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ON THE KEY EXCHANGE WITH MATRICES OF LARGE

ORDER AND GRAPH BASED NONLINEAR MAPS

URSZULA ROMAŃCZUK AND VASYL USTIMENKO

Abstract. In the paper we discuss the group theoretical algorithm of Diffie -

Hellman key exchange in the cases of symmetrical group Spn and more general
Cremona group of polynomial automorphisms of free module Kn over arbitrary

commutative ring K. We show that conjugation of affine map with nonlinear
polynomial map f can be element of large order and small degree. Same

properties hold for each element of cyclic group generated by such elements.

We consider some algorithms for generation of subgroups of large order and
small degree of their elements.

1. Introduction

It is a well-known fact that the discrete logarithm problem can be formulated for
general finite group G. Find a positive integer x satisfying condition gx = b where
g ∈ G and b ∈ G. The problem has a reputation to be a difficult one. But even
in the case of cyclic group Z∗n there are many open questions. If n = p or n = pq
where p and q are sufficiently large prime then the complexity of discrete logarithm
problem justify classical Diffie-Hellman key exchange algorithm and RSA public
key encryption, respectively. In most other cases complexity of discrete logarithm
problem is not investigated properly. The problem is very dependent on the choice
of the base g and the way of presentation the data on the group. Group can be
defined via generators and relations, as automorphism group of algebraic variety,
as matrix group, as permutation group etc. in this paper we assume that G is a
subgroup of Spn which is a group of polynomial bijective transformation of vector
space Fp

n into itself. Obviously |Spn | = pn!, each permutation π can be written in
the form
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x1 → f1(x1, x2, . . . , xn),

x2 → f2(x1, x2, . . . , xn),

. . .

xn → fn(x1, x2, . . . , xn),

where fi are multivariable polynomials from Fp[x1, x2, . . . , xn]. The presentation of
G as a subgroup of Spn is chosen because the Diffie Hellman algorithm here will be
implemented by the tools of symbolic computations. Other reason is universality:
as it follows from classical Cayley results each finite group G can be embedded in
Spn for appropriate p and n in various ways.

The Diffie Hellman key exchange is another breakthrough in public-key cryp-
tography of the 1970s, invented by Whitfield Diffie and Martin Hellman in their
groundbreaking 1976 paper New Directions in Cryptography. Algorithm Diffie-
Hellman allows two users (Alice and Bob) to establish a shared secret key used
by encryption algorithms, such as DES or MD5, over an insecure communications
channel.

Algorithm 1. Symbolic Diffie-Hellman algorithm

1. The first step Alice and Bob take is to agree on a finite group G, G < Spn

and a polynomial map g in G of large order in a group G. This is usually
done long before the rest of the protocol. The next step is for Alice to pick
a secret integer nA that she does not reveal to anyone, while at the same
time Bob picks an integer nB that he keeps secret.

3. Bob and Alice use their secret integers to compute A = gnA and B = gnB

in Spn , respectively. They use composition of multivariable map g with
itself.

4. They next exchange these computed values, Alice sends A to Bob and Bob
sends B to Alice.

5. Finally, Bob and Alice again use their secret integers to compute

AB ≡ BnA ≡ (gnB )
nA = gnAnB and AB ≡ AnB ≡ (gnA)

nB = gnAnB

Eavesdropper only learns p, g, gnA and gnB , but cannot calculate gnAnB without
the computationally difficult discrete logarithm problem of A or B for the group
G.

The security of the protocol depends heavily on the choice of the base g. It has
to be an element of large order |g|, prime decomposition of |g| is very important.

This scheme of ”symbolic Diffie-Hellman algorithm” can be secure, if the adver-
sary is not able to compute number nA (or nB) as functions from degrees for g and
hA. Obvious bad example is the following: g sends xi into xi

t for each i. In this
case nA is just a ratio of deghA and degg.

