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CREATING VARIATIONAL INTEGRATORS WITH A

COMPUTER ALGEBRA SYSTEM

CHRISTIAN HELLSTRÖM

Abstract. A library to create (new) variational integrators to arbitrary order

by means of a computer algebra system is presented. The library provides an
interface to design as well as analyse variational integrators for dynamical

systems, either with non-conservative forces or without.

1. Introduction

Simulations of generic dynamical systems can rarely be carried out analytically,
for the class of integrable dynamical systems has zero measure in the space of all
dynamical systems, hence the need for numerical integration algorithms. There is
an abundance of numerical integration algorithms, available either in the public do-
main or embedded in proprietary software. Probably the most common algorithms
implemented and used are the classical one-step methods, including the classi-
cal Runge–Kutta algorithm, multi-step methods, such as the Adams–Bashforth–
Moulton algorithm, and adaptive methods, to which the Runge–Kutta–Fehlberg
and Bulirsch–Stoer algorithms belong. Nowadays, Taylor’s method backed by ei-
ther symbolic or automatic (numerical) differentiation techniques (see e.g. [11]) is
increasingly being used for highly accurate computations, although we shall not
dwell on these alternative integration techniques in the sequel.

For simulations over relatively short time spans as compared to the intrinsic time
scales standard (non-geometric) integrators are often advantageous, as they can
be both accurate and fast. Extended computations require a different, ‘geometric’
approach, as non-geometric methods tend to generate or dissipate energy artificially
due to the fact that they do not respect the fundamental geometry of the phase
flow, which means that at some point the errors dominate.

For dynamical systems that can be formulated as Hamiltonian systems there exist
so-called geometric numerical integrators. These integrators respect the fundamen-
tal (differential) geometric structure, which underlies the dynamical evolution of
the system. It has been common to design such geometric numerical integrators
based on either previous knowledge of classical numerical integration algorithms,
such as the (partitioned) Runge–Kutta methods, or (approximate) solutions to the
Hamilton–Jacobi equation for transformations near the identity.
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There is, however, a different approach that bypasses many of the difficulties
inherent in the design of higher-order versions of these geometric numerical inte-
grators. It relies on the discretization of the action, from which the numerical
algorithms can be derived in a straightforward manner [24]. These variational in-
tegrators, as they are known throughout the literature, conserve the Poisson struc-
ture. Any continuous symmetries present in the original system translate directly
to the discretized version, and thus all (equivariant) momentum maps are preserved
infinitesimally. For non-integrable systems either the Poisson structure or the total
energy can be conserved exactly in numerical simulations [10], so that variational in-
tegrators do not generally preserve the energy. It can be shown, though, that these
variational integrators remain close to the original dynamical systems [13, 20], so
that in practice the energy error is bounded.

An approach to design variational integrators systematically based on higher-
order approximations to the discrete action by means of a computer algebra system
is covered here, in particular a freely available package named VarInt for the com-
puter algebra system Maple is presented, with which variational integrators of
arbitrary order and based on any derivative-free quadrature rule can be created
and analysed.

The fundamental concepts from discrete mechanics are reviewed briefly in section
2, after which the various built-in quadrature rules are discussed in section 3. In
section 4, the details of the package VarInt are discussed, and numerous examples
are given on how to obtain (new) variational integrators for both generic and specific
dynamical systems.

2. Variational Integrators

Consider an autonomous Lagrangian L : TQ → R, where TQ is the tangent
bundle of the configuration space Q, on which the generalized coordinates q form
a chart. A chart for the tangent bundle is given by (q, q̇), where q̇ = dq/dt with t
the time. Here and henceforth it is assumed that the generalized coordinates are
at least C2 ([a, b] ,R), where t ∈ [a, b]. The corresponding action functional reads

(1) S [L] =

∫ b

a

L (q (t) , q̇ (t)) dt,

from which the famous Euler–Lagrange equations are retrieved upon requiring
stationarity of the action functional for fixed endpoints, that is δS [L] = 0 with
δq(a) = δq(b) = 0.

Instead of deriving the Euler–Lagrange equations from the action and then dis-
cretizing the equations of motion, a different approach is used in the case of vari-
ational integrators. Here we discretize the action first by choosing an appropriate
quadrature formula, and then we can derive the discrete version of the Euler–
Lagrange equations, which are commonly known as the discrete Euler–Lagrange
(dEL) equations. The resulting integration algorithms preserve the differential geo-
metric structure of these dynamical systems automatically [24]. Moreover, the order
of the quadrature formula determines the order of the variational integrator.

2.1. Quadrature. To obtain a one-step numerical integration algorithm, introduce
a sequence of times tk = hk with k = 0, . . . , N , at which the Lagrangian is to be
evaluated. Here h is a sufficiently small time step. Furthermore, let qk ≈ q (tk)
and q̇k ≈ q̇ (tk) for k = 0, . . . , N , and consider the action between two consecutive
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points in time, say tk and tk+1. Since for a generic dynamical system with a certain
Lagrangian we do not know the functional form of the solutions in advance, we
may choose an interpolating function, usually a polynomial, in accordance with the
quadrature rule on the interval [tk, tk+1]. For a quadrature rule of arbitrary order,
we evaluate the Lagrangian at (s+ 1) ≥ 2 distinct nodes, so that each time step is
subdivided into s substeps tik for i = 0, . . . , s}. Define t0k = tk and tsk = tk+1, and

let tik − t
i−1
k = γih > 0 for i = 1, . . . , s, so that

∑s
i=1 γi = 1. The action becomes a

sum of the multipoint discrete Lagrangian Ld, which depends on the time step h:

S [L] =

N−1∑
k=0

∫ tk+1

tk

L (q (t) , q̇ (t)) dt

≈
N−1∑
k=0

Ld

(
q0k, q

1
k, . . . , q

s
k

)
(2)

=

N−1∑
k=0

s∑
i=1

Lid
(
qi−1k , qik

)
,

where Lid : Q × Q → R; it relates the multipoint discrete Lagrangian to its basic
components defined on each segment of ‘length’ γih. Notice that the discrete state
space Q×Q contains the same amount of information as the tangent bundle of the
configuration manifold, for locally TQ ∼= Q×Q.

