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COVARIANCE DOUGLAS TENSOR IN *P-FINSLER
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ABSTRACT. In this note we wish to implement some very technical conse-
quences due to professor(s) P.J. Basser and Sinisa Pajevic [5] to discuss the
spectral decomposition of 4th-order Douglas tensor in *P-Finsler manifold.
Actually, throughout the article, we have just reviewed the results of [5] for
a particular 4th-order covariance Douglas tensor, most often enunciated in
Finslerian geometry. Moreover, spectral decomposition techniques have been
studied for isotropic Douglas tensor.

1. INTRODUCTION

A Finsler metric of a manifold or vector bundle is defined as a smooth assignment
for each base point a norm on each fibre space, and thus the class of Finsler metrics
contains Riemannian metrics as a special sub-class. For this reason, Finsler geom-
etry is usually treated as a generalization of Riemannian geometry. In fact, there
are many contributions to Finsler geometry which contain Riemannian geometry
as a special case (see e.g., [4], [22], and references therein).

On the other hand, we can treat Finsler geometry as a special case of Riemann-
ian geometry in the sense that Finsler geometry may be developed as differential
geometry of fibred manifolds (e.g., [1]). In fact, if a Finsler metric in the usual
sense is given on a vector bundle, then it induces a Riemannian inner product on
the vertical subbundle of the total space, and thus, Finsler geometry is translated
to the geometry of this Riemannian vector bundle. It is natural to question why
we need Finsler geometry at all. To answer this question, we have few aspects
of complex Finsler geometry to some subjects which are impossible to study via
Hermitian geometry.

Let F' be a Finsler metric on a holomorphic vector bundle 7 : E — M over a
complex manifold M. The geometry of a Finsler bundle (E, F) is the study of
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the vertical bundle Vg = ker, with a Hermitian metric gy,, induced from the given
Finsler metric. The main tool of the investigation in Finsler geometry is the Finsler
connection. The connection is a unique one on the Hermitian bundle (Vg, gy, ) sat-
isfying some geometric conditions. Although it is natural to investigate (Vg, gy, ) by
using the Hermitian connection (Vg, gy, ), it is convenient to use Finsler connection
for investigating Finsler metrics. For example, the flatness of Hermitian connection
(Ve, gv,) implies that the Finsler metric F' is reduced to a flat Hermitian metric.
However, if the Finsler connection is flat, then the metric ' belongs to an important
class, the so-called locally Minkowski metrics (we simply call these special metrics
at Finsler metrics). If the Finsler connection is induced from a connection on E,
then the metric F belongs to another important class, the so-called Berwald metrics
(sometimes a Berwald metric is said to be modeled on a Minkowski space). In this
sense, the big difference between Hermitian geometry and Finsler geometry is the
connection used for the investigation of the bundle (Vg, gv,,).

1.1. Preliminaries [6]. We consider an n-dimensional Finsler space
P = (M", L(z,y))

on a connected differentiable manifold M™ of dimension n. The fundamental func-
tion L(z,y), a real valued function on the tangent bundle TM™, is usually supposed
to satisfy certain conditions from the geometrical standpoint, but only the homo-
geneity and the regularity are mainly important for our further considerations.

(1) L(x,y) be positively homogeneous in y* of degree one:
L(z,py) = pL(x,y), for any x € M™,y € TM™ and Vp > 0.
(2) L(x,y) be regular:
Gij = BzajF has non-zero g = det g;;,
where F = L?/2 and 9; = 3%1-.

Let (g%) be the inverse of the metric (g;;). We construct the following:
295k = 9" (Okgrj + 0jgrk — Orgiy),

2Gl(x7y) - gm{(a]aT’F)yr - ajF}v
0
oxJ * 4 '
We, now, consider a geodesic curve C' : ' = 2'(t), (to <t < t;). on M" whose
arc length is defined by the integral s = ftzl L(z,2)dt, & = dd—f. Then the extreme
of this integral, called the geodesic, is given by the Euler differential equations

d(dL)/dt — &;L = 0, which are written in the form:

where 9; = Then we have vi, (z,y)y'y* = 2G* (z,y).