To avoid such trouble one can look at the element (base) g of Spn such that
all its nonidentical powers qk are of small degree f(n), which is independent of
parameter k. We refer to such g as stable element. In the of prime field Fp, affine
transformations form an affine group AGLn(Fp) of order (pn − 1)(pn − p) . . . (pn −
pn−1) in the symmetric group Spn of order (pn)!. In [6] the maximality of AGLn(Fp)
in Spn was proven. So we can present each permutation π as a composition of several
”seed” maps of kind τ1gτ2, where τ1, τ2 ∈ AGLn(Fp) and g is a fixed map of degree
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≥ 2. One may choose quadratic map of Imai - Matsumoto algorithm in case p = 2
(see [4]0 for its description and cryptanalysis by J. Patarin) or graph based cubical
maps for general p ([12], [14], [16], [17]).

One of the obvious source of stable elements is the group AGLn(Fp) of affine
transformations. We can take the group G in the form τHτ−1, where H is a
subgroup of AGLn(Fp) and τ is a fixed element of Spn . Degree of each representative
of AGLn(Fp) is 1, this group contains elements of large order, like famous Singer
cycle of order pn − 1 (see [5] and further references) . The choice of nonlinear τ is
important, it eliminates the usage of standard tools of linear algebra for studies of
H-invariant subspaces.

One can consider the product of a Singer cycle with the matrix whose order is
mutually prime with pn − 1 to make the order flexible.

We refer to an element g of kind fτf−1, where τ ∈ AGLn(Fp), f and f−1 are
polynomial maps of Fp

n into itself of the same degree such as fτ 6= τf as quasi linear
map. We say that g = fτf−1 is of irreducible degree if deg(g) = deg(f)deg(f−1).
In case of stable pseudo linear element g of irreducible degree all its nonidentical
powers are of irreducible degree.

We suggest the following scheme:

(1) Choose an affine transformation τ of large order S (for instance a product
of Singer cycle with the matrix of order t such that gcd(t, pn − 1) = 1).

(2) Construct invertible polynomial transformation f of large degree of rather
general form.

(3) Compute b = fτf−1 (”most” elements of that kind fτkf−1 will be of
maximal degree deg(f)deg(f−1)).

Method of construction of sequences of stable elements in Spn of nonpseudolinear
nature with large degree and order are consider in the papers of [16].

We believe that independently on our scheme problems of generation of matrices
of large order and construction of invertible polynomials of large degree are of
applied nature.

We generalize the above problem for the case of Cremona group of the free
module Kn, where K is arbitrary commutative ring. So we need change Fp

n for
free module Kn (Carthesian power of K) and the family and symmetric group Spn

for Cremona group Cn(K) of all polynomial automorphisms of Kn.

2. Linguistic graphs and nonlinear elements of Cremona group

The missing definitions of graph-theoretical concepts which appear in this paper
can be found in [1]. Let V (G) and E(G) denote the set of vertices and the set of
edges of G, respectively. Then |V (G)| is called the order of G, and |E(G)| is called
the size of G. A path in G is called simple if all its vertices are distinct. When it is
convenient, we shall identify G with the corresponding anti-reflexive binary relation
on V (G), i.e. E(G) is a subset of V (G) × V (G) and write vGu for the adjacent
vertices u and v (or neighbors). The sequence of distinct vertices v0, v1, . . . , vt, such
that viGvi+1 for i = 1, . . . , t− 1 is the pass in the graph. The length of a pass is a
number of its edges. The distance dist(u, v) between two vertices is the length of
the shortest pass between them. The diameter of the graph is the maximal distance
between two vertices u and v of the graph. Let Cm denote the cycle of length m i.e.
the sequence of distinct vertices v0, . . . , vm such that viGvi+1, i = 1, . . . ,m− 1 and
vmGv1. The girth of a graph G, denoted by g = g(G), is the length of the shortest
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cycle in G. The degree of vertex v is the number of its neighbors (see , for instance
[1]).