Let L
[k]
d be shorthand for Ld

(
q0k, q

1
k, . . . , q

s
k

)
, and letDi denote the derivative with

respect to the argument carrying the substep label i, that is DiL
[k]
d = ∂L

[k]
d /∂qik.

Stationarity of the discrete action, that is S [Ld] = 0, for arbitrary variations δqik
yields the discrete Euler–Lagrange (dEL) equations:

D0Ld

(
q0k+1, q

1
k+1, . . . , q

s
k+1

)
+DsLd

(
q0k, q

1
k, . . . , q

s
k

)
= 0,(3a)

DiLd

(
q0k, q

1
k, . . . , q

s
k

)
= 0, i = 1, . . . , s− 1.(3b)

These equations determine the one-step (flow) map (q (tk) , q̇ (tk)) 7→ (q (tk+1) , q̇ (tk+1))
of the variational integrator. These equations can also be written as

DiL
i
d

(
qi−1k , qik

)
+DiL

i+1
d

(
qik, q

i+1
k

)
= 0

for each of the components i = 1, . . . , s. Please notice that for i = s, the last term

on the left-hand side is D0L
1
d

(
q0k+1, q

1
k+1

)
= D0L

[k+1]
d by virtue of the identity

qi+sk = qik+1.
It is common to write the one-step map in terms of the canonical coordinates and

momenta on the cotangent bundle. To do that, we need to find a discrete analogue
of the Legendre transformation, or fibre derivative FL : TQ → T?Q, which reads
in generalized coordinates

(4) FL : (q, q̇) 7→
(
q,
∂L

∂q̇
(q, q̇)

)
.

The discretized form of the Legendre transformation involves the endpoints of each
time segment, F±Lid : Q×Q→ T?Q:

F+Lid :
(
qi−1k , qik

)
7→
(
qik, p

i
k

)
=
(
qik, DiL

i
d

(
qi−1k , qik

))
,

F−Lid :
(
qi−1k , qik

)
7→
(
qi−1k , pi−1k

)
=
(
qi−1k ,−Di−1L

i
d

(
qi−1k , qik

))
.
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In fact, the discrete Euler–Lagrange equations (3) can be written as

F+Lid
(
qi−1k , qik

)
= F−Li+1

d

(
qik, q

i+1
k

)
,

which implies that the canonical momenta are unique along any solution. Now, the
one-step map, written in canonical coordinates and momenta, is

pi−1k = −Di−1L
i
d

(
qi−1k , qik

)
,

pik = DiL
i
d

(
qi−1k , qik

)
,

for i = 1, . . . , s, or equivalently,

pk = −D0Ld

(
q0k, q

1
k, . . . , q

s
k

)
,(7a)

pk+1 = DsLd

(
q0k, q

1
k, . . . , q

s
k

)
,(7b)

DiLd

(
q0k, q

1
k, . . . , q

s
k

)
= 0, i = 1, . . . , s− 1,(7c)

where the last set of (s− 1) equations seems ‘unaffected’ by the Legendre trans-
formation, and remains as in equation (3b). The reason for that is quite intuitive
yet profound: on each time interval an interpolatory function approximates the
Lagrangian function, so that the discrete Lagrangian becomes a piecewise smooth
function. The momentum pik computed with the discrete Legendre transformation

F−Li+1
d requires the interpolation function on the time segment

[
tik, t

i+1
k

]
, or data

‘from the right’ of tik, whereas the same momentum calculated from the transfor-

mation F+Lid uses the interpolation function on
[
ti−1k , tik

]
, or values ‘from the left’

of tik. Obviously, the intermediate momenta (i = 1, . . . , s−1) are identical, because
the interpolating function used is the same, so that its derivatives from the left and
right coincide. In principle, the momenta at the endpoints of each time interval
need not be related at all, for the interpolating function merely has to be equal in
value in order to have a piecewise smooth discrete Lagrangian. However, the prin-
ciple of stationary action relates the approximate (discrete) Lagrangian function to
the (approximated) integral curves of the dynamical system, which in turn relates
these momenta by means of the discrete Euler–Lagrange equations. Therefore, the
momenta are unique along any trajectory, and equations (3b) and (7c) are identical
in both representations.

All integrators obtained in this way are structure-preserving, that is to say they
preserve the Poisson structure of the flow. The (discrete) Lagrangian flow conserves
the (discrete) symplectic form as well as any momentum maps associated with
(infinitesimal) invariances of the (discrete) action under symmetry operations, as
shown by Marsden and West [24]. Obviously for this statement to hold we have
to choose the time step h sufficiently small, which depends on the particulars of
the problem under consideration. Please observe that the right-hand sides of the
discrete Euler–Lagrange equations (3) and their Hamiltonian equivalents (7) depend
on the time step h.

2.2. Non-Conservative Forces. The variational formalism arises naturally through-
out mathematical physics, and can of course be extended (see e.g. [17, 19, 21, 22, 24]
for a few possibilities). The main advantage and actual utility of the variational con-
struction of numerical integration algorithms lies in the fact that non-conservative
forces can easily be included in a consistent way. N -body simulations in atomic
and molecular physics, astrophysics, and chemistry are excellent candidates for
these non-conservative variational integrators, as these simulations often become
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unstable under time reversal, so that higher-order geometric numerical integrators
based on the symmetric composition of lower-order ones are not viable alternatives.