(1.1) [ + 2G (x, &)] — &7 [i' 4 2G(x, &)] = 0.
The system of differential equations given by (1.1) can also be written as;

dr'
dt’

A2t

(1.2) —

=—2G'(z,y), y' =



SPECTRAL DECOMPOSITION IN *P-FINSLER MANIFOLDS 55

where

TR T 8L%T) oL®
(1.3) G = 19 [y (W) - W] )
and g;; = %L%i)(j)’ (i)=0= a%z‘ and (¢") = (gz_jl)

Moreover, in order to introduce the geometrical quantities in F™, we shall be
concerned with a Finsler connection FT' = (F;k(x,y),N;f(x,y), jik(m,y)) on F™.
For a tensor field FT gives rise to the h and v- covariant differentiations, we treat
a tensor field X*(x,y) of type (1,0) for brevity. Then we obtain two tensor fields

as follows:
(1.4) ViX'=6,X"+ X"F};(z,y)
(1.5) VIX' =0, X"+ X"V (z,y),

where 6; = 0; — N (z, y)d,. The h and v-covariant derivatives VX and VVX are
tensor field of (1,1)-type.

The Berwarld connection coefficients BI' = (Gﬁj(x,y)),Gé(x,y),O) can be de-
rived from the function G* as follows:

(1.6) Gy =G, =0,G', Gy, =G}y =0G.
The Berwald covariant derivative with respect to the Berwald connection can be
written as;
. oT’ . 4 ,
(1.7) Ty = 873:?“ — ;(T)GZ + 157Gy — TGy

With the help of equation (1.7), we can obtain the commutation formulae, called
Ricci identities:

(1.8) ng - ;ik;j = X" ijk - X;ir }v}m ak(XZ]) - (8kXi);j = XrGi’jk'

1.1.1. Douglas Space, Douglas Tensor, Randers metric and *P Finsler Space. In
this subsection, we delineate a short introduction to the recent theory of Finsler
manifolds.

We initiate with the equation (1.1) of geodesic of two dimensional Finsler space
F2. If we represent (z',22) by (z,y), assume x as the parameter ¢ and use the
mathematical terms y' = Z—‘z,y” = “%, then (1.1) Vi = 1,5 = 2 for F? can be
written in the form:

(1.9) y' = fz,y.9") = Xsy® + Xoy” + X1/ + Xo,
where X3 = Gl,, Xo = 2G1, — G%,, X1 = G}, — 2G3,, Xp = —G%, and G;k =
G;k(z,y, 1,vy") [23].

In case, if we are particularly concerned with a Riemannian space of dimension
2, then G?%, = 7%, are the usual Christoffel symbols, and hence X's of (1.9) do not
contain y’ by definition. Consequently, f(x,y,y’) of those spaces is a polynomial
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in ¢’ of degree at most three. Thus such a special property of f(x,y,y’) is equiva-
lent to the fact that the expression #'G?(x,4) — %G (z, ) of equation (1.1) is a

1

homogeneous polynomial in ', #2 of degree three.

Now, we can extend the above fact to have the following definitions:

Definition 1.1. A Finsler space F'™ is said to be of Douglas type or known as a
Douglas space, if D¥(z,y) = G*(z,y)y’ — G?(x,y)y" are homogeneous polynomials
in y® of degree three.

Proposition 1.1. A Berwald space is said to be of Douglas type, if G*(x,y) of
equation (1.1) are of the form Gék(m)yjyk/z

Theorem 1.2. A Finsler space F? of dimension 2 is said to be Douglas type, if
and only if, in every local coordinate system (x,y) the differential equation y't =
f(z,y,y') of geodesic is such that f(x,y,y’) is a polynomial of degree at most three.

Now, let us consider the two Finsler spaces F"(M",L) and F"(M™, L) defined
over a common underlying manifold M". A diffeomorphism F" — F" is called
geodesic if it maps an arbitrary geodesic of F™ to a geodesic of F™. In this case
the change L — L of the metric is called projective. It is also well known that the
mapping F™ — F™ is geodesic if and only if 3 a scalar field p(z,y) satisfying the
following equation:

(1.10) G' =G +plx,yy', p#0.