The incidence structure is the set V with partition sets P (points) and L (lines)
and symmetric binary relation I such that the incidence of two elements implies
that one of them is a point and another is a line. We shall identify I with the simple
graph of this incidence relation (bipartite graph). If number of neighbors of each
element is finite and depends only on its type (point or line), then the incidence
structure is a tactical configuration in the sense of Moore (see [7]).

Definition 1. Let Γ be a bipartite graph with partition sets Pi, i = 1, 2. Suppose
that M be a disjoint union of finite sets M1 and M2. We say that Γ is a bipartite
parallelotopic graph over (M1,M2) if

(i) there exists a function π : V (Γ)→M such that if p ∈ Pi, then π(p) ∈Mi,
(ii) for every pair (p, j), p ∈ Pi, j ∈ Mi, there is a unique neighbour u with

given π(u) = j.

It is clear that the bipartite parallelotopic graph Γ is a (|M1|, |M2|) - biregular
graph.

We refer also to the function π in the definition of bipartite parallelotopic graph
as a labelling. We will often omit the term ”bipartite”, because all our simple graphs
are bipartite.

Let P and L be two copies of n-dimensional free module Kn over the finite
commutative ring K. Elements of P will be called points and those of L lines.
To distinguish points from lines we use parentheses and brackets: If x ∈ V , then
(x) ∈ P and [x] ∈ L. It will also be advantageous to choose two fixed bases and
write:

(p) = (p1, . . . , pn, c1, c2, . . . , cr)

[l] = [l1, . . . , ln, t1, t2, . . . , ts]

We now define an incidence structure (P,L, I) as follows. We say the point (p)
is incident with the line [l], and we write (p)I[l], if the following relations between
their coordinates hold:

a1l1 − b1p1 = f1(c1, . . . cr, t1, . . . , ts)

. . .

aili − bipi = fi(c1, . . . cr, t1, . . . , ts, l1, . . . , li−1, p1, . . . , li−1)

. . .

anln − bnpn = fn(c1, . . . cr, t1, . . . , ts, l1, . . . ln−1, p1, . . . , pn−1)

(1)

where fi, i = 2, . . . , n can be any polynomial expressions in variables c1, . . . , cr, t1,
. . . , ts, l1, . . . , li−1, p1, . . . , pi−1 over K, ai, bi can be any nonzero elements from
K.

It is easy to see that the above graph is a parallelotopic graph such that tuples
c1, . . . cr and t1, . . . , ts be the ”colours” of (p) and [l], respectively. Let C(P ) = Kr

and C(L) = Ks are sets of colours for points and Lines
Let us refer to the graph I = I(n, r, s) defined by above equations as linguis-

tic graphs of triangular type over K of type (r, s, n). We assume that one of the
expressions fi, i = 1, 2, . . . , n has degree ≥ 2.
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The colour function π for such a graph is just a projection of tuples (p) ∈ P and
[l] ∈ L onto r and s last components, respectively. We assume that Nc(v) is the
operator of taking the neighbour of v of colour c in our parallelotopic graph.

The linguistic graphs naturally appear as induced subgraphs of Incidence Geome-
tries of Finite Simple Groups of Lie type. They play an important role in studies
of Large Schubert cell related to the geometry ([10], [11]). The following examples
are induced subgraphs of incidence geometries of rank 2. The theory of incidence
geometries corresponding to finite simple groups of Lie type the reader can find in
[2], [9]. Special dynamical systems related to linguistic graphs were introduced in
[15].

Example 1. Let P = {(x1, x2)|xi ∈ GF (q)}, L = {[y1, y2]|yi ∈ GF (q)}. Let us
define an incidence relation I1 as: (a, b)I1[x, y] if and only if y − b = xa. Let us
consider the function π : P ∪ L→ GF (q), such that π((x1, x2)) = x1, π([y1, y2]) =
y1. It is easy to check that π is a labelling for the graph I1. It is a linguistic graph
of type (1, 1, 1) over GF (q). This is the induced subgraph of the incidence graph
of the geometry for simple group A2(q) (classical Desargues projective plane).

