ON τ - \oplus -SUPPLEMENTED MODULES

Y. TALEBI, T. AMOOZEGAR, AND A. R. MONIRI HAMZEKOLAEI

ABSTRACT. Let τ be any preradical and M any module. In [2], Al-Takhman, Lomp and Wisbauer defined τ -supplemented module. In this paper we introduce the (completely) τ - \oplus -supplemented modules. It is shown that (1) Any finite direct sum of τ - \oplus -supplemented modules is τ - \oplus -supplemented. (2) If M is τ - \oplus -supplemented module and (D_3) then M is completely τ - \oplus -supplemented.

1. Introduction

Throughout this paper R will denote an arbitrary associative ring with identity and all modules will be unitary right R-modules. A functor τ from the category of the right R-modules to itself is called a *preradical* if it satisfies the following properties:

- (1) $\tau(M)$ is a submodule of an R-module M,
- (2) If $f: M' \to M$ is an R-module homomorphism, then $f(\tau(M')) \subseteq \tau(M)$ and $\tau(f)$ is the restriction of f to $\tau(M')$.

A preradical τ is called a *right exact preradical* if for any submodule K of M, $\tau(K) = \tau(M) \cap K$. But it is well known if K is a direct summand of M, then $\tau(K) = \tau(M) \cap K$ for a preradical.

Let M be an R-module and τ denote a preradical. Like in [2], a submodule $K \leq M$ is called τ -supplement (weak τ -supplement) provided there exists some $U \leq M$ such that M = U + K and $U \cap K \subseteq \tau(K)$ ($U \cap K \subseteq \tau(M)$).

M is called τ -supplemented (weakly τ -supplemented) if each of its submodules has a τ -supplement (weak τ -supplement) in M. M is called amply τ -supplemented, if for all submodules K and L of M with K+L=M, K contains a τ -supplement of L in M. Kosan and Harmanci [9] studied supplemented modules relative to torsion theories. Motivated by their work, we study \oplus -supplemented modules with respect to a preradical. Also another work has been done on C_1 modules (see [12]).

A module M is called τ -lifting if for every submodule K of M, there is a decomposition $K = A \oplus B$, such that A is a direct summand of M and $B \subseteq \tau(M)$.

In this paper we introduce the (completely) τ - \oplus -supplemented modules and investigate some properties of them.

Our paper is organized as follows.

In Section 2, we define the concept of τ - \oplus -supplemented module. We call a module M τ - \oplus -supplemented if every submodule of M has a τ -supplement that is a direct summand of M. Then we show any finite direct sum of τ - \oplus -supplemented modules is τ - \oplus -supplemented. We also investigate when a direct summand of a τ - \oplus -supplemented module is τ - \oplus -supplemented.

In Section 3, we call a module M completely τ - \oplus -supplemented if every direct summand of M is τ - \oplus -supplemented and prove if M is τ - \oplus -supplemented module and (D_3) , then M is completely τ - \oplus -supplemented.

The notation $N \leq_d M$ denotes that N is a direct summand of M.

Definition 1.1. For any preradical τ , we call a module M, τ - \oplus -supplemented if every submodule of M has a τ -supplement that is a direct summand of M.

Theorem 1.2. For any preradical τ , any finite direct sum of τ - \oplus -supplemented modules is τ - \oplus -supplemented.

Proof. Let $M=M_1\oplus M_2$ where M_1 and M_2 are two τ - \oplus -supplemented modules. Let P be any submodule of M. We have $P+M_2=M_2\oplus [(P+M_2)\cap M_1]$ and $(P+M_2)\cap M_1$ is a submodule of M_1 . Since M_1 is τ - \oplus -supplemented, there exists a direct summand K_1 of M_1 such that $[(P+M_2)\cap M_1]+K_1=M_1$ and $(P+M_2)\cap K_1\subseteq \tau(K_1)$. We have $(P+K_1)\cap M_2$ is a submodule of M_2 , so there exists a direct summand K_2 of M_2 such that $[(P+K_1)\cap M_2]+K_2=M_2$ and $(P+K_1)\cap K_2\subseteq \tau(K_2)$. Let $K=K_1\oplus K_2$, K is a direct summand of M. Moreover $M_1\leq P+M_2+K_1$ and $M_2\leq P+K_1+K_2$. Hence $M=P+K_1+K_2=P+K$. Since $P\cap (K_1+K_2)\leq [(P+K_1)\cap K_2]+[(P+K_2)\cap K_1]$, thus $P\cap (K_1+K_2)\leq [(P+K_1)\cap K_2]+[(P+N_2)\cap K_1]$. As $(P+M_2)\cap K_1\subseteq \tau(K_1)$ and $(P+K_1)\cap K_2\subseteq \tau(K_2)$, we have $(P\cap K)\subseteq \tau(K)$. Thus M is τ - \oplus -supplemented.