The projective factor p(zx,y) is positive homogeneous function of degree one in y.
From equation (1.10), we obtain the following equations [6]:

(1.11) G5 =Gj + 85+ 59", pj =D1()
(1.12) Gl =Gl +pidh + pedl + jry’s Pik =Dk
(1.13) Glopr = Gl + Djk] + pji0i, + Prib + Pirty’s Pkl = Pik()-

If we substitute p;; = (Gi; —Gij)/(n+1) and psjr = (Gij) — Gijry)/(n+1) into
equation (1.13), we obtain the so called Douglas tensor which is invariant under
geodesic mappings, i.e.,

i 1 i i i i i
(114) ikl = (n m 1) [ijl — (y ij(l) + (5ij1 + (5ij[ + 5lGJ]€)] R
which is invariant under geodesic mapping, that is,
(1.15) D;‘kl = D;‘kr

We now consider the following notations and theorems for the Finsler space.

Definition 1.2. [2] In an n-dimensional differentiable space M™, a Finsler metric
L(z,y) = a(z,y)+B(z,y) is called Randeres metric, where a(z,y) = \/(aij(z)y'y)
is a Riemannian metric in M™ and S(z,y) = b;(x)y’ is a differential 1-form in M".
The Finsler space F* = (M™, L) with Randers metric is called Randers space.
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Definition 1.3. [2] The Finsler metric L = o?/f is called Kropina metric and the
Finsler space (M™, L) equipped with Kropina metric is called Kropina space.

Definition 1.4. [2],[23] A Finsler space of dimension n > 2 is called C-reducible,
if the tensor Cjji, = %g,;j7(k) can be written in the form:

1
(1.16) Cijlc = m(hijck"‘hikcj +ijC’i,)
where h;; = g;; — l;l; is the angular metric ensor and I; = L.

Theorem 1.3. [23]A Finsler space F™,n > 3 is said to be C-reducible if and only
if the metric is a Randers metric of a Kropian metric.

Definition 1.5. [17, 18] A Finsler space F" is called * P-Finsler space, if the tensor
Piji = 3gij.x can be written in the form:

(1.17) Piji. = M, y)Cijik-

Theorem 1.4. [17] For n > 3 in a C-reducible *P-Finsler space, \(z,y) =
k(x)L(z,y) holds and k(x) is only the function of position.

1.1.2. Spectral Decomposition of a 4th order covariance tensor. Various techniques
to characterize the variability of scalar and vector valued random variables have
been evolved by many researchers. Specially, the Principal component analysis
(PCA) for analyzing sample covariance matrices has been originally proposed by
[29] and developed by [15]. Concerning to the same issue, many other methods, such
as factor analysis [30] and independent component analysis (ICA)[24, 7, 16, 8] have
been well established. However, yet now statistical framework for the variability
of a tensor-valued random variables could be found. To overcome from the above
problem, [5] have proposed a framework to delineate the covariance structure of
random 2nd-order tensor variables. Further, expressions for the sample mean and
covariance tensor associated with a 2nd-order tensor random variable have been
derived and is shown that the covariance tensor is a 4th-order tensor, which can
be decomposed as a linear combination of eigenvalues and the outer product of
their corresponding eigentensors. Moreover, [5] have also proposed a new avenue to
visualize angular or orientational feature of the 4th-order covariance tensor using
the spectral decomposition framework.

1.2. Methodology and Theoretical Background of Spectral Analysis. Here
we discuss a brief digest over spectral analysis suggested by [5] and many others.
[5] mentioned that in order to perform spectral analysis on vector valued data,
we first need to generate a sample covariance matrix S, and then expend it as
a linear combination of eigenvalues and the outer product of their corresponding
eigenvectors (for instance see [13]). It is also mentioned by [5] that however, there
are many data types, such as 2nd-order and higher order tensors, for which the
present approach is not suitable. Even, [9, 28] have shown that it is always possible
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to express there higher order tensors as a linear combination of vectors, but recom-
bining the tensor elements in this way may result vagueness (viz. failing to recognize
diagonal and off-diagonal tensor elements). Moreover, it is also uneasy to perform
affine transformations such as rotation, dilation or shear etc. in the condition when
one have a higher order tensor as a linear combination of vectors. Representation
of higher order tensor in vectorial form may also destroy the intrinsic geometric
structure of original tensor data.