A force is a fibre-preserving map over the identity F : TQ→ T?Q, which reads
F : (q, q̇) 7→ (q, F (q, q̇)) in coordinates. In order to include these non-conservative
forces in the variational framework, we merely have to replace Hamilton’s principle
δS [L] = 0 by the so-called Lagrange–d’Alembert principle:

(8)

N−1∑
k=0

[
δ

∫ tk+1

tk

L (q (t) , q̇ (t)) dt+

∫ tk+1

tk

F (q (t) , q̇ (t)) · δq(t) dt

]
= 0.

As before, all integrals are approximated by a quadrature rule from t ∈ [tk, tk+1],
so that the Lagrange–d’Alembert principle becomes

(9)

N−1∑
k=0

δ
s∑
i=0

L
(
qint

(
tik
)
, q̇int

(
tik
))

︸ ︷︷ ︸
Ld(q0k,q1k,...,qsk)

+

s∑
i=0

F
(
qint

(
tik
)
, q̇int

(
tik
))
· δqint

(
tik
)︸ ︷︷ ︸

fi
k·δq

i
k=f

i
k(q0k,q1k,...,qsk)·δqik

 = 0,

where we have written the discrete Lagrangian in terms of qint
(
tik
)

= qint
(
q0k, . . . , q

s
k; tik

)
,

the interpolatory approximation of q (t) for t ∈ [tk, tk+1]. It is worth mentioning
that

δqint
(
tik
)

=

s∑
j=0

∂qint
(
tik
)

∂qjk
δqjk,

and that generally qint
(
q0k, . . . , q

s
k; tik

)
6= qik. Therefore,

f ik
(
q0k, q

1
k, . . . , q

s
k

)
=

s∑
j=0

F
(
qint

(
tjk

)
, q̇int

(
tjk

))
·
∂qint

(
tjk

)
∂qik

.

In a manner similar to the derivation of the discrete Euler–Lagrange equations
(3), the forced discrete Euler–Lagrange equations can be shown to be

D0L
[k+1]
d + f0k+1 +DsL

[k]
d + fsk = 0,(10a)

DiL
[k]
d + f ik = 0, i = 1, . . . , s− 1.(10b)

Again, it is possible to write the forced discrete Euler–Lagrange equations in
terms of the canonical coordinates and momenta instead. To that end, define the left
and right discrete forces f i±d : Q×Q→ R, f i−d

(
qi−1k , qik

)
and f i+d

(
qi−1k , qik

)
, respec-

tively, such that f0k = f1−d

(
q0k, q

1
k

)
, fsk = fs+d

(
qs−1k , qsk

)
, and f ik = f i+d

(
qi−1k , qik

)
+

f i+1−
d

(
qik, q

i+1
k

)
for i = 1, . . . , s− 1. These, in turn, imply that∫ tk+1

tk

F (q (t) , q̇ (t)) · δq(t) dt ≈
s∑
i=1

[
f i−d

(
qi−1k , qik

)
δqi−1k + f i+d

(
qi−1k , qik

)
δqik
]
.

Consequently, one finds the that equations (10) can be written as

DiL
i
d

(
qi−1k , qik

)
+ f i+d

(
qi−1k , qik

)
+DiL

i+1
d

(
qik, q

i+1
k

)
+ f i+1−

d

(
qik, q

i+1
k

)
= 0,

for i = 1, . . . , s.
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The appropriate discrete Legendre transformations for forced dynamical systems
are

Ff+Lid :
(
qi−1k , qik

)
7→
(
qik, p

i
k

)
=
(
qik, DiL

i
d

(
qi−1k , qik

)
+ f i+d

)
,

Ff−Lid :
(
qi−1k , qik

)
7→
(
qi−1k , pi−1k

)
=
(
qi−1k ,−Di−1L

i
d

(
qi−1k , qik

)
− f i−d

)
,

so that Ff+Lid
(
qi−1k , qik

)
= Ff−Li+1

d

(
qik, q

i+1
k

)
with i = 1, . . . , s as before. Now, it is

without any effort that we can derive the forced discrete Euler–Lagrange equations
on the cotangent bundle:

pk = −D0Ld

(
q0k, q

1
k, . . . , q

s
k

)
− f0k ,(12a)

pk+1 = DsLd

(
q0k, q

1
k, . . . , q

s
k

)
+ fsk ,(12b)

DiLd

(
q0k, q

1
k, . . . , q

s
k

)
+ f ik = 0, i = 1, . . . , s− 1.(12c)

The functions f ik can be computed with the Maple procedures described below, so
that we can easily generate higher-order variational integrators that include non-
conservative forces in a ‘variational’ manner, that is in a way that respects the
fundamental differential geometric properties of any dynamical system.

3. Quadrature Rules

In principle any integration formula can be used to approximate the discrete ac-
tion, and thus generate a variational integrator, although some cautionary remarks
are in order. First, autonomous dynamical systems, which are the ones considered
in this article, are time-reversible, so in order to create variational integrators that
respect this discrete symmetry, it is necessary to consider quadrature formulas that
are ‘symmetric’, which means that the placement of the (interpolation) nodes must
be symmetrical with respect to the midpoint of each time interval. This elimi-
nates the use of open Newton–Cotes and Radau integration formulas, for instance.
Second, it is difficult to imagine how quadrature rules based on non-polynomial
interpolation should be implemented for generic dynamical systems. Numerical in-
tegration based on rational functions (see e.g. [8]) either require the location of
the poles in advance, or the integration weights cannot be computed explicitly for
generic integrands. In the discrete formalism described so far, the former requires
the knowledge of contingent singularities of the (discrete) Lagrangian as functions
of time, whereas the latter implies that these quadrature rules would have only lim-
ited applicability, if at all. Third, numerical integration methods that involve the
derivatives of the integrand with respect to the independent variable, that is Turán
(see e.g. [9], pp. 42–43) and Birkhoff quadrature formulas (see e.g. [23], Chapter
10), can be used as well, but they call for the time derivatives of the Lagrangian
along the (numerical) solutions; it is essentially possible to compute these using
either finite differences or automatic differentiation techniques, although that may
be difficult and problem-dependent in practice. Furthermore, quadrature rules with
arbitrarily high derivatives lead to derivatives of the resultant force, which are usu-
ally considered ‘unphysical’, and thus discarded as options in numerical integration
algorithms.