A nonzero module M is called *completely torsion* if for every proper submodule K of $M, K \subseteq \tau(M)$.

Corollary 1.3. For any preradical τ , any finite direct sum of completely torsion modules is τ - \oplus -supplemented.

Theorem 1.4. Let M_i $(1 \le i \le n)$ be any finite collection of relatively projective modules. Then for any preradical τ , the module $M = \bigoplus_{i=1}^n M_i$ is τ - \oplus -supplemented if and only if M_i is τ - \oplus -supplemented for each $1 \le i \le n$.

Proof. The sufficiency is proved in Theorem 1.2. Conversely, we only prove M_1 to be τ -⊕-supplemented. Let $A \leq M_1$. Then there exists $B \leq M$ such that M = A + B, B is a direct summand of M and $A \cap B \subseteq \tau(B)$. Since $M = A + B = M_1 + B$, by [10, Lemma 4.47], there exists $B_1 \leq B$ such that $M = M_1 \oplus B_1$. Thus $B = B_1 \oplus (M_1 \cap B)$. Note that $M_1 = A + (M_1 \cap B)$ and $M_1 \cap B$ is a direct summand of M_1 . Therefore $A \cap B = A \cap (M_1 \cap B) \subseteq \tau(B) \cap (M_1 \cap B) = \tau(M_1 \cap B)$. Hence M_1 is τ -⊕-supplemented.

A factor module of a τ - \oplus -supplemented module need not be τ - \oplus -supplemented for $\tau = Rad$ (see [6, Examples 2.2 and 2.3]).

Theorem 1.5. Let M be a τ - \oplus -supplemented module for any preradical τ and $X \leq M$. If for every direct summand K of M, (X + K)/X is a direct summand of M/X, then M/X is τ - \oplus -supplemented.

Proof. Let $N/X \leq M/X$. Since M is τ - \oplus -supplemented, there exists a direct summand K of M such that N+K=M and $N\cap K\subseteq \tau(K)$. Then N/X+(K+X)/X=M/X. By assumption, (K+X)/X is a direct summand of M/X. It is easy to check that $(N/X)\cap ((K+X)/X)\subseteq \tau((K+X)/X)$.

Let M be a module. Then M is called distributive if its lattice of submodules is a distributive lattice, equivalently for submodules K, L, N of $M, N + (K \cap L) = (N + K) \cap (N + L)$ or $N \cap (K + L) = (N \cap K) + (N \cap L)$.

Let M be a module. A submodule X of M is called *fully invariant*, if for every $f \in End(M)$, $f(X) \subseteq X$. The module M is called *duo module*, if every submodule of M is fully invariant. The submodule A of M is called *projection invariant* in M if $f(A) \subseteq A$, for any idempotent $f \in End(M)$.

Corollary 1.6. Let M be a τ - \oplus -supplemented module for any preradical τ . (1) Let $N \leq M$ such that for each decomposition $M = M_1 \oplus M_2$ we have $N = (N \cap M_1) \oplus (N \cap M_2)$. Then M/N is τ - \oplus -supplemented. (In particular, this is true for any distributive module). If moreover $N \leq_d M$, then N is τ - \oplus -supplemented. (2) Let X be a projection invariant submodule of M. Then M/X is τ - \oplus -supplemented. In particular, for every fully invariant submodule A of M, M/A is τ - \oplus -supplemented.

