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SCHUBERT CELLS IN LIE GEOMETRIES AND KEY
EXCHANGE VIA SYMBOLIC COMPUTATIONS

VASYL USTIMENKO

ABSTRACT. We propose some cryptographical algorithms based on finite BN-
pair G defined over the fields F;;. We convert the adjacency graph for maxi-
mal flags of the geometry of group G into a finite Tits automaton by special
colouring of arrows and treat the largest Schubert cell Sch = FqN on this
variety as a totality of possible initial states and a totality of accepting states
at a time. The computation (encryption map) corresponds to some walk in
the graph with the starting and ending points in Sch. To make algorithms
fast we will use the embedding of geometry for G into Borel subalgebra of
corresponding Lie algebra. We consider the induced subgraph of adjacency
graph obtained by deleting all vertices outside of largest Schubert cell and
corresponding automaton (Schubert automaton). We consider the following
symbolic implementation of Tits and Schubert automata. The symbolic initial
state is a string of variables z,, where roots a are listed according Bruhat
order, choice of label will be governed by linear expression in variables x4,
where « is a simple root.

Conjugations of such nonlinear map with element of affine group acting
on FqN can be used in Diffie-Hellman key exchange algorithm based on the
complexity of group theoretical discrete logarithm problem in case of Cremona
group of this variety. We evaluate the degree of these polynomial maps from
above and the maximal order of this transformation from below. For simplicity
we assume that G is a simple Lie group of normal type but the algorithm can
be easily generalised on wide classes of Tits geometries. In a spirit of algebraic
geometry we generalise slightly the algorithm by change of linear governing
functions for rational linear maps.

1. INTRODUCTION

According to Hilbert’s approach to Geometry it is a special incidence system
(or multipartite graph). Felix Klein thought that the Geometry was a group and
proposed his famous Erlangen program. J. Tits combined those two ideas for the
development of concept of a BN-pair, its geometry and flag system [28]. [29]. He
created an axiomatic closure for such objects based on the definition of building
[30].

Finite geometries I'(G(q)) of BN-pair G(q) with Weyl group W defined over
finite field F;, ¢ — oo form a family of small world graphs. Really, the diameters
of the incidence graphs for I'(G(q)) coincide with the diameter of Weyl geometry
(W), but average degree is growing with the growth of parameter q. The problem
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of constructing infinite families of small world graphs has many remarkable applica-
tions in economics, natural sciences, computer sciences and even in sociology. For
instance, the ”small world graph” of binary relation ”two person shake hands” on
the set of people in the world has small diameter.

The algorithm of finding the shortest pass between two arbitrarily chosen ver-
texes of T'(G(q)) is much faster than the action of general Dijkstra algorithm. One
can find the pass in I'(G(q)) for the time ¢, where ¢ is a constant independent on q.
Regular graphs of simple groups of Lie type of normal type of rank 2 (generalised
m-gons for m € {3,4,6} support the sharpness of Erdés’ bound from Even Circuit
Theorem in cases of cycles of length 4,6 and 10 (see [3]).

One of the constructions which provide for each kg > 2 the infinite family of
regular graphs of degree k, k > ko of large girth (length of minimal cycle) is based
on the properties of the geometry of Kac-Moody BN-pair G(g) with diagram Ay
(see [16], [17], [18])

The geometries of finite BN-pairs are traditionally used in classical Coding The-
ory. Foundations of this theory are based on the concept of finite distance-transitive
or distance-regular metrics (distance regular and distance transitive graphs in other
terminology [6]). Large number of known families of distance transitive graphs
are constructed in terms of the incidence geometry of BN-pair or geometry of its
Weyl group. Known constructions of families of distance - regular but not distance
transitive graphs are also based on the properties of BN-pair geometries (see [6],
[32]). Linear codes are just elements of projective geometry and all applications
of Incidence Geometries to Coding Theory are hard to observe (see [12], [20], [22]
and further references). Notice that some nonclassical areas like LDPS codes and
turbocodes use objects constructed via BN-pair geometries: for the first construc-
tions of LDPS codes Tanner [27] used finite generalised m-gons, the infinite family
of graphs of large girth defined in [16] have been applied to constructions of the
LDPS codes ([15], [13], [14], [25], [26] and further references)

Quite recent development gives an application of linear codes and their lattices
to cryptography. Incidence geometries were used in [1] and [36] for the development
of cryptographical algorithms (see also a [5], [20]).

In the paper we generalise some encryption algorithms of [36], [35] and consider
the key exchange protocols based on geometries of BN-pairs.