Example 2. Let P = {(x1, x2, x3)|xi ∈ GF (q)}, L = {[y1, y2, y3]|yi ∈ GF (q)}. Let
us define an incidence relation I2 as: (a, b, c)I2[x, y, z] if and only if

y − b = xa and z − c = xb.
Let us assume that π((x1, x2, x3)) = x1 and π([y1, y2, y3]) = y1. It is clear,

that I2 defines a family of linguistic graphs over GF (q) with parameters (1, 1, 2).
This is the induced subgraph of the incidence graph of the geometry for simple
group B2(q) (classical regular generalised quadragon). So the girth of I2 (length of
minimal cycle) is at least 8.

Example 3. Let P = {(x1, x2, x3, x4, x5)|xi ∈ GF (q)}, L = {[y1, y2, y3, y4, y5]|yi ∈
GF (q)}. Let us define an incidence relation I3 as: (a, b, c, d, e)I3[x, y, z, u, v] if and
only if

y − b = xa

z − 2c = −2xb

u− 3d = −3xc

2v − 3e = 3zb− 3yc− ua

From the equations above, it follows that π : π((x1, x2, x3, x4, x5)) = x1 and
π([y1, y2, y3, y4, y5]) = y1 is a labelling for I3.

This is the induced subgraph of the geometry of groupG2(q) (generalised gexagon).
If charGF (q) > 3 then the girth of this graph is at least 12. Directly from the

equations above we can get that I3 is the linguistic graph with parameters (1, 1, 4)
over GF (q).

Example 4. Let GF (q2) be the quadratic extension of GF (q) and x → xq be
the Frobenius automorphism of GF (q2). Let P = {(x1, x2, x3)|x1 ∈ GF (q), x2 ∈
GF (q2), x3 ∈ GF (q)}, L = {[y1, y2, y3]|y1 ∈ GF (q2), y2 ∈ GF (q2), y3 ∈ GF (q)}.
Let us define the incidence relation I4 as: (a, b, c)I4[x, y, z] if and only if

y − b = xa

z − c = ay + ayq.
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It is clear that rules π((x1, x2, x3)) = x1 and π([y1, y2, y3]) = y1 define the
parallelotopic graph over GF (q2), It is a linguistic graph over Fq of the type it’s
parameters are (1, 2, 3).

Algorithm 2. Let us consider the sequence of linguistic graphs I1, I2, . . . , Id of
the same type (n, r, s) over commutative ring K.

Let Cj(P ) and Cj(L) be sets of colours for points and lines in the graph Ij . Let
ηj , j = 2, 3, . . . , d and ηj

′, j = 1, 2, . . . , d − 1 be the affine maps from C1(P ) to
Cj(P ) and Cj(L), respectively. Let us assume that ηd is an invertible affine map.

We need also an invertible affine transformations δ1and δ2 of the point set P1

and the point set Pd within the graphs I1 and Id, respectively.
We take general point x = (x1, x2, . . . xn+r) from P1 and compute v1 = δ1(x) and

the color c1 = π(v1). After that we are compute consequently colours cj
′ = η′j(c1),

j = 1, 2, . . . , d− 1, cj = ηj(c1), j = 2, 3, . . . , d. It allows us to compute the bijective
composition of δ1Nc′1

Nc2Nc′2
. . . Ncd−1

Nc′d−1
Ncdδ2. Let

u = δ1Nc′1
Nc2Nc′2

. . . Ncd−1
Nc′d−1

Ncdδ2(x).

The inverse of our map is the following one. We apply δ2
−1 to u and get

the vertex u′ of the graph of colour cd = ηd(π(v1)). The map ηd is invert-
ible. So we compute c1 and all colours cj and cj

′. It allows us to compute x

as Nc′d−1
Ncd−1

. . . Nc2Nc′1
Nc1δ1

−1(u′).