Proof. (1) Let $L/N \leq M/N$. Since M is τ -⊕-supplemented, there exists a direct summand D of M such that M = L + D and $L \cap D \subseteq \tau(D)$. Then M/N = L/N + (D+N)/N and $L/N \cap (D+N)/N = (L \cap (D+N))/N \subseteq \tau((D+N)/N)$. Let $M = D \oplus D'$. By assumption, $N = (N \cap D) \oplus (N \cap D') = (D+N) \cap (D'+N)$. So, $(D+N)/N \oplus (D'+N)/N = M/N$. It follows that M/N is τ -⊕-supplemented. Now let $N \leq_d M$ and $V \leq N$. Then there exist submodules K and K' of such that $M = K \oplus K' = V + K$ and $V \cap K \subseteq \tau(K)$. Thus $N = V + N \cap K$. By assumption $N \cap K \leq_d N$. Moreover, $V \cap (N \cap K) \subseteq \tau(K)$. Then $V \cap (N \cap K) \subseteq \tau(N \cap K)$. Therefore, N is τ -⊕-supplemented. (2) Clear by (1).

Let M be an R-module. By $P_{\tau}(M)$ we denote the sum of all submodules N of M with $\tau(N) = N$. Since $P_{\tau}(M)$ is a sum of some submodules of M, itself is a submodule of M.

Corollary 1.7. Let M be a τ - \oplus -supplemented module for any preradical τ . Then $M/P_{\tau}(M)$ is τ - \oplus -supplemented. If moreover $P_{\tau}(M) \leq_d M$, then $P_{\tau}(M)$ is τ - \oplus -supplemented.

Proof. By Corollary 1.6(1), it suffices to prove that $P_{\tau}(M)$ is a fully invariant submodule of M. Let $N \leq M$ such that $N = \tau(N)$ and $f \in End(M)$ and g its restriction to N. But $\tau(N) = N$ and f(N) = g(N), hence $f(N) \subseteq \tau(f(N))$. Thus, $\tau(f(N)) = f(N)$. This implies that $f(N) \subseteq P_{\tau}(M)$. This completes the proof. \square

We recall that a module M is called semi-Artinian if every nonzero quotient module of M has nonzero socle. For a module M, we define $Sa(M) = \sum \{U \leq M \mid Usemi-Artinian\}$.

Corollary 1.8. Let M be a τ - \oplus -supplemented module for any preradical τ . Then M/Sa(M) is τ - \oplus -supplemented. If, moreover, Sa(M) is a direct summand of M, then Sa(M) is also τ - \oplus -supplemented.

Proof. Let $f \in End(M)$ and U a semi-Artinian submodule. Let g be restriction of f to U. Thus $U/Ker(g) \cong g(U)$. Hence $f(U) \cong U/Ker(g)$. But it is easy to check that U/Ker(g) is a semi-Artinian module. Therefore, f(U) is semi-Artinian. This implies that $f(Sa(M)) \subseteq Sa(M)$. Thus Sa(M) is a fully invariant submodule of M. The result follows from Corollary 1.6(1).

Remark 1.9. If M is a τ - \oplus -supplemented module for any preradical τ , then $M/\tau(M)$ is semisimple and hence τ - \oplus -supplemented.

Example 1.10. Let M be the Z-module $Z/2Z \oplus Z/8Z$. By [8, Example 10], M is not lifting and it is not τ -lifting. By [5, Theorem 1.4], M is \oplus -supplemented and hence τ - \oplus -supplemented for $\tau = Rad$.

A τ -lifting module is τ - \oplus -supplemented. But the converse does not hold. The following proposition shows that under some assumption it can be true.

Proposition 1.11. Assume M is τ - \oplus -supplemented for any preradical τ such that whenever $M = M_1 \oplus M_2$ then M_1 and M_2 are relatively projective. Then M is τ -lifting.

Proof. Let $N \leq M$. Since M is τ - \oplus -supplemented, there exists a decomposition $M = M_1 \oplus M_2$ such that $M = N + M_2$ and $N \cap M_2 \subseteq \tau(M_2)$ for submodules M_1, M_2 of M. By hypothesis, M_1 is M_2 -projective. By [10, Lemma 4.47], we obtain $M = A \oplus M_2$ for some submodule A of M such that $A \leq N$. Then $N = A \oplus (M_2 \cap N)$. So M is τ -lifting by [2, 2.8].