2. BASIC DEFINITIONS IN THEORY OF BN-PAIRS, THEIR GEOMETRIES AND FLAG
SYSTEMS

2.1. Graphs and incidence system. The missing definitions of graph-theoretical
concepts which appears in this paper can be found in [2] or [3]. All graphs we
consider are simple, i.e. undirected without loops and multiple edges. Let V(G)
and F(G) denote the set of vertices and the set of edges of G, respectively. Then
[V(G)| is called the order of G, and |E(G)| is called the size of G. When it is
convenient, we shall identify G with the corresponding anti-reflexive binary relation
on V(G), i.e. E(G) is a subset of V(G) x V(G) and write vGu for the adjacent
vertices u and v (or neighbours). The sequence of distinct vertices vo,v1, ..., v,
such that v;Gv; 1 fori =1,...,t—1is the pass in the graph. The length of a pass is
a number of its edges. The distance dist(u, v) between two vertices is the length of
the shortest pass between them. The diameter of the graph is the maximal distance
between two vertices u and v of the graph. Let C,, denote the cycle of length m i.e.
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the sequence of distinct vertices vy, ..., vy, such that v;Gv;41,i=1,...,m—1 and
vmGu1. The girth of a graph G, denoted by g = g(G), is the length of the shortest
cycle in G. The degree of vertex v is the number of its neighbours.

The incidence structure is the set V' with partition sets P (points) and L (lines)
and symmetric binary relation I such that the incidence of two elements implies
that one of them is a point and another is a line. We shall identify I with the simple
graph of this incidence relation (bipartite graph). If number of neighbours of each
element is finite and depends only from its type (point or line), then the incidence
structure is a tactical configuration in the sense of Moore (see [7]). An incidence
structure is a semiplane if two distinct lines are intersecting not more than in one
point and two distinct points are incident not more than one line. As it follows
from the definition, graphs of the semiplane have no cycles C5 and Cj.

The graph is k-regular if each of its vertex has degree k, where k is a constant.

The incidence system is the triple (I', I, ¢) where I is a symmetric antireflexive
relation (simple graph) on the vertex set T', ¢t : I' — A is a type function onto the
set of types A such that ol and t(«) = t(f) implies a = 3.

The flag F' is a nonempty subset in I' such that o, € F implies alf. We
assume that ¢(F) = {t(z)|z € F}

We assume that two flags Fy and F are incident (FyIF») if Fy U Fy is also a flag
and t(Fy) Nt(Fy) = 0. Let GF(T') be the incidence graph of the incidence relation
defined on the set of all flags from I', GF7 ;(I'), INJ = () be the totality of flags of
type I or J with the restriction of flag incidence on it. The type function is defined
by t(a) = s, where a = gG, for some s € S.

2.2. Groups, Coxeter systems and BN-pairs. An important example of the
incidence system as above is the so-called group incidence system I'(G, G)ses. Here
G is the abstract group and G,.cg is the family of distinct subgroups of G. The
objects of T'(G, Gs)scs are the left cosets of G in G for all possible s € S. Cosets
a and S are incident precisely when a N 8 # (). The type function is defined by
t(a) = s where a = gG; for some s € S.

Let (W,S) be a Coxeter system, i.e. W is a group with set of distinguished
generators given by S = {s1, s2,..., s} and generic relation (s; x s;)™"# = e. Here
M = (m, ;) is a symmetrical | x | matrix with m;; = 1 and off-diagonal entries
satisfying m; ; > 2 (allowing m, ; = 0o as a possibility, in which case the relation
(si x sj)™ = e is omitted). Letting W; =< S —{s;} >, 1 < i <[ we obtain a
group incidence system I'yy = I'(W, W;)1<i<; called the Coxeter geometry of W.
The W; are referred to as the mazimal standard subgroups of W (see [8]).

Let G be a group, B and N subgroups of G, and S a collection of cosets of BN
in N. We call (G, B, N,S) a Tits system ( or we say that G has a BN -pair) if

(i) G=< B,N > and BN N is normal in N,

(ii) S is a set of involutions which generate W = N/(BN N),

(iii) sBw is a subset in BuB U BswB for any s € S and w € W,

(iv) sBs # B for all s € S.

Properties (1)-(iv) imply that (W, S) is a Coxeter system (see [7], [8]). Whenever
(G,B,N,S) is a Tits system, we call the group W the Weyl group of the system,
or more usually the Weyl group of G. The subgroups P; of G defined by BW; B are
called the standard mazimal parabolic subgroups of G. The group incidence system
I'c =T(G, P,)1<iie is commonly referred to as the Lie geometry of G (see [6]). Note
that the Lie geometry of G and the Coxeter geometry of the corresponding Weyl
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group have the same rank. In fact there is a type preserving morphism from I'¢ onto
T'w given by gP; — wW,, where w is determined from the equality BgP; = BwPF;.
This morphism is called a retraction (see [30]).

