of our second factorized com-
ponent of Cartans I-curvature tensor using technique 2. Here we have
introduces an equation for quadric surface involving second factorized com-
ponent and after checking its latent roots/latent vectors have discussed the
geometric configurations generated by this quadric surface.

Remark 3.1. The rest two techniques for decomposition will be studied in the next
manuscript.
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