Here we only consider time-independent Lagrangians. Time-dependent dynam-
ical systems can be analysed similarly in the extended phase space formalism [29].
The fully documented library VarInt for Maple 11 and above can be obtained from
the author.
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Before going into the specifics of each quadrature formula and the herewith
associated Maple codes, we wish to mention some notational issues. Because only
autonomous dynamical systems are considered, it suffices to define the one-step
discrete action on the interval [0, h], where h > 0 is the time step. Hence, to make
the notation somewhat more manageable in Maple, we have removed the ‘time
step’ index k = 0, . . . , N from all variables, as in actual implementations of these
variational algorithms the step index is redundant, in the sense that it is translated
to a function that returns the updated values of all variables. However, all variables
still carry one index, namely the ‘time substep’ index i = 0, . . . , s. Henceforth we
have written the number of nodes n = s+ 1.

In order to transform any basic quadrature rule to an approximation of the ac-
tion functional, it is important to notice that the independent variable is time, and
that the coordinates and their derivatives with respect to time are approximated by
polynomials of order (n− 1). It is possible to design variational integrators based on
non-polynomially fitted quadrature rules with the auxiliary module CreateVarInt.
An example is given at the end of section 4. Nevertheless, the order of any vari-
ational integrator is determined entirely by the order of the approximation of the
discrete action.

3.1. Newton–Cotes Quadrature. The closed Newton–Cotes quadrature formu-
las approximate definite integrals by approximating the integrand f : R → R with
an interpolating polynomial evaluated at the node points xk = a + kh, where
k = 0, . . . , s, and the stepsize h = b−a

n−1 :∫ b

a

f (x) dx ≈
∫ b

a

{
s∑

k=0

f (xk)πk (x)} dx

=

s∑
k=0

f (xk)

∫ b

a

πk (x) dx︸ ︷︷ ︸
wk

.

Here, {πk (x)} is a polynomial basis, and wk are known as the weights; these weights
are usually calculated by integration of Lagrange polynomials, although one is in
principle free to select any polynomial basis for the interpolation.

3.2. Romberg Quadrature. Another family of classical integration formulas with
equidistant nodes is the one due to Romberg. Romberg quadrature distinguishes
itself from Newton–Cotes quadrature in that it always uses the same basic two-
point approximation, the composite trapezium rule, yet recursively by inserting
nodes at the centres of all (sub)intervals. The essence of Romberg quadrature is
that a Richardson extrapolation procedure is applied to the composite trapezium
rule to obtain higher-order approximations to the integral under evaluation.

It is important to note that the composite trapezium rule leads to a continuous
approximation of the integrand, yet its derivative with respect to the indepen-
dent variable is discontinuous at each node. Hence, the naive implementation of
Romberg quadrature seems impossible to generate variational integrators, as we
require that q ∈ C1 ([tk, tk+1] ,R) for k = 0, . . . , N − 1. Nevertheless, we can still
use a ‘modified’ trapezium rule and Richardson extrapolation in conjunction with a
sufficiently smooth interpolating function, at the cost of losing the adaptivity of the
algorithm. Again, the composite trapezium rule is used as a basic approximation,
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though now the interpolating function is not piecewise linear but rather it is chosen
such that both q and q̇ are well-defined at each node.

3.3. Gaussian Quadrature. A class of n-point quadrature rules that integrate
up to (2n − 1)st-degree polynomials exactly are the Gaussian ones by evaluating
a weighted sum of function values. The integrand is assumed to be sufficiently
smooth, specifically it is a C2n ([−1, 1] ,R) function.

(13)

∫ b

a

f (x)ω (x) dx =

n∑
k=1

wkf (xk) +Rn,

where the ‘optimal’ values for the weights wk depend on the placement of the nodes
xk along the interval [a, b]. Rn denotes the remainder for a Gaussian integration
formula with n nodes,

Rn =
f (2n) (ξ)

(2n)!

∫ b

a

ω (x)φ2n (x) dx,

where a < ξ < b, and φn (x) is the related nth degree orthogonal polynomial (see
[28], pp. 180–181). As usual, ω (x) denotes a positive weight function appearing
in the integrand. In the case of interest for variational integrators, the nodes are
placed symmetrically over a finite interval, for which [−1, 1] is commonly used.
For an integral over a arbitrary but finite interval [a, b] the linear transformation
x 7→ 1

2 (b− a)x+ 1
2 (a+ b) can then be used. An overview of the various quadrature

formulas of the Gauss family can be found in the chapter on numerical analysis in
the book by Abramowitz and Stegun [1], for example. Here, we shall discuss the
quadrature rules based on the Legendre, Chebyshev and Lobatto nodes. The nodes
for the Gauss–Radau quadrature formulas are not distributed symmetrically across
the interval of integration, so that they cannot be used for the design of variational
integrators for autonomous dynamical systems.