3. TITS AND SCHUBERT AUTOMATA AND FOR SYMBOLIC COMPUTATIONS

3.1. Definitions of automata. The geometry I'(G) of BN-pair G is the set of
all left cosets by the standard maximal subgroups i.e. maximal subgroups P;
i =1,2,...,ni of G containing standard Borel subgroup B. Two cosets C; = gPF;
and Cy = hP; are incident C1IC> if and only if their intersection is not empty. It
is clear, that gFP; N hP; # 0 implies ¢ # j. The maximal flag of the geometry is a
subset F' = {C1,Cy,...,Cy} such that C;IC; for each pair (4,7), ¢ # j. Maximal
flags form the set FT'(G), they are in one to one correspondence with the left cosets
by standard Borel subgroup. The largest Schubert cell Sch is the orbit of B acting
on FI'(G) containing largest number of elements. In case of group of normal type
variety Sch = Sch(QG) is isomorphic to vector space FqN , where N is the number of
positive roots.

We assume that two maximal flags F; and F5 are adjacent if their intersection
contains n — 1 elements of geometry. Let AF(G) be the simple graph of symmetric
adjacency relation (flag graph for I'(G). The order of this simple regular graph is
|(G : B)|, the degree is ng and diameter is n. Let us restrict the adjacency relation
as above on the largest Schubert cell Sch(G). We obtain new graph AS(G) which
is a regular induced subgraph of AF(G) of order ¢"V and degree ¢ — 1. We refer to
AS(G) as Schubert subgraph of the flag graph.

We convert the directed graph of adjacency relation of flags into the following
automaton.

Let (Fy,F3) be the ordered pair of adjacency flags such that t(Fy N Fy) =
{1,2,...,n} — {s}. So flags differs by geometry elements C; = C,* and Cy = C,>
of type s from (F1, Fy), respectively. The following situations are possible.

(i) Element Cy and Cs are from the same Schubert cell. In that case there unique
a transformation u = x,(t), t # 0, shifting C; to Cs. Root « depends on Retr(F})
only.

(ii) Elements C7 and Cy are from different Schubert cells and there is a group U,
such that (F1 N Fy) U {u(Cq)} is an adjacent flag to Fy for each u = x,(t). Notice,
that case t = 0 is a possibility here. Root o depends on Retr(F}) again.

(iii) Elements C; and Cs are from different Schubert cells and Schubert cell
contains Co as unique representative C' such that flag (Fy; N Fy) U {C} is adjacent
to Fl.

Let us consider the following labelling of F; — F» for cases of (i), (ii) and (iii)
separately:

(i) put the label (s,t). where ¢ # 0.

(ii) the label is (s,t), where t € Fy, is defined by condition z, (t)Retr(Cs) = Cs

(iii) put the label oo.

So for fixed F3 and fixed type s the label (s,t) in direction to s-adjacency flag is
defined by parameter ¢ taken from the "acceptable” set Ac(Fy) = F, U {7} where
v is one of the symbols 0 and co. We add the formal loop on state Fj labelled by
the unique symbol from {0,000} — {7}.

So the transition function T, of taking the s-adjacent element of colour (s,t)
for general flag is defined for each t € F; U {oo} We assume that the initial state
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can be any flag from the largest Schubert cell Sch and this cell is the totality of all
accepting states.

So algorithm can be given by the string of labels (s1,%1), (s2,t2), ..., (sS4, ta) such
that the composition T' = T'(s1,¢1)T(s2,t2)T(84,tq) maps Sch into itself. We are
interested only in irreducible computations for which s; # s;41 fori =1.2,...d—1

In case of group of normal type the alphabet contains exactly n(¢+ 1) symbols.
The computation corresponds to special walks in the graph AF(G) with the starting
and ending point in Sch(G). Notice that C' may be not a bijection. For instance
T'(s,0), which image for Sch lays outside of the largest large Schubert cell, is not
invertible.

We refer to such automaton as Tits automaton for group G. We would like to
use it as tool for symbolic computations.

The unipotent group U acts regularly on Sch. So we can identify v € Sch with
certain product of X, (ts), and positive roots & € Root are taken in Bruhat order.
In fact, we identify the string v=1¢t, € F,, o € Root™ with the accepting state v.

We refer to the list (t4,,tas,-- - ta, ), Where ag, o, ..., oy, is the set of all simple
roots, as the color of v from plainspace. So we are colouring accepting states now
but not arrows.