Corollary 1.12. Let M be a τ - \oplus -supplemented module for any prerardical τ . If M is projective then M is τ -lifting.

Now we give a characterization of τ - \oplus -supplemented rings.

Theorem 1.13. Let τ be any preradical. Then the following are equivalent:

- (1) R is τ - \oplus -supplemented;
- (2) Every finitely generated free R-module is τ - \oplus -supplemented;
- (3) If F is a finitely generated free R-module and N a fully invariant submodule, then F/N is τ - \oplus -supplemented.

Proof. (1) \Rightarrow (2) Let M be a finitely generated free R-module. Then $M \cong \bigoplus_{i=1}^n R$. Since any finite direct sum of τ - \oplus -supplemented modules is τ - \oplus -supplemented, the result follows.

(2) \Rightarrow (3) By (2), F is τ - \oplus -supplemented. The result follows from Corollary 1.6(2).

($3) \Rightarrow$	(1)	is clear.	Τ

Lemma 1.14. Let $M=M_1\oplus M_2$. Then for any preradical τ , M_2 is τ - \oplus -supplemented if and only if for every submodule N/M_1 of M/M_1 , there exists a direct summand K of M such that $K \leq M_2$, M=K+N and $N \cap K \subseteq \tau(M)$.

Proof. Suppose that M_2 is τ - \oplus -supplemented. Let $N/M_1 \leq M/M_1$. As M_2 is τ - \oplus -supplemented, there exists a decomposition $M_2 = K \oplus K'$ such that $M_2 = (N \cap M_2) + K$ and $N \cap K \subseteq \tau(K)$. Note that $M = (N \cap M_2) + K + M_1$ gives M = N + K.

Conversely, suppose that M/M_1 has the stated property. Let H be a submodule of M_2 . Consider the submodule $(H \oplus M_1)/M_1 \leq M/M_1$. By hypothesis, there exists a direct summand L of M such that $L \leq M_2$, $M = (L + H) + M_1$ and $L \cap (H + M_1) \subseteq \tau(M)$. By modularity, $M_2 = L + H$. Then $L \cap H \subseteq \tau(L)$. Thus, L is a τ -supplement of H in M_2 and it is a direct summand of M_2 . Therefore, M_2 is τ - \oplus -supplemented.

Theorem 1.15. Let τ be any preradical and M_2 a direct summand of a τ - \oplus -supplemented module M such that for every direct summand K of M with $M = K + M_2$, $K \cap M_2$ is a direct summand of M. Then M_2 is τ - \oplus -supplemented.

Proof. Suppose that $M=M_1\oplus M_2$ and let $N/M_1\leq M/M_1$. Consider the submodule $N\cap M_2$ of M. Since M is τ - \oplus -supplemented, there exists a direct summand K of M such that $M=(N\cap M_2)+K$ and $N\cap M_2\cap K\subseteq \tau(K)$. Note that $M=N+M_2$. By [7, Lemma 1.2], $M=(K\cap M_2)+N$. Since $M=K+M_2$, $K\cap M_2$ is a direct summand of M by hypothesis. By Lemma 1.14, M_2 is τ - \oplus -supplemented. \square

Corollary 1.16. Let M be a τ - \oplus -supplemented module for any preradical τ and K a direct summand of M such that M/K is K-projective. Then K is τ - \oplus -supplemented.

Proof. Let L be a direct summand of M with M=L+K. Since K is a direct summand of M, $M=K\oplus K_0$ for some submodule K_0 of M. Therefore, K_0 is K-projective. Then by [16, 41.14], there exists a submodule L_0 of L such that $M=L_0\oplus K$. Now $L=L'\oplus (L\cap K)$ implies that $L\cap K$ is a direct summand of M. By Theorem 1.15, K is τ - \oplus -supplemented.

Corollary 1.17. Let M be a τ - \oplus -supplemented module for any preradical τ and $N \leq_d M$ such that M/N is projective. Then N is τ - \oplus -supplemented.