Keeping these issues in mind, [10] have proposed a normal distribution for 2nd
and higher order tensor data, which generalizes the normal multivariate distribu-
tion. In order to preserve the original form of given tensor in this new distribution,
[10] has replaced the familiar mean vector g in the multivariate distribution, with
a 3-dimensional 2nd-order mean tensor D and replaced the covariance matrix S, in
the multivariate normal distribution, with a 3-dimensional 4th-order tensor X.

The normal distribution for 2nd-order tensor random variables. The
exponent of a multi-varite normal probability density function p(x) contains the
quadratic form (x —p)T M~1(x — u) of an n-dimensional normal random variable z,
its man vector p and the inverse of an n X n covariance matrix M is give as [25, 3]:
(1.18)

(@) = PM_lqe—(lﬂ)(w—u)TMl(w—u) _ [M_l]eu/z)(zimTM;(mjm,
(2m)» (2m)»

where the Einstein summation convention have been used in the right most expres-
sion. It is also discussed by [25, 3] that the exponent (z; — ,ui)TMi;l(xj — pj) is
a scalar contraction of two n-dimensional second order covariance tensor, which in
this context is a covariance matrix S, but it can be transformed as an n-dimensional
2nd-order tensor. Moreover, the interpretation of the random vector and covari-
ance matrix as a tensor of 1st and 2nd-order respectively have been enhanced to
have multi-variate normal distribution as a tensor variate normal distribution for a
2nd-order random tensor D,

D Bvs-liD_D
(1.19) p(D) =/ | =" |e (1/2)(D-D):£~*:(D-D)
8w

— |: |Z_61 | :| e—(1/2)(DU—Dij)IZ;jinn:(Dmn—Dmn) .
8m

In the above expression, D is the mean tensor and (D;;—D;;) El_ji,m : (Dyn—Dun)

is a scalar contraction of the inverse of 3-dimensional 4th-order covariance tensor
Yijmn and two 3-dimensional 2nd-order tensors (D;; — Dij) and (Dyn — D) [10].
Here in equation (1.19), the resulting exponent is a linear combination of qua-
dratic functions formed from the products of elements D, (D;; — Dij), (Dyn — Dinn)
—1

igmn*

”double dot product” operation as defined in [26] has been employed. In the ex-

weighted by the suitable coefficients, % Also, in equation (1.19), the tensor

pression D : ¥71 : D = Dijzi_jilel’ sums are taken for all indices i, 7,k and [.
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Moreover, the 4th-order covariance tensor ¥ and its inverse ! are related to the
symmetric 4th-order identity tensor Y as below:

- _ 1
(1.20) EijMEkli’m = ZijilEklmn = Yéjmn = 5(6im5jn + 5in5jm)~

2. SPECTRAL DECOMPOSITION OF A 4TH ORDER COVARIANCE DOUGLAS TENSOR
IN *P-FINSLER MANIFOLDS

In order to discuss the spectral decomposition of a 4th-order covariance Douglas
tensor, let us make the following useful assumptions to setup the relevant mathe-
matical analysis.

Suppose F™ be a *P-Finsler space satisfying the condition (1.17). Also, let
x; € M™ be the n-dimensional normal random variable in * P-Finsler manifold and
i be the familiar mean vector, then for the hv-Ricci tensor (1.6), the probability
density function p(z) will have the form:

G —a/2)@—pu) "G (@ —ny

2.1 — Ti—fig) id (z5—pj)

(2.1) v =g ),

where G;; is an n-dimensional 2nd-order covariance hv-Ricci tensor and is given as
Gij = Gy = 0;Gi.