3.3.1. Gauss–Legendre Quadrature. In Gauss–Legendre quadrature formulas the
weight function ω (x) = 1, which is known as the Legendre weight function. The
nodes xk with k = 1, . . . , n for the n-point Gauss–Legendre quadrature formulas
are the zeros of the Legendre polynomials Pn (x). The corresponding weights are
given by

(14) wk =
2

1− x2k
1

[P ′n (xk)]
2 ,

where the prime indicates the derivative with respect to the argument. It is impor-
tant to note that the zeros of the Legendre polynomials come in pairs, so that the
quadrature rule is symmetric about the origin. Furthermore, the zeros lie in the
interval (−1, 1), that is, they do not include the endpoints.

The fact that the endpoints of the integration interval do not appear explicitly
in the quadrature formula means that it is necessary to ‘include’ the endpoints
by means of extrapolation; the values of the coordinates and their derivatives are
indeed specified at one such a point for initial-value problems. The idea is to in-
terpolate the coordinates with an (n− 1)st degree polynomial through the interior
points (i = 1, . . . , s− 1), as before, and extrapolate to the endpoints of the integra-
tion interval (i = 0 and i = s). It is then possible to express the first (i = 1) and
last (i = s− 1) of the interior points in terms of the remaining interior points and
the endpoints. In that way, the endpoints can be included in accordance with the
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quadrature nodes. Although polynomial extrapolation is notorious for being very
inaccurate outside the interval of the interpolation, we shall assume that the time
step h is sufficiently small to overcome the issues associated herewith.

3.3.2. Gauss–Chebyshev Quadrature. The n-point Gauss–Chebyshev integration for-
mulas come in two slightly different flavours. The first type of Gauss–Chebyshev
quadrature rule has nodes at the roots of the Chebyshev polynomials of the first
kind, Tn (x). These are

(15) x
(1)
k = cos θ

(1)
k , θ

(1)
k =

2k − 1

n

π

2
,

and the corresponding weights are

(16) w
(1)
k =

π

n
.

The related quadrature formula reads

(17)

∫ −1
−1

f (x) dx ≈
n∑
k=1

w
(1)
k f

(
x
(1)
k

)√
1−

(
x
(1)
k

)2
,

where the square-root is the weight function, now appearing on the right-hand side.
Similarly, the integration formula for second type of Gauss–Chebyshev integration
formulas is

(18)

∫ −1
−1

f (x) dx ≈
n∑
k=1

w
(2)
k

f
(
x
(2)
k

)
√

1−
(
x
(2)
k

)2 ,
where now the nodes are given by

(19) x
(2)
k = cos θ

(2)
k , θ

(2)
k =

k

n+ 1
π,

which are the zero loci of the Chebyshev polynomials of the second kind, Un (x).
The matching weights are

(20) w
(2)
k =

π

n+ 1
sin2 θ

(2)
k .

The Gauss–Chebyshev quadrature formulas are especially suited for integrands with
factors of

√
1− x2 either in their numerators or denominators.

Please observe that the extrapolation to the endpoints of the integration interval
does not yield any singularities due to the weight function. The coordinates and
velocities are extrapolated and these extrapolations are substituted, so that the
sum is indeed evaluated at the correct nodes.

3.3.3. Fejér Quadrature. The Gauss–Chebyshev quadratures discussed in the pre-
vious paragraph were defined with respect to non-trivial weight functions ω (x) =

1/
√

1− x2 and ω (x) =
√

1− x2 for the integration formulas based on the Cheby-
shev polynomials of the first and second kind, respectively. As for all Gauss quadra-
tures rules, these can be defined relative to different weight functions. For ω (x) = 1
one obtains the formulas due to Fejér [7]. The nodes for the integration rules based
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on the Chebyshev polynomials of the first and second kind are identical to equations
(15) and (19), respectively. However, the weights are now

(21) w
(1)
k =

2

n

1− 2

bn/2c∑
j=1

cos
(

2jθ
(1)
k

)
4j2 − 1

 ,
and

(22) w
(2)
k =

4 sin θ
(2)
k

n+ 1

b(n+1)/2c∑
j=1

sin
(

(2j − 1) θ
(2)
k

)
2j − 1

,

where θ
(1)
k and θ

(2)
k are as before.

Alternatively, the zeros of the nth-degree Chebyshev polynomial of the third
kind Vn (x) can be used,

(23) x
(3)
k = cos θ

(3)
k , θ

(3)
k =

2k − 1

2n+ 1
π,

as well as those of the nth-degree Chebyshev polynomial of the fourth kind Wn (x),

(24) x
(4)
k = cos θ

(4)
k , θ

(4)
k =

2k

2n+ 1
π.

The corresponding weights are

(25) w
(3)
k =

4 sin θ
(3)
k

n+ 1
2

b(n+1)/2c∑
j=1

sin
(

(2j − 1) θ
(3)
k

)
2j − 1

,

and

(26) w
(4)
k =

4 sin θ
(4)
k

n+ 1
2

b(n+1)/2c∑
j=1

sin
(

(2j − 1) θ
(4)
k

)
2j − 1

,

respectively, as shown by [26].
Related to Fejér quadrature formulas is the one by [5], which is nothing but

Fejér’s second rule with the nodes −1 and 1 added. Define

θk =
k − 1

n− 1
π, k = 1, . . . , n.

The Clenshaw–Curtis nodes are then simply xk = cos θk, and the associated weights
are given by

(27) wk =
ck
n

1− 2

b(n+1)/2c∑
∗

j=1

cos 2jθk
4j2 − 1

 ,
where ck = 2− δ0,k mod n, and

∑
∗ signifies that the last term in the sum should

be halved.
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3.3.4. Gauss–Lobatto Quadrature. Additional Gaussian integration rules that in-
clude both endpoints are the Gauss–Lobatto ones:

(28)

∫ −1
−1

f (x) dx ≈ 2

n (n− 1)
[f (−1) + f (1)] +

n−1∑
k=2

wkf (xk).