Remark 1. In case of regular linguistic graphs we can also add c′d = η′d(c1).

Example 5. Let us consider the following bipartite algebraic graph A = A(n,K)
(alternating graph) defined over commutative ring K by the following rules.

Partition sets P and L are two copies of the free module Kn. Brackets and paran-
thesis allow us to distinguish point p = (p1, p2, . . . , pn) and line l = [l1, l2, . . . , ln].
In case of even n = 2t point p is incident to line l if and only if the following
equations hold:

(1) l2s − p2s = l1p2s−1 for s = 1, 2, . . . t, t = [n/2]
(2) l2s−1 − p2s−1 = p1l2s−2 for s = 2, 3, . . . , d,

where d = t for even n and d=t+1 if n is odd.
The graph is a linguistic graphs of triangular type over K of type (1, 1, n− 1).

We announce here the following statement.

Proposition 1. If we set I1 = A(n,K), I2 = A(n,K), . . . , Id = A(n,K), n ≥ 2,
d ≤ n and nonidentical map ηd of K onto itself, then the algorithm 2 produces a
cubical map of Kn onto itself.

Let Cj(P ) and Cj(L) be sets of colours for points and lines in the graph Ij . Let
ηj , j = 2, 3 . . . , d and j = 1, 2 . . . , d and ηj

′, j = 2, 3 . . . , d be the affine maps from
C1(P ) to Cj(L) and Cj(L), respectively. Let us assume that ηd is an invertible
affine map. We implement the key exchange algorithm in the case K = Fq with the
base b = f−1Af where f is a cubical map as in Proposition 1 and A is a linear map
corresponding to Singer cycle of order qn − 1. Alternatively we can use different
cubical map defined in [12], [14], [16], [7]. Obviously the order of b is qn − 1 and
degree of each bk is bounded by 9.

2.1. Symbolic computations on flags of linguistic graphs. Let us consider
a tactical configuration of order (s, t) for biregular bipartite simple graphs with
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bidegrees s + 1 and r + 1. It corresponds to incidence structure with the point
set P , line set L and symmetric incidence relation I. Its size can be computed as
|P |(s+ 1) or |L|(t+ 1). For the simplicity we choose t = s

Directed graph is an irreflexive binary relation φ ⊂ V × V , where V is the set of
vertices (see [1]).

Let us introduce two sets

id(v) = {x ∈ V |(v, x) ∈ φ},

od(v) = {x ∈ V |(x, v) ∈ φ}
as sets of inputs and outputs of vertex v. Regularity means the cardinality of these
two sets (input or output degree) are the same for each vertex.

Let Γ be regular directed graph, E(Γ) be the set of arrows of graph Γ.
Let F = {(p, l)|p ∈ P, l ∈ L, pIl} be the totality of flags for the regular tactical

configuration T with partition sets P (point set) and L (line set) and incidence
relation I. We define the following irreflexive binary relation φ on the set F : Let
(P,L, I) be the incidence structure corresponding to regular tactical configuration
of order t.

Let F1 = {(l, p)|l ∈ L, p ∈ P, lIp} and F2 = {[l, p]|l ∈ L, p ∈ P, lIp} be two copies
of the totality of flags for (P,L, I). Brackets and parenthesis allow us to distinguish
elements from F1 and F2. Let DF (I) be the directed graph (double directed flag
graph) on the disjoint union of F1 with F2 defined by the following rules:

(i) (l1, p1)→ [l2, p2] if and only if p1 = p2 and l1 6= l2,
(ii) [l2, p2]→ (l1, p1) if and only if l1 = l2 and p1 6= p2.