Furthermore, if we consider the normal tensor variate probability function for G;;
as P(G), then for the following 4th-order covariance Douglas tensor,

1
(2.2) Diju = W[Gijkl - WiGia + 9;Gu + 9iGj + gaGir)l,
the P(G) will be given by
_ | D1 —(1/2)(Gij—Gi5): D55 (Gra—Gra)
(2.3) P(G) = _1le .
8w

In the above expression G in the equation (2.3) is the mean hv-Ricci tensor of the
hv-Ricci tensor G. Further, the 4th-order n-dimensional covariance Douglas tensor
D1 and its inverse DZ-;IICI satisfy the identity:

_ _ 1
(2.4) DijmnDigt = Dij}kaZmn =Yijp = 5(52‘1@5]‘1 +6;501)-

klmn

The 4th-order covariance Douglas tensor D;;i; may satisfy the following symmetry
properties:

Since the hv-Ricci tensor G;; is symmetric 2nd-order tensor, then D;;x; given by
(2.2) being the composition of G;; and its partial derivatives should inherit sym-
metries such that its elements must remain same by exchanging particular pairs of
indices.

For feasibility, if one sets the mean hv-Ricci tensor Gj; to zero. Then, since the
product of two components of 2nd-order tensor commute in the scalar contraction
(viz. Gij.Dijri.Drr), i-e., GijGmn = GmnGij, the corresponding coefficients of D
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must be indistinguishable and hence must be same, i.e., Dj;ri = Dpyj-

From what has been discussed, it follows that symmetry of hv-Ricci tensor implies
that Djjxi = Dy and Dyjr = Dijik. Also, these symmetries of covariance Dou-
glas tensor can reduce the possible number of independent components. In case of
3-dimension the symmetry can reduce the components of D from 81 (i.e, 3%) to
21 [19].

In concern with the symmetry properties, [5] has mentioned that actually the 21
independent components are also required to specify each element of the symmet-
ric covariance matrix. Moreover, In case of three dimensional *P Finsler space, the
4th-order covariance Douglas tensor D;jy; can be transformed to a 6-dimensional
2nd-order tensor which is a symmetric 6 x 6 covariance matrix having the same
21 independent components [28, 14, 32]. To perform such a transformation, we
first write the scalar contraction GijD;j}del in the form G,.S,:G;, where the hv-
Ricci tensor G;; is written as a 6-dimensional column vector G and is expressed
as G = (Gaa, Gyy, Gz, ﬁGw, V2G,., \/iGyZ). Here the factor v/2 premultiplied
with the off-diagonal elements of G;; emphasize that the operation of matrix mul-
tiplication between G and the 6-dimensional 2nd-order tensor S is isomorphic to
the operation of tensor double product second order hv-Ricci tensor G;; and 3-
dimensional 4th-order covariance Douglas tensor D;jz; [11, 12].

In order to have a conversion between 6-dimensional 2nd-order tensor and the
3-dimensional 4th-order covariance Douglas tensor, we have the following tensor
representation as discussed by [5];

(2.5)
Dmmmz szyy Dzmzz \@szyy \/§Dzzzz \/§Dzmyz
Dﬂfxyy Dyyyy Dyyzz \/iDyyﬁfy ﬂDyyﬁcZ ﬂDyyyz
S = wazz Dyyzz Dzzzz \/iDzza:y \/iDzzwz \/iDzzyz

\@szmz \/iDyyrz \/éDzzmz 2Dryzz 2szrz 2szyz
\/lizyz \/EDyyyz \/QDzzyz 2Dwyyz 2Daczyz 2Dyzyz

Again, according to [27, 31], the premultiplied factors 2 and v/2 for different 3 x 3
blocks of the covariance 6 x 6 matrix S emphasize that this object transforms
as a 6-dimensional second order tensor and the mapping between D;;i; and S
including corresponding multiplication operation is an isomorphism. This fact can
be expressed by saying that with the column operation :, the set of 4th-order
covariance Douglas tensor is isomorphic to the set of 2nd-order covariance tensors
and matrix multiplication operation. Thus once we have the tensor representation
of type (2.5), we can easily obtain S~! from (2.5).