A submodule N of M is called small in M (notation $N \ll M$) if $\forall L \leq M, L+N \neq M$. A module M is called hollow if every proper submodule of M is small in M. Let M be a module and S denote the class of all small modules. Talebi and Vanaja [13] defined $\overline{Z}(M)$ as follows:

 $\overline{Z}(M) = \bigcap \{kerg \mid g \in Hom(M,L), L \in S\}$. The module M is called *cosingular* (non-cosingular) if $\overline{Z}(M) = 0$ ($\overline{Z}(M) = M$). Clearly every non-cosingular module is \overline{Z} - \oplus -supplemented. Also if R is a non-cosingular ring, then every R-module is \overline{Z} - \oplus -supplemented by [13, Proposition 2.4].

In [11] for any preradical τ , the authors call a module M, τ -semiperfect if it is satisfies one of the following conditions (see [11, Proposition 2.1]):

- (1) For every submodule K of M there exists a decomposition $K = A \oplus B$ such that A is a projective direct summand of M and $B \subseteq \tau(M)$;
- (2) For every submodule K of N, there exists a decomposition $M = A \oplus B$ such that A is a projective direct summand of M, $A \leq K$ and $K \cap B \subseteq \tau(M)$.

By this definition every τ -semiperfect module is τ -lifting and hence τ - \oplus -supplemented. Also if M is projective we have the following:

 τ -semiperfect $\Leftrightarrow \tau$ -lifting $\Leftrightarrow \tau$ - \oplus -supplemented.

A τ - \oplus -supplemented module need not be \oplus -supplemented and the converse also hold.

Example 1.18. Let K be a field and let $R = \prod_{n \geq 1} K_n$ with $K_n = K$. By [14, Example 4.1(1)] R is not semiperfect. Since R is projective, R is not \oplus -supplemented by [5, Lemma 1.2]. Again by [14, Example 4.1(1)], the module R is \overline{Z} -semiperfect and so it is \overline{Z} - \oplus -supplemented.

If R is a DVR (Discrete Valuation Ring), then by [14, Example 4.1(1)] the R-module R_R is semiperfect and hence \oplus -supplemented but it is not \overline{Z} -semiperfect and so it is not \overline{Z} - \oplus -supplemented.

Now we give an equivalent condition for a module to be \overline{Z} - \oplus -supplemented under some assumptions.

Proposition 1.19. Let R be a commutative ring and P a projective module with $Rad(P) \ll P$ and P has finite hollow dimension. Then the following are equivalent:

- (1) P is \overline{Z} - \oplus -supplemented;
- (2) $P = P_1 \oplus P_2 \oplus P_3$ with P_1 is \oplus -supplemented and $Rad(P_1) = \overline{Z}(P_1)$, P_2 is semisimple and $\overline{Z}(P_3) = P_3$.
- *Proof.* (1) \Rightarrow (2) By the proof of [14, Corollary 4.3] and since every semiperfect is \oplus -supplemented .
- $(2) \Rightarrow (1)$ By [14, Corollary 4.3] all P_1 , P_2 and P_3 are \overline{Z} -semiperfect and hence \overline{Z} - \oplus -supplemented. Since any finite direct sum of \overline{Z} - \oplus -supplemented modules is \overline{Z} - \oplus -supplemented, P is \overline{Z} - \oplus -supplemented.

Let $e = e^2 \in R$. Then e is called a *left (right) semicentral idempotent* if xe = exe (ex = exe), for all $x \in R$. The set of all left (right) semicentral idempotents is denoted by $S_l(R)$ $(S_r(R))$. A ring R is called *Abelian* if every idempotent is central.

Let M be a module. We consider the following condition.

 (D_3) If M_1 and M_2 are direct summands of M with $M = M_1 + M_2$, then $M_1 \cap M_2$ is also a direct summand of M.

By [10, Lemma 4.6 and Proposition 4.38], every quasi-projective module is (D_3) .

Proposition 1.20. Let M be an R-module such that End(M) is Abelian and $X \leq M$ implies $X = \sum_{i \in I} h_i(M)$ where $h_i \in End(M)$. Then for any preradical τ , M is τ - \oplus -supplemented if and only if M is τ -lifting and has (D_3) -condition.