Let Γ be a directed graph as above on the set of vertices F1 ∪ F2.
Let us assume that additionally we have a parallelotopic colouring π on T . Then

we assume that π[l, p] = π(l) and π(l, p) = π(p).
Then for each vertex v of double directed graph and each colour c we have unique

vertex u such that π(u) = c and v → u. We assume that Nc(v) = u.

Algorithm 3. Let us consider the sequence of regular linguistic graphs I1, I2,
. . ., Id of the same type (r, r, n) over commutative ring K. Suppose that N i

c(v),
i = 2, , 3 . . . , d be the sequence of the operators taking the neighbour of v of colour
c in graph Ii. Let ηi, i = 2, 3, . . . , d be the sequence of affine maps of Kr into Kr.
We take ηd as inveritable map.

We need also an invariable affine transformations δi, i = 1, 2 of the free module
Kn+2r into itself.

We take the general flag x = (x1, x2, . . . , xn+2r) from F1 and the colour c1 ∈ Kr

and compute N2
c2(x) = v ∈ F2. After we compute the consequently colours ci =

η2(c1), i = 2, 3, . . . , d.
It allow us to compute symbolically the map f = δ1N

3
c3N

4
c4 · · ·N

d−1
cd−1

Nd
cd
δ2 of the

free module Kn+2r into itself. The output of our algorithm is the flag w = f(v).
Constructing an inverse mapping to f , we assume that the vertices which belong

to F1 now belong to F2 and vice versa, vertices belonging to F2 now belong to F1.
The map ηd is inveritable, so we compute c1 and cj , j = 2, 3, . . . , d. It allows as to

compute v as δ−1
2 Nd−1

cd−2
Nd−2

cd−3
· · ·N3

c2N
2
c1δ
−1
1 (w).

Remark 2. The above algorithm can be easily generalised on the sequence of bireg-
ular linguistic graphs of the same type (r, s, n).
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Table 1. Time of public key generation

d = 10 d = 20 d = 30 p = 40 d = 50 d = 60

n = 10 7 7 8 15 15 16
n = 20 54 125 195 265 343 421
n = 30 304 742 1234 1703 2234 2805
n = 40 1109 3696 6414 9109 12284 14812
n = 50 2750 8937 17039 24976 33374 41164
n = 60 6101 21312 43961 69453 96421 121267
n = 70 11371 40726 84625 143094 202750 268320
n = 80 23007 82937 175320 309960 455890 601187
n = 90 46062 166320 354429 631469 947328 1262682
n = 100 929625 293641 641305 1110305 1752766 244981

Proposition 2. If we set I1 = A(n,K), I2 = A(n,K), . . . , Id = A(n,K), n ≥ 2,
d ≤ n and nonidentical map ηd of K onto itself, then the algorithm 2 also produces
a cubical map of Kn onto itself.

3. Time evaluation of the generation of the map f

The parameter n is the dimension of point space F2k
n of our graph. Below you

can find time evaluation tables for symbolic computations of f in cases of finite
fields K = F2k , k ∈ {8, 16, 32} .

All the tests were run on a computer with parameters:

• AMD Athlon 1.46 GHz processor
• 1 GB RAM memory
• Windows XP operating system.

The table ?? presents the time (in milliseconds) of the generation of the symbolic
base depending on the number of variables (n) and the size of parameter (d). In
fact we ignore the restriction d < n. In all cases the base is a cubical map. We
use sparse linear transformations δi, i = 1, 2 of kind x1 → a1x2 + a2x3 + . . . , anxn,
xj → xj , j = 2, 3, . . . where ai are fixed nonzero field elements.

4. Remarks on the bk as a public rule

The transformation b or bk can be used as a public rules. Hence the process
of straightforward computation of b for chosen point p can be done in polynomial
time O(n10). But the adversary having only a standard formula for b, has a very
hard task to solve the system of n equations in n variables of degree 9 . We know
that the variety of solution has the dimension 0. Therefore, general algorithm for
finding the solution of system of polynomials cubic equations has exponential time
9O(n).
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