The interior nodes are the zeros of the derivative of the Legendre polynomials, that
is they satisfy P ′n−1 (x) = 0, and the interior weights can be calculated to be

(29) wk =
2

n (n− 1)

1

[Pn−1 (xk)]
2 .

3.4. Chebyshev Quadrature. Somewhat related to the quadrature formulas of
the Gaussian type is the equal-weight integration formula by Chebyshev:

(30)

∫ −1
−1

f (x) dx ≈ 2

n

n∑
k=1

f (xk).

The nodes are the solutions to the equation Gn (x) = 0, where Gn (x) is the poly-
nomial part of [14]

(31) Fn (x) = xn exp

[
n

2

∫ 1

−1
ln

(
1− t

x

)
dt

]
.

The integral inside the exponential can be calculated easily,∫ 1

−1
ln

(
1− t

x

)
dt = −2 + (1 + x) ln

(
1 +

1

x

)
+ (1− x) ln

(
1− 1

x

)
.

The zeros of Gn (x) are known to be real only for n ≤ 7 and n = 9. Hence, the use
of Chebyshev quadrature is restricted to these values.

3.5. Takahasi–Mori Quadrature. For the numerical computation of integrals
over infinite intervals (−∞,∞) the composite trapezium rule is noted for its excel-
lent results in terms of accuracy and efficiency compared to quadrature formulas
with the same density of sampling points [30], that is, for any analytical function
g that vanishes at infinity,∫ ∞

−∞
g (x) dx ≈ η

∞∑
k=−∞

g (kη),

where in practice the infinite sum itself converges often quite rapidly. We can
take advantage of the performance of the trapezium rule by applying a variable
transformation, x 7→ ϕ (t), to integrals over finite intervals:∫ 1

−1
f (x) dx =

∫ ∞
−∞

f (ϕ (t))ϕ′ (t) dt

≈ η
∞∑

k=−∞

f (kη)ϕ′ (kη).

The method proposed by Schwartz [27] involves the transformation ϕ (t) =
tanh t, for which the resulting quadrature formula has an asymptotic error of

O
(

exp
(
−c
√
N
))

with η = π/
√
N [12], where N denotes the number of func-

tion evaluations, and c ∈ R depends on the integrand and the particular variable
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transformation. For ϕ (t) = erf t the error is O
(

exp
(
−c 3
√
N2
))

asymptotically

(see e.g. [25] for more details on these and other variable transformations). In
fact, for all functions f ∈ Hp (D), 1 < p ≤ ∞, the Hardy spaces on the unit disc
D = {z ∈ C | |z| < 1}, Andersson [2] has shown that the bound on the asymptotic

error of any quadrature formula is O
(
N1−1/(2p) exp

(
−c
√
N
))

.

Double exponential quadrature formula dates back to the work by Takahasi and
Mori [31], who improved on the transformation method by Schwartz [27]. Their
integration rule accelerates the convergence of one-dimensional integrals by intro-
ducing a suitable variable transformation that result in double exponential decay of
the integrand: ϕ (t) = tanh

(
π
2 sinh t

)
. Rather than looking at functions that belong

to the Hardy classes Hp (D) with p > 1, we can focus on the more modest class of
integrable functions over (−1, 1), possibly with algebraic or logarithmic singulari-
ties at the endpoints ±1, and a finite number of singularities outside the interval
of integration. Then, the asymptotic error of the quadrature formula behaves as
O (exp (−cN/ lnN)); the constant c is related to the location of the singularities
of the integrand after the application of the variable transformation. The optimal
value of

η =
2

N
ln 2∆N,

where ∆ is the distance between the real axis and the nearest singularity of the
integrand after the variable transformation has been applied; the transformed in-
tegrand is thus regular in the strip |=(z)| < ∆. In case the original function f (z),
z ∈ C, only has a singularity at z = ∞, we easily compute that ∆ = π

2 . At the
optimal step η, the nodes in the interval (−1, 1) tend to cluster near the boundaries,
especially for small N .

The Takahasi–Mori, or tanh-sinh, formula,

(32)

∫ 1

−1
f (x) dx ≈ ηπ

2

n∑
k=−n

f
(

tanh
(π

2
sinh kη

)) cosh kη

cosh2
(
π
2 sinh kη

) ,
has been shown to be fast and accurate in high-precision experimental mathematics
[3]; in practice we often choose η adaptively. Recently, Borwein and Ye [4] have
shown that the Takahasi–Mori quadrature formula converges quadratically for all
integrands f ∈ H2 (D) in the limit of N →∞.

All these transformed quadrature formulas based on the trapezium rule have
exponential decay of the asymptotic error, which basically means that halving the
stepsize roughly doubles the number of correct digits. Note, however, that the
quadrature formulas are not exact for polynomials, in contrast to the Gaussian
quadrature formulas.

4. Examples

The symplectic partitioned Runge–Kutta methods form a well-known class of
variational integrators for conservative dynamical systems. For non-conservative
systems probably the best studied example is the symplectic Newmark algorithm,
as described in [18]. Beyond these the number of variational integrators is lim-
ited, mainly because the manual effort to generate these (higher-order) variational
integrators is substantial.

VarInt is a library that enables anyone with a Maple distribution to create and
analyse new variational integrators with ease. The module VarInt has four main
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procedures: VarInt, CreateVarInt, ExtractAlgorithm, and IntegrateSystem,
which provides basic functionality for the numerical analysis of one-dimensional
problems. VarInt computes the (forced) discrete Euler–Lagrange equations. In or-
der to obtain an actual recipe that allows us to compute the discrete flow efficiently,
we have to manipulate the expressions returned by VarInt, which depends highly
on the functional form of the Lagrangian, and is hence best done interactively. For
separable Lagrangians

(33) L (q, q̇) = T (q̇)− V (q) ,

with T : TQ→ R a quadratic kinetic energy function and V : Q→ R the potential
energy, an ancillary procedure ExtractAlgorithm is included in VarInt. It aids in
the extraction of such a one-step map, even for dynamical systems with generic
non-conservative forces. As such, it greatly enhances the potential development
variational integrators for non-conservative forces up to arbitrary order, which has
only been touched upon scantily thus far.