Proof. The sufficiency is obvious. Conversely, let $X \leq M$, $X = \sum_{i \in I} h_i(M)$ with $h_i(M) \in End(M)$. Since M is τ - \oplus -supplemented, there exists a direct summand eM such that X + eM = M and $(X \cap eM) \subseteq \tau(eM)$ for some $e^2 = e \in End(M)$. Since End(M) is Abelian, $(1-e)X = (1-e)M = (1-e)\sum_{i \in I} h_i(M) = \sum_{i \in I} h_i(1-e)(M) \subseteq X$. Therefore $X = (1-e)M \oplus (X \cap eM)$. Hence M is τ -lifting. If eM + fM = M for $e^2 = e$, $f^2 = f \in End(M)$, then $eM \cap fM = efM$ with $(ef)^2 = ef$. So M has (D_3) -condition.

Recall that an R-module M is said to be a multiplication module if for each $X \leq M$ there exists $A_R \leq R_R$ such that X = MA.

Corollary 1.21. If M satisfies one of the following conditions, then M is τ -lifting if and only if M is τ - \oplus -supplemented for any preradical τ .

- (1) M is cyclic and R is commutative.
- (2) M is a multiplication module and R is commutative.
- Proof. (1) Assume that M is cyclic and R is commutative. There exists $B_R \leq R_R$ such that $M \cong R/B$. Let $Y/B \leq R/B$, $Y/B = \sum_{i \in I} (y_i R + B) = (\sum_{i \in I} y_i + B)R$ where each $y_i \in Y$. Define $h_i : R/B \to R/B$ by $h_i(r+B) = y_i r + B$, $i \in I$. Then it is easy to check that $h_i \in End_R(R/B)$. Hence $Y/B = \sum_{i \in I} h_i(R/B)$. Since R is commutative, $End_R(R/B)$ is also commutative. By Proposition 1.20, M is τ -lifting.
- (2) Assume M is a multiplication module. Let $X \leq M$. Then X = MA for some $A_R \leq R_R$. For each $a \in A$, define $h_\alpha : M \to M$ by $h_\alpha(m) = ma$ for all $m \in M$. Then h_α is an R-homomorphism and $X = MA = \sum_{\alpha \in A} h_\alpha(M)$. Since every multiplication module is a duo module, thus if $e^2 = e \in S = End(M)$, then e,

 $1-e \in S_l(S)$. Therefore e is central. So End(M) is Abelian. Again by Proposition 1.20, M is τ -lifting.

2. Completely τ-⊕-Supplemented Modules

Definition 2.1. For any preradical τ , we call a module M completely τ - \oplus -supplemented for any preradical τ if every direct summand of M is a τ - \oplus -supplemented.

Theorem 2.2. Let M be a module with (D_3) and τ a preradical. Then M is τ - \oplus -supplemented if and only if M is completely τ - \oplus -supplemented.

Proof. Sufficiency is clear. Conversely, assume that M is τ - \oplus -supplemented and K a direct summand of M and A a submodule of K. We show A has a τ -supplement in K that is a direct summand of K. Since M is τ - \oplus -supplemented, there exists a direct summand B of M such that M = A + B and $A \cap B \subseteq \tau(B)$. Then $K = A + (K \cap B)$. Furthermore $K \cap B$ is a direct summand of M because M has (D_3) . Then $A \cap (K \cap B) = (A \cap B) \cap (K \cap B) \subseteq \tau(B) \cap (K \cap B) = \tau(K \cap B)$. \square

A submodule K of M is called *essential* in M (notation $K \leq_e M$) if $K \cap A \neq 0$ for any nonzero submodule A of M.

Proposition 2.3. Let M be a τ -supplemented module for any preradical τ . Then $M = M_1 \oplus M_2$, where M_1 is semisimple module and M_2 is a module with $\tau(M_2)$ essential in M_2 .

Proof. See
$$[2, 2.2]$$
.

Recall that a module M has the $Summand\ Sum\ Property\ (SSP)$ if the sum of any two direct summand of M is again a direct summand.

Theorem 2.4. (1) Every τ -lifting module is completely τ - \oplus -supplemented for any preradical τ .

(2) Let M be a τ - \oplus -supplemented module for any preradical τ . If M has the (SSP), then M is completely τ - \oplus -supplemented.

Proof. (1) By [2, 2.10] every direct summand of a τ -lifting module is τ -lifting. The rest is clear.