Let us consider irreducible computation within Tits automaton of kind v — vy,
vy = T(i1,a1)(v), va = T(i2, a2)(v1),...,vs = T(is,as)(vs—1), where i # ixy1, k =
1,...,s—1, ax € F;Uoo, element Retr(v) = Retr(v,) equals to the element w € W
of maximal length. Notice, that in the sequence Retr(vy), Retr(va),...,Retr(v)
consecutive elements are adjacent in FI'(W) or equal.

The computation is conducted into several steps. Each time we have one of
the situations ¢, (#4) or (i%4). In cases of kind (i) and (ii) when the correspond-
ing root a is simple parameters a; will be chosen as linear functions of kind
(taystags .- -ta,) = Cita, + cataz. .., cptq, + b, where c1,c9,...,¢, and b are el-
ements of F, and (ta,,ta,,...,ta,) is a colour of our initial state. If a is not a
simple root, we choose a; as c;tg;, + fi((ta;:tas, - - ta, ), Where c; # 0.

After the completion of our computation we get the accepting state u = vs. It
has a colour (du,,day,- -, da,) = (tays tags .- - ta, )A =+ (b1,ba, ..., by), where

the matrix A is defined by some linear expressions of kind a; = 1;({(ta,, tas, - - - ta,,)
which we used during the computation. We will require that the matrix A is in-
vertible. Notice that we may use symbol oo, where the design of algorithm allows
such option.

After the completion of algorithm we obtain accepting state of colour (dq,, da,, - - -
The invertibility of A allows us to compute (ta;,tas; - - -ta, ) 8 ((day, dagy - - - da,, ) —
(by,b2,...,b,))A7L. So we can compute all parameters a; and create the reverse
walk in the graph and compute the inverse map 7! which sends the final accepting
state to initial state.

Let us restrict Tits automaton on the largest Schubert cell, i. e delete all states
outside Sch(G) together with corresponding output arrows. We obtain Schubert
automaton over the alphabet (i,a), where a € F,, 1 < i < n. Notice, that a = 0
corresponds to taking the loop.

3.2. Tits and Schubert automata and related symmetric encryption. Cor-
respondents Alice and Bob may use the following symmetric encryption based on
the Tits automaton. The plainspace is a vector space Sch = FqN . The plaintext p
we identify with the string v=t, € Fy, a € Root™. We may think that this is a

)

yda,)-
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function p : Root™ — F,. Alice has to compute the restriction of this function onto
subsets of all simple roots and get the colour (f4,,%tas,---,ta,) of the plainspace.

Correspondents share symbolic string of labels (s1,11), (s2,12), ..., (s4,l4), where
l;i=1,2,...,d1is alinear expression of formal variables z,, for each simple root a or
oo and two affine invertible transformations 7; and 7. The vector space of all maps
from the totality of simple roots to F;, has to be not invariant subspace for 7, i =
1,2. Alice executing the specialization z, = p, computing Corresponding numerical
string t = (¢1,t2,...,tq). She has to hide that string by applications of affine maps
7;. So she is adding to symbolic key two invertible Linear transformations 7 and
7o of the plainspace FqN and compose 71, the automaton map corresponding to t
and 75.

She sends to Bob the ciphertext

C=T1 (T(Sl, tl)T(527 tg) . T(Sd, td)(Tl (p))

Bob decrypt applying to ¢ consequently 72 =1, T~! where T = T(s1,t1)T(s2,t2) - -
and 71,

Remark 1. If correspondents do not use oo in the shared symbolic key then
T is the computation in Schubert automaton. Bob can simply compute T~! as
T(Sd, —td)T(Sdfl, —tdfl) . T(Sl, —tl).

Remark 2. We may generalise the above algorithms by changing affine maps
71, 2 and (t1,t2,...,tn) = (t1,t2,...,tq)A + (b1, b2, ..., b,) for general invertible
polynomial maps.

4. KEY EXCHANGE PROTOCOLS BASED ON INCIDENCE GEOMETRIES

The automata as above can be considered over the general ground field F* We
can see that the computations in both automata do not use division. What is going
on during the computations on a symbolic level. Let us assume now that the initial
state is a formal string of variables z,, where « is running throw the list of all
positive roots. It is convenient for us to expand the ground field Fj, to the field R
of rational functions r(z1,x2,...,zn) = f(z1,22,...,2N)/9(z1,22, ..., ZN), where
f and g are elements F[x1,x2,...,2xn] Formal variables z, and governing linear
expressions [(Za,, Tag,- -, Ta,, Ta), Where v is not a simple root are elements of
subring Fy[z1,22,...,2n] in R. During its work Tits automaton newer use division.
So after getting accepting state over R we got the vector of dimension N with poly-
nomial components f,. So the numerical encryption map is regular automorphism
of FqN (element of Cremona group for FqN ) of kind.

T; — fi(l‘l,IQ,...,IN),’L' = 172,...7N

Special choice of symbolic key guarantee that the above transformation is bijec-
tive. Symbol oo play just formal role. Linearity of governing functions leads to
rather small degree of the nonlinear map.

Such a walk produces a bijective transformation T' of variety Sch(G) which is
its regular automorphism ( polynomial map of the variety into itself such that its
inverse is also polynomial). We will conjugate T' by invertible affine transformation
7 € AGLN(F,) and use Y = 7771 as the instrument for the key exchange based
in modified Diffie - Hellman method. So the Alice is computing a standard from
for Y

ty = fi(ti,ta, ..., tn) ta = fa(ti,ta, ... IN), .- v = fn(t1,to, .. V),

.T(Sd, td)
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where f; € Fy[t1,t2,...,tn], ¢ = 1,2,..., N, and sending the map to Bob via
open communication channel. Correspondents Alice and Bob (as usually ) are
choosing their keys k4 and kp, respectively. They are executing computations
D4 =YY% and Dg = Y*8. They exchange the outputs via the open channel.

Finally Alice and Bob are computing collision maps Dp*4 and D4"Z. So corre-
spondents are getting common element.

We can modify the above scheme:

Alice chooses the maximal flag F' from the largest large Schubert cell Sch(G)
and sends it to Bob via open channel. Correspondence may use common flag
D "8 (F) = D" (F) as the key for their private key algorithm.

The security of the above key exchange algorithm based on the complexity of
discrete logarithm problem for the Cremona group of variety Sch(G). In case of
finite field Fy this group coincides with the symmetric group Sy~ . it is important
that we use description of permutations in terms of polynomial algebra. So related
discrete logarithm problem is formulated in terms of algebraic geometry.

Method allows various modification: we can use nonlinear invertible maps instead
of affine transformation 7, the base of discrete logarithm can be non invertible
polynomial map and etc. An interesting modifications can be obtained if we will
allow noninvertible transformations of the variety. For instance we may consider
fractional linear governing function I; for the step i looks like (a1 Xq1 + agza2 +
o0, Ta, )/ (01X a1 Fb2xa2+ .. by, Xa, ) if the root « on step 4 is simple, and I; is
a fraction of two linear combinations of z,, o € Root™ if « is not a simple root. In
case of such governing functions we refer to corresponding automata as birational
Tits and Schubert automaton, respectively.

5. EMBEDDING OF THE FLAG VARIETY INTO THE LIE ALGEBRA AND SOME
COMPLEXITY ESTIMATES

Throughout this section (G, B, N, S) is a Tits system which arises in connection
with Chevalley group G, although we point that the results of this section remain
valid in a far more general setting (see [30],[7], [8]). We write G = X;(K) to signify
that G is the Chevalley group over the field K, with associated Dynkin diagram
X;. We are most interested in the case when K is finite, and we shall write X;(q)
instead of X;(F,) in that case.

So, fix Chevalley group G = X;(K) with corresponding Weyl group W. As in
the previous section I'yy and I' their associated Coxeter and Lie geometries. Let
L=H+ L* + L™ be the Lie algebra corresponding to G.

Following convention, we refer to H, L™, L= and H + Lt as, respectively, the
Cartan subalgebras, positive root space, negative root space and Borel subalgebra
with respect to the given decomposition of L. We also use the familiar bracket
notation [,] to indicate Lie product [4], [24],

Below we turn out our attention to a method of embedding I'yyy and ' in L.
As the reader shall see, this method actually embeds 'y in the Cartan subalgebra
H of L. Let us consider the embedding more precisely.

Let A = (a; ;) be the Cartan matrix corresponding to the root system €2 of W.
We consider the lattice R which is generated by simple roots aq, as, ..., a; and the
reflection r1,7g,...7 of R defined by the equality (a;)™ = a; — a; 50,

Let S = {ry,r2,...,7} is the set of Coxeter generators of Weyl group W. Let
ar®,as®, ..., be a dual basis of aq,as,...,qp, i.e. a;* is the linear functional
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on R which satisfies a;*(a;) = 0; ;. We define the action of W on the dual lattice
R* by I(z)® = I(z®), where [(z) € R* and s € S.

Consider the orbit H; = {a;*“|w € W} of permutation group (W,R*), which
contains a1*. Let H be the disjoint union of H;. We give the set H the structure
of an incidence system as follows. Linear functionals /;(z) and l3(x) are incident if
and only if products 1 (a)la(«) > 0 for all & € Q. The type function ¢ is defined by
t(I(x)) = ¢ where l(x) € H;. It can be shown that (H,I,t) is isomorphic to Coxeter
geometry I'y. (In fact there is a unique isomorphism of I'yy with (H,I,t) which
sends W to a;, 1 < i <1.) This gives the desired embedding since H is a subset in
R* and R* C Ly. Moreover this embedding still valid for a field K of sufficiently
large characteristic, since, in that case H is a subset of R x K = L.

We now consider an analogous embedding of the Lie geometry I' into the Borel
subalgebra U = Lo+ LT of L. Let d = a1* + a* + ...;*. Than we can take
Ot = {a € Q|d(a) > 0} to be our set of positive roots in Q. For any I(z) € R*
define (L) = a € Q7 |l(a) < 0.

Let L, be the root space corresponding to positive root «. For each h € H we
define the subalgebra Ly, as the sum of Ly, « € n~(h). Let U; = {h+wvlh € H;,v €
Ly} and U is a disjoint union of U;. We give U the structure of an incident system
as follows. Elements h; + vy and hy + vo are incident if and only if each of the
following hold:

(i) hi(a)ha(a) > 0 for all @ € Q, i.e. hy and hy are incident in (H, 1, t).

(11) [h1 + v, ho + UQ} =0

Element h + v has type ¢ if h +v € U;.

In [38] it is shown that this newly defined incident system is isomorphic to the
Lie geometry ', provided that the characteristic of K is zero or sufficiently large
to ensure the isomorphism at the level of the subgeometries (H, I,t) and I'yy. Then
analogous to the Weyl case, there exists a unique isomorphism Retr of T'(G) into
(U, I,t) which sends P; to «;, 1 <i <.

Proposition 5.1. Let I' = T'(G) be the geometry of group G = X,,(q). The above
interpretation of T'(G) allows

(i) generate T in O(|T'|) elementary steps and check whether or not two elements
of T' are incident for time O(N?), where N is the number of positive roots.

(ii) complete the computation in Tits and Schubert automaton consisting of k
elementary steps for time O(kN)

Graphs of degree g and SF(X,(q), ¢ > 4 of degree ¢ — 1 have orders |X,,(¢)|/|B]
and ¢, respectively. They form families of small world graphs depending on two
parameters n and q.

6. ON THE DISCRETE LOGARITHM PROBLEM WITH POLYNOMIAL OR BIRATIONAL
BASE

Let F,, where p is prime. be a finite field. Affine transformations x — Ax + b,
where A is invertible matrix and b € (F},)", form an affine group AGL,,(F},) acting
on F,". It is known that polynomial transformation of kind 1 — ¢1(x1, z2, ..., %), 22 —
92(21, T2y, &), - oy Ty = Gn(T1, T2, ..., Ty) form a symmetric group Spyn.

In the simplest case Fj, affine transformations form an affine group AGL,,(F},)
of order (p™ —1)(p™ —p)...(p" —p" 1) in the symmetric group Sy~ of order (p™)!.
In [19] the maximality of AGL, (F,) in Sp» was proven. So we can present each
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permutation 7 as a composition of several ”seed” maps of kind 7 gm0, where 71,75 €
AGL, (F,) and ¢ is a fixed map of degree > 2. One may choose quadratic map
of Imai - Matsumoto algorithm in case p = 2 (see [10], [21] for its description and
cryptanalysis by J. Patarin) or graph based cubical maps [31] for general p.

We can choose the base of F)," and write each permutation g € Sp» as a "public
rule”:

1 = g1(T1, T2, ..., ), T — g2 (X1, T, .o, Tn),y oo Ty = Gn (X1, X2, ., Ty).

Let ¢~ € Spn be the new public rule obtained via iteration of g. Discrete loga-
rithm problem of finding solution for k for g* = b can be difficult if the order of g
is "sufficiently large”. We have to avoid the linear growth of the degree ¢g¥, when
k is growing. Obvious bad example is the following: ¢ sends x; into x;* for each i.
In this case the solution is just a ratio of degb and degg.

Let us consider the Cremona group C(n,q) of all invertible polynomial auto-
morphisms of the vector space F,", where ¢ = p™, the semigroups PC(n,q) and
BC(n, q) of polynomial and birational maps of F," into itself, respectively.

To avoid such trouble one can look at families of subgroups of increasing order
G, n — oo of Spn such that maximal degree of its element equals ¢, where c is
independent constant (groups of degree ¢ or groups of stable degree). We refer to
an element g such that all its nonidentical powers are of degree ¢ as element of
stable degree.

It is clear that the family of affine subgroup AGL,(p) is a subgroup of stable
degree for ¢ = 1 and all nonidentical affine transformations are of stable degree. No-
tice that if ¢ is a linear diagonalisable element of AGL,,(p), then discrete logarithm
problem for base g is equivalent to the classical number theoretical problem.

One can take a subgroup H of AGL,,(p) and consider its conjugation with nonlin-
ear bijective polynomial map f. Of course the group H' = f~'H f will be also a sta-
ble group, but for most pairs f and H group H' will be of degree degf x degf~! > 4
because of nonlinearity f and f~!. So the problem of construction an infinite fam-
ilies of subgroups G, in S} of degree 2 and 3 may attract some attention.

The following questions are important because of Diffie Hellman type protocols
(see [9]).

Q1; How to construct stable subgroups C' of small degree ¢ (¢ = 2 and ¢ = 3
especially) of increasing order in C(n,q)?

We say refer to a semigroup Se generated by single elements as monogenetic
semigroup of order |Se|.

Q2; How to construct stable monogenetical subsemigroups in PC(n,q) and
BC(n,q) of small degree ¢ (¢ = 2 and ¢ = 3 especially) of increasing order in
C(n,q) of large order?

Finally, we announce the following statement

Theorem 6.1. Let X,,(F), n > 2 be a simple group of Lie type over the field F.
Let L(X,,(q) be a group of all invertible computations in Schubert automaton.

In case of classical groups (diagrams A,,, By, C, and D, ) groups L(X,(F)),
n — oo form families of stable degree.

Remark: Groups L(X,,(F)) are of degree 3 in case of diagram B,,, C,, and D,
and L(A, (F)) are groups of degree 2.

We can demonstrate the existence of elements in L(X,,(g)) of rather large order.
Really, take a permutation 1,19, ...,7, on the nodes of Dynkin diagram and com-
pute a composition g of generators Z (Iy(z)), Z%2(Iy(x)), . .. Z* (I, (x)), where I;(x)
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are linear forms corresponding to the rows of Singer cycle matrix of order ¢ — 1
(see, for instance, [11]). As it follows from the description of algorithm the order
of g will be at least ¢ — 1.

Similarly we can use Singer cycle to generate by Tits automata a stable mono-
genetic subgroup in PC(n,q) and BC(n,q).

(1]
2]

(3]
(4]

(5]

[10]
(11]

(12]

(13]

(14]

[15]

[16]

(17)
(18]
(19]
20]
21]
22]

23]

24]
[25]

REFERENCES

A. Beutelspachera, Enciphered Geometry. Some Applications of Geometry To Cryptography,
Annals of Discrete Mathematics, V.37, 1988, 59-68.

N. Biggs, Algebraic Graph Theory (2nd ed), Cambridge, University Press, 1993.

B. Bollobés, Extremal Graph Theory, Academic Press, 1972.

N. Bourbaki, Lie Groups and Lie Algebras, Chapters 1 - 9, Springer, 1998-2008.

A. A. Bruen , D. L. Wehlau, Error-Correcting Codes, Finite Geometries and Cryptography,
AMS, 2010.

A. Brower, A. Cohen, A. Nuemaier, Distance regular graphs, Springer, Berlin, 1989.

F. Buekenhout (Editor), Handbook on Incidence Geometry, North Holland, Amsterdam,
1995.

R. W. Carter, Simple Groups of Lie Type, Wiley, New York 1972.

N. Coblitz, A Course in Number Theory and Cryptography, Second Edition, Springer, 1994,
237 p.

N. Coblitz, Algebraic Aspects of Cryptography, Springer, 1998, 198 p.

A. Cossidente, M. J. de Ressmine, Remarks on Singer Cycle Groups and Their Normalizers,
Desighns, Codes and Cryptography, 32, 97-102, 2004.

W. C. Huffman and V. Pless, Fundamentals of Error-Correcting Codes, Cambridge University
Press, 2003.

, P. Guinand and J. Lodge, ” Tanner Type Codes Arising from Large Girth Graphs”, Proceed-
ings of the 1997 Canadian Workshop on Information Theory (CWIT ’97), Toronto, Ontario,
Canada, pp. 5-7, June 3-6, 1997.

P. Guinand and J. Lodge, Graph Theoretic Construction of Generalized Product Codes,
Proceedings of the 1997 IEEE International Symposium on Information Theory (ISIT ’97),
Ulm, Germany, p. 111, June 29-July 4, 1997.

Jon-Lark Kim, U. N. Peled, I. Perepelitsa, V. Pless, S. Friedland, Exzplicit construction of
families of LDPC codes with no 4-cycles , Information Theory, IEEE Transactions, 2004, v.
50, Issue 10, 2378 - 2388.

F. Lazebnik and V. Ustimenko, Some Algebraic Constructions of Dense Graphs of Large
Girth and of Large Size, DIMACS series in Discrete Mathematics and Theoretical Computer
Science, V. 10 (1993), 75-93.

F. Lazebnik, V. Ustimenko, Ezplicit construction of graphs with an arbitrary large girth and
of large size, Discrete Appl. Math. , 60, (1995), 275 - 284.

F. Lazebnik, V. A. Ustimenko and A. J. Woldar, A New Series of Dense Graphs of High
Girth, Bull (New Series) of AMS, v.32, N1, (1995), 73-79.

B. Mortimer, Permutation groups containing affine transformations of the same degree, J.
London Math. Soc., 1972, 15, N3, 445-455.

H. Niederreiter, Chaoping Xing, Algebraic Geometry in Coding Theory and Cryptography,
Princeton University Press, 2009).

J. Patarin, Cryptoanalysis of the Matsumoto and Imai public key scheme of the FEurocrypt
’88, Advances in Cryptology, Eurocrypt '96, Springer Verlag, 43-56.

T. Richardson, R. Urbanke, Modern Coding Theory Cambridge University Press, 2008.

, T. Shaska , W C Huffman, D. Joyner, V Ustimenko (Editors), Advances in Coding Theory
and Crytography (Series on Coding Theory and Cryptology) World Scientific Publishing
Company, 2007.

J. P. Serre, Lie Algebras and Lie groups, N. Y., Lectures in Math., Springer, Berlin, 1974.
T. Shaska, V. Ustimenko, On the homogeneous algebraic graphs of large girth and their
applications, Linear Algebra and its Applications Article, Volume 430, Issue 7, 1 April 2009,
Special Issue in Honor of Thomas J. Laffey.



SCHUBERT CELLS AND KEY EXCHANGE 145

[26] T. Shaska and V. Ustimenko, On some applications of graph theory to cryptography and
turbocoding, Special issue of Albanian Journal of Mathematics:Proceedings of the NATO Ad-
vanced Studies Institute ”New challenges in digital communications”, May 2008, University
of Vlora, 2008, v.2, issue 3, 249-255.

[27] R. Michiel Tanner, A recursive approach to low density codes, IEEE Trans. on Info Th., IT,
27(5):533-547, Sept.1984.

(28] J. Tits, Sur la trialite at certains groupes qui s’en deduicent, Publ. Math. LH.E.S. 2 (1959),
15-20.

[29] J. Tits, Les groupes simples de Suzuki et de Ree, Seminaire Bourbaki 13 (210), 1960/1961,
1-18.

[30] J. Tits, Buildings of spherical type and Finite BN-pairs, Lecture Notes in Math, Springer
Verlag, 1074.

[31] V. Ustimenko, CRYPTIM: Graphs as Tools for Symmetric Encryption, in Lecture Notes in
Computer Science, Springer, 2001, v. 2227, 278-287.

[32] V. A. Ustimenko, On some properties of Chevalley groups and their generalisations, In:
Investigations in Algebraic Theory of Combinatorial objects, Moskow, Institute of System
Studies, 1985, 134 - 138 (in Russian), Engl.trans.: Kluwer, Dordrecht, 1992, pp. 112-119

[33] V. A. Ustimenko, Linear interpretation of Chevalley group flag geometries, Ukraine Math.
J. 43, Nos. 7,8 (1991), pp. 1055-1060 (in Russian).

[34] V. A. Ustimenko, Geometries of twisted simple groups of Lie type as objects of linear algebra,
in Questions of Group Theory and Homological Algebra, University of Jaroslavl, Jaroslavl,
1990, 33-56 (in Russian).

[35] V. A. Ustimenko, On the Varieties of Parabolic Subgroups, their Generalizations and Com-
binatorial Applications, Acta Applicandae Mathematicae 52 (1998): pp. 223-238.

[36] V. A. Ustimenko, Graphs with Special Arcs and Cryptography, Acta Applicandae Mathemat-
icae, vol. 71, N2, November 2002, 117-153.

VAYL USTIMENKO, UNIVERSITY OF MARIA CURIE SKLODOVSKA IN LUBLIN
E-mail address: vasyl@hekor.umcs.lublin.pl