The module CreateVarInt is similar in design as VarInt with the significant
difference that the approximation to the discrete action can be supplied manu-
ally by specifying the nodes, weights and weight function of the numerical inte-
gration formula, and the interpolation procedure, which is polynomial by default.
CreateVarInt therefore extends the VarInt by allowing new quadrature rules to
be defined and the creation of non-polynomially fitted variational integration algo-
rithms.

To see the full scope of VarInt, we shall first look at simple problems. Consider
a two-point Newton–Cotes approximation of the action and the (non-conservative)
Rayleigh force. Then, we can obtain the discrete Euler–Lagrange equations with
VarInt as follows:

1 > restart; #clear memory

2 > with(VarInt): #load VarInt

3 > dEL1:=VarInt(2,L,F,NewtonCotes,p,q,h); #obtain dEL equations.

Since, we have not (yet) specified the functional forms of the Lagrangian and the
Rayleigh force, we the expressions Maple returns are fully implicit. To obtain a
more applicable representation of the two-point variational Newton–Cotes integra-
tor, we define a separable Lagrangian (33), and extract the algorithm:

4 > L:=(q,Dq)->1/2*M*Dq^2-V(q): #define Lagrangian

5 > dEL2:=VarInt(2,L,F,NewtonCotes,p,q,h): #obtain dEL equations

6 > ExtractAlgorithm(dEL2,p,q,V,F); #obtain algorithm.

Here, M is the mass; in the case of vectorial coordinates and momenta, M has to be
interpreted as the mass matrix. The one-step map (q0, p0) 7→ (q1, p1) reads

q1 = q0 + h
p0
M
− h2

2M

[
∇V (q0)− F

(
q0,

q1 − q0
h

)]
,(34a)

p1 = p0 −
h

2

[
∇V (q0) +∇V (q1)− F

(
q0,

q1 − q0
h

)
− F

(
q1,

q1 − q0
h

)]
,(34b)

The algorithm is implicit for generic F. For conservative dynamical systems the
algorithm reduces to the the famous second-order Störmer–Verlet algorithm, which
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is sometimes referred to as the leapfrog:

q1 = q0 + h
p0
M
− h2

2M
∇V (q0) ,(35a)

p1 = p0 −
h

2
[∇V (q0) +∇V (q1)] ,(35b)

and is fully explicit. It can be obtained in the active Maple worksheet in several
ways:

7 > eval(%,F=0); #alternative 1

8 > F:=(q,Dq)->0: #alternative 2

9 > dEL3:=VarInt(2,L,F,NewtonCotes,p,q,h); #alternative 2 (cont’d)

10 > ExtractAlgorithm(dEL3,p,q,V,F); #alternative 2 (cont’d)

11 > dEL4:=VarInt(2,L,0,NewtonCotes,p,q,h); #alternative 3

12 > ExtractAlgorithm(dEL3,p,q,V,F); #alternative 3 (cont’d).

As it happens, the Newton–Cotes, Romberg, Gauss–Lobatto and Clenshaw–Curtis
quadrature rules with two nodes are identical, so that their variational integrators
are the same.

Incidentally, for three nodes the Newton–Cotes, Gauss–Lobatto and Clenshaw–
Curtis quadrature (Simpson’s) formulas coincide. The Maple code

13 > dEL5:=VarInt(3,L,0,GaussLobatto,p,q,h); #obtain dEL equations

14 > ExtractAlgorithm(dEL5,p,q,V,F); #obtain algorithm

results in the fourth-order algorithm for conservative dynamical systems reported
in [6],

q1 = q0 +
h

2

p0
M
− h2

24M
[2∇V (q0) +∇V (q1)] ,(36a)

q2 = q0 + h
p0
M
− h2

6M
[∇V (q0) + 2∇V (q1)] ,(36b)

p2 = p0 −
h

6
[∇V (q0) + 4∇V (q1) +∇V (q2)] .(36c)

Equation (36a) has to be solved iteratively for generic (non-linear) potentials. Equa-
tions (36b)–(36c) are clearly explicit.

For four nodes these three families of quadrature rules lead to different variational
integrators. The variational Newton–Cotes integrator, which is based on Simpson’s
3
8 rule, is easily found to be

q1 = q0 +
h

3

p0
M
− h2

648M
[27∇V (q0) + 14∇V (q1)− 5∇V (q2)] ,(37a)

q2 = q0 +
2h

3

p0
M
− h2

324M
[27∇V (q0) + 38∇V (q1) + 7∇V (q2)] ,(37b)

q3 = q0 + h
p0
M
− h2

8M
[∇V (q0) + 2∇V (q1) +∇V (q2)] ,(37c)

p3 = p0 −
h

8
[∇V (q0) + 3∇V (q1) + 3∇V (q2) +∇V (q3)] .(37d)
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Similarly, the variational Clenshaw–Curtis integrator with four nodes is

q1 = q0 +
3h

14

p0
M
− h2

13440M
[320∇V (q0) + 259∇V (q1)− 21∇V (q2)] ,(38a)

q2 = q0 +
6h

7

p0
M
− h2

13440M
[1280∇V (q0) + 3339∇V (q1) + 259∇V (q2)] ,(38b)

q3 = q0 +
15h

14

p0
M
− h2

84M
[10∇V (q0) + 28∇V (q1) + 7∇V (q2)] ,(38c)

p3 = p0 −
h

18
[2∇V (q0) + 7∇V (q1) + 7∇V (q2) + 2∇V (q3)] .(38d)

The variational integrators that derive from the Gauss–Lobatto quadrature rules
correspond to the well-known Lobatto IIIA/IIIB algorithms, and their forms can
be found in the literature.