(2) Assume that M is τ - \oplus -supplemented and M has the (SSP). Let N be a direct summand of M. We will show that N is τ - \oplus -supplemented. Let $M=N\oplus N'$ for some submodule N' of M. Suppose that A is a direct summand of M. Since M has the (SSP), A+N' is a direct summand of M. Let $M=(A+N')\oplus B$ for some $B\leq M$. Then $M/N'=(A+N')/N'\oplus (B+N')/N'$. Hence by Theorem 1.5, M/N' is τ - \oplus -supplemented and so N is τ - \oplus -supplemented.

We give a decomposition of any τ - \oplus -supplemented (D_3) -module by the second singular submodule $Z_2(M)$ of M. We will show that if M is τ - \oplus -supplemented and $N \leq M$ with M/N projective, then N is τ - \oplus -supplemented.

Recall that the *singular submodule* Z(M) of a module M is defined by $Z(M) = \{m \in M \mid mE = 0, E \leq_e R\}$.

The Goldie torsion submodule (or second singular submodule) $Z_2(M)$ of M is a submodule of M containing Z(M) such that $Z_2(M)/Z(M)$ is the singular submodule of M/Z(M).

Proposition 2.5. Let M be a module with (D_3) . Suppose that $Z_2(M)$ is τ -coclosed in M. Then for any preradical τ , M is τ - \oplus -supplemented if and only if $M = Z_2(M) \oplus K$ for some submodule K of M and, $Z_2(M)$ and K are τ - \oplus -supplemented.

Proof. Sufficiency is clear by Theorem 1.2. Conversely, assume that M is τ - \oplus -supplemented. There exist submodules K and K' of M such that $M=K\oplus K'=Z_2(M)+K$ and $Z_2(M)\cap K\subseteq \tau(K)$. Now $Z_2(M)=Z_2(K)\oplus Z_2(K')$. Thus, $M=K\oplus Z_2(K')$ and hence $Z_2(K')=K'$. Note that $Z_2(M)\cap K=Z_2(K)\subseteq \tau(K)$. So, we can obtain that $Z_2(M)/K'\subseteq \tau(M/K')$. Therefore, $Z_2(M)=K'$ because $Z_2(M)$ is τ -coclosed in M. So, $M=K\oplus Z_2(M)$. Clearly K and $K=X_2(M)$ are $K=X_2(M)$ are $K=X_2(M)$ supplemented.

Proposition 2.6. Let M be a τ -supplemented module for any preradical τ . Then $M = M_1 \oplus M_2$, where M_1 is semisimple module and M_2 is a module with $\tau(M_2)$ essential in M_2 .

Proof. See [2, 2.2].

Corollary 2.7. Let M be a τ - \oplus -supplemented module for any preradical τ . Then $M = M_1 \oplus M_2$ where M_1 is a semisimple module and M_2 is a module with $\tau(M_2)$ essential in M_2 .

Proof. Since each τ - \oplus -supplemented module is τ -supplemented the result follows from Proposition 2.6.

Proposition 2.8. Let M be a τ - \oplus -supplemented module for a left exact prevadical τ . Then $M = M_1 \oplus M_2$ such that $\tau(M_2) = M_2$.

Proof. Suppose that M is a τ - \oplus -supplemented module. There exists a direct summand M_1 of M such that $M=M_1+\tau(M)$ and $M_1\cap\tau(M)=\tau(M_1)$ since τ is a left exact preradical and $M=M_1\oplus M_2$ for some submodule M_2 of M. Then $M=\tau(M_2)\oplus M_1$. Thus $M_2=\tau(M_2)$.

Theorem 2.9. For module M with (D_3) and a left exact prevadical τ the following statements are equivalent:

- (1) M is completely τ - \oplus -supplemented;
- (2) M is τ - \oplus -supplemented;
- (3) $M = M_1 \oplus M_2$, where M_1 is semisimple module and M_2 is a τ - \oplus -supplemented module with $\tau(M_2)$ essential in M_2 ;
- (4) $M=M_1\oplus M_2$ such that M_1 is a τ - \oplus -supplemented module and M_2 is a τ - \oplus -supplemented module with $\tau(M_2)=M_2$.

Proof. $(1) \Rightarrow (2)$ Clear from definition.

- $(2) \Rightarrow (1)$ It follows from Theorem 2.