Let us now discuss about the latent-roots and latent-tensors of the 4th-order
covariance Douglas tensor as below:
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2.1. Latent-roots and Latent-vectors of D;j;. As it is evident from the fore-
going discussion that we can represent the 2nd-order tensor in terms of a covariance
matrix M and hence the latent-roots and the corresponding latent-vectors can be
determined from the matrix M. Likewise, one can determine the eigenvalues (de-
noted by 02) and 2nd-order eigentensors E of a 4th-order covariance Douglas tensor
[26, 20, 21]. The Fundamental expression is given as [9]:

(2.6) D:E=0’E,

where the tensor double dot product ” : ” has been employed to signify the tensor
product operation.

Basically, if the two tensors, say U and V are of same order, then the tensor dot
product for them will be given by,
(2.7) U:V = Trace (UVT) = U;;Vi;0ir. = Ui Vi
Now, rearranging the terms for (2.6), we have
(2.8) (D-0%Y):E=0,
where Y is the 4th-order identity tensor defined by (2.4).

Now, likewise square matrices, the equation (2.8) has a non-trivial solution if
and only if the Characteristic equation given by,

(2.9) |D — o?Y| =0.

One can now perform the spectral decomposition, sometimes called eigentensor de-
composition by developing the connection between the 4th-order covariance Douglas
tensor D and the 6 x 6 matrix S as in equation (2.5)[9]. We now proceed to find
the eigenvalues and eigenvectors of S with the fact that eigenvalues of D and S are
same. for this purpose, we fabricate the 2nd-order eigentensor E of the 4th-order
Douglas tensor D by considering the 6 x 1 eigenvectors of S using the following

expression:
i 1 1 4
Crx ﬁexy Temz
(2.10) B=| Ld, a, . |,
1 4 1 4 %
Texz ﬁéyz €2z

X 6yyv €22 emya Ey

the six 3 x 3 eigentensors represented by E° are symmetric and mutually orthogonal

where € = (e L,€0.)T is the i*" normalized eigenvector of S. Here

and satisfy the following identity:
i i §3d
(2.11) E': B =63
here in equation (2.11), the symbol 6;-3]4 is the familiar Kronecker delta which some-

times known as 3-dimensional 2nd-order identity tensor. Moreover the superscript
3d placed on the Kronecker tensor is simply used to represent its dimensionality.
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Also, the expression (2.11) is equivalent to the orthonormality condition for the
six 6 x 1 eigenvectors of the corresponding covariance matrix S:

(2.12) el =5

ij
where once again the symbol 5%d stands for the Kronecker tensor or the 6-dimensional
2nd-order identity tensor.

We, now, go through the spectral decomposition of the 4th-order covariance
positive definite symmetric Douglas tensor D. This Douglas tensor can be decom-
posed into a linear combination of six positive definite latent-vectors denoted by o7
multiplied by the outer product of their corresponding six 2nd-order eigentensors,
denoted by E¥ ® E¥, that is to say,

(2.13) Dijmn = UkEijﬁmak or D = 0, E¥ @ E¥oy,.

The above equation is usually refer to as spectral decomposition of a 4th-order
covariance Douglas tensor. The Douglas tensor D being positive definite may pos-
sess six positive real latent-roots (even though some of them may be repeated)and
the six relevant real valued 2nd-order latent-tensors. The above expression can
precisely help in finding the inverse of the covariance Douglas tensor appeared in
equation (2.3) as follows:

(2.14) Dt =0 'ELEN o or DTt =0 'EF @ EFoT

yjmn
For the detail theory of eigentensor decomposition,the readers should refer to [31].
Furthermore, the eigentensor decomposition can provide a lucid expression for the
determinant of the 4th-order Douglas tensor |D|, i.e.,

6 6
(2.15) |D| = H ofand |D7!| = H 0.2
k=1 k=1

which can be applied in determining the normalization constant in equation (2.3).
This factor can also delineate the multiplicative factor of 23/2 between the normal-
ization constants in equations (2.1) and (2.3). It is evident that this factor is simply
the ratio of determinants of hv-ricci tensor |G| and in equation (2.1) and |D| = |S]|
in equation (2.3). Actually this factor is the Jacobian of transformation between G
and D.

Let us now discuss a special case in which the 4th-order covariance Douglas
tensor D;;j; has the isotropic nature.

2.2. Spectrally decomposed Douglas tensor bearing isotropic nature. Here
we describe the spectral decomposition of the 4th-order covariance Douglas tensor
bearing isotropic nature. The detail study regarding this issue has been already
done by [5, 10].Here, We precisely utilize the results of [5, 10] to meet our pur-
pose. According to [5], isotropy of any tensorial quantity means the quantity has
no orientation dependence. Informally, we can say that the tensorial quantity has
an isotropic nature, if it is invariant from the aspect of its natural behavior, i.e,
the nature which it bears must be invariant under any transformation like rotation,
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reflection, inversion etc. Now, as in our case, since the hv-Ricci tensor is symmetric,
then the isotropy of Douglas tensor will have the form [19, 32, 31]:

Aa 1
(2.16) Dijsgl = (5L_]5k‘l) + )\5 ( (5zk5]l + 5Ll5]k) 6z’j5kl> .

Here, in the above expression, A, and Ag are constants.

Now, according to [5], the spectrally decomposed 4th-order covariance isotropic

Douglas tensor Dis,?l will have the following latent-roots:

(2.17) 01 = Xa;03 = 03 = 05 =05 =05 = Ag

and the relevant normalized latent-tensors are given as;

L [r o0 L (100

(2.18) Ft=—1]1010], E*=—]|0 —20
3 V6

00 1 0 0 1

L (00 L (o 1o

(2.19) EP=—]l00 0|, E'=—2|100

\/500—1 \/5000

0 0 1 L (000

2.20 000,E6=—001
(2.20) NG

10 01 0

In Finslerian geometry, these latent-tensors are able to describe the characteristics
and geometric significance of the 4th-order covariance isotropic Douglas tensor.
Now, with the 6th-order characteristic equation (2.9), there associate six coefficients
each of which are scalar invariants of Douglas tensor D;;x;. In fact, these coefficients
and their functions are independent from the effect of change of coordinate system.
Here we mention the six scalar invariants I, I, I3, I4, Is and I which are already
determined by [5].

These scalar invariants can be obtained by expanding equation (2.9)as below:

(2.21) (¥ —0}) (¥ = 03) (¥ — 03) (¢ — o) (¥ — 93) (¢ — 05) =0,

where 1) = 02 is used for convenience. On collecting the like powers of ¢ and writing
these coefficients in the form of latent-roots of Douglas tensor [5], we have

(2.22) P8 — L° + Lt — Iy + L — Isyp + I = 0.
Here, in the above expression, the following have been used [5]:
(2.23) I =0} + 02+ 02402+ 02 + 02,

which stands for the trace of covariance matrix S.

(2.24) I, = 0203 + 0302 + 0202 + 0202 + 0302 + 0208 + 0305 + o505+

2 2
+ 0508 4+ 050G + 0105 + 0103 + 0105 + 0107 + 010¢,
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929, 92929 2929 299 2 929 20 2 2
(2.25) I3 = 030505 + 050406 + 030505 + 05050 + 03[0505 + 0 (05 + 0§)+

t+o3(oi+os+og)|+otlotodrologtosoi+oi(oitoi+og)+os (o3 +oitos+ag)),
(226) Is = o3oiogos + o3(oio30; + 03(0305 + 04(0F + 09))] + ot [o5otos+

+030i0g + 030308 + oloios + 03 (0308 + 0i(0f + 0f) + 03 (0] + 0F + o))
(2.27) Is = 0202020202 + oi[osoi0208 + o5 (0j0200+

+ 03 (0308 + 05 (05 +08)))],

(2.28) Is = 00305030202,

[5] mentioned that the invariant I; is the trace of covariance second order tensor S
and Ig is its determinant. Rest of the invariants stand for discrete combinations of
eigenvalues of D;j;, which can be used to pursue distinguish features of Douglas
space.

Concluding Remarks. The present paper is just a particularization of the fab-
ulous article of [5]. The statistical methods have been employed to 4th-order co-
variance Douglas tensor in *P-Finsler manifold. Just the techniques provided by
[5] have been applied and reviewed in the Finsler geometry. In a nutshell, in place
of any general 4th-order covariance tensor, a particular Douglas tensor has been
employed and then the spectral decomposition has been reviewed.
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