All variational Gauss–Legendre integrators have been shown to be equal to the
Gauss collocation methods. As an example, the Gauss–Legendre variational inte-
grator with two nodes is easily found to be

q1 = q0 + h
p0
m
− h2

12m
[c−∇V (q+) + c+∇V (q−)] ,(39)

p1 = p0 −
h

2
[∇V (q+) +∇V (q−)] ,(40)

where we have defined q± = 1
2 (q0 + q1) ± 1

6

√
3 (q0 − q1), and c± = 3 ±

√
3. The

Gauss–Legendre and the Chebyshev quadrature formulas with two nodes happen
to coincide, so that their variational integrators are identical (39). More details and
examples can be found in the help pages, which can be accessed by executing one
of the following commands:

15 > ?VarInt #package overview

16 > ?VarInt[VarInt] #help page

17 > ?VarInt[ExtractAlgorithm] #help page

18 > ?VarInt[CreateVarInt] #help page

19 > ?VarInt[IntegrateSystem] #help page.

Finally, we shall take a look at the CreateVarInt module. The syntax is slightly
different from VarInt, as one can see below:

20 > Digits:=16: #numerical precision

21 > x:=0.5904158239150231: #positive node

22 > w:=0.9964248649058515: #weight

23 > etc:=1,L,0,p,q,h: #shorthand

24 > CreateVarInt(-1..1,[-x,x],[w,w],etc): #obtain dEL

25 > ExtractAlgorithm(%,p,q,V); #obtain algorithm

The first argument is the range on which the nodes are defined, so that the nodes,
supplied as a list as the second argument to CreateVarInt, can be transformed
appropriately. The third argument is the list of weights associated with these
nodes. The fourth argument is the weight function, which in this case is the unit
function. The fifth through to the ninth argument are the Lagrangian function, the
Rayleigh function, and the labels for the canonical momenta, canonical coordinates
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and the time step, respectively. The tenth argument is optional, and it is not
shown here; it takes the handle of an interpolation procedure, which must have the
same syntax as the built-in procedures for data interpolation, as specified in the
documentation of the CurveFitting package. If the tenth argument is omitted,
the standard polynomial interpolation procedure PolynomialInterpolation (also
known as interp) is used internally. As an example, consider a custom yet naive
implementation of polynomial interpolation:

26 > Poly:=proc(xdata,ydata,z) #custom interpolation

27 local c,n,Eqs,Var,Fun;

28 n:=nops(xdata):

29 Fun:=x->add(c[k]*x^(k-1),k=1..n):

30 Eqs:={seq(Fun(xdata[m])=ydata[m],m=1..n)}:

31 Var:={seq(c[m],m=1..n)}:

32 assign(solve(Eqs,Var)):

33 collect(factor(Fun(z)),z);

34 end proc:

35 > etc:=1,L,0,p,q,h,Poly; #shorthand

36 > CreateVarInt(-1..1,[-1,1],[1,1],etc): #obtain dEL

37 > ExtractAlgorithm(%,p,q,V); #obtain algorithm.

The code obviously yields the Störmer–Verlet algorithm (35).
The values for the nodes and weights shown are such that the underlying quad-

rature rule integrates any linear combinations of the set {e±νx, x e±νx} with ν = 1
exactly on the interval [−1, 1]. Recently, non-polynomially fitted quadrature rules
have moved increasingly to the centre of attention [16, 35, 33], especially expo-
nentially fitted ones for numerical integration algorithms for ordinary differential
equations (see [34] and references therein for more details). The idea behind is to
translate the philosophy behind Gaussian integration formulas, that is that they
integrate polynomials exactly, to non-polynomial functions, in particular exponen-
tials and trigonometric functions, based on the formalism developed by Ixaru [15].
That leads to a set non-linear conditions, from which the nodes and weights can be
computed (numerically). Unfortunately, the nodes and corresponding weights for
these exponentially fitted quadrature rules are not determined uniquely.

The optional argument enables us to provide alternative interpolation routines,
which can be practical both as a diagnostic tool and as a interface to create new
variational integrators that are designed for specific dynamical systems. Quadrature
rules based on rational interpolation [32], for instance, might be of use in the
simulations of dynamical systems with singularities, such as N -body problems in
astrophysics and molecular dynamics for instance.

5. Conclusion

It is a well-established fact that simulations of (non-linear) dynamical systems,
both with non-conservative forces and without, benefit greatly from the preserva-
tion of their geometric structures, especially over long time spans as compared to
the characteristic time scales of the systems at hand. Variational integrators, and
more generally geometric numerical integrators, are ideally suited for such sim-
ulations. The discrete variational formalism is both mathematically natural and
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computationally practical. We have demonstrated that one can explore and de-
sign variational integrators systematically with a computer algebra system, such as
Maple. Some of these variational integrators correspond to well-known classes of
geometric numerical algorithms, such as the symplectic partitioned Runge–Kutta
methods. However, few variational integrators have been reported that lie out-
side of the standard classification, although the discrete variational formalism is
certainly not restricted to it. With the procedures we have presented to compute
variational integrators based on different approximations of the action functional
one can venture beyond the geometric numerical algorithms one usually encounters.
The discrete flow maps one obtains can be either general, and serve as templates
for generic problems, or optimized for a specific problem thanks to the symbolic
capabilities of a computer algebra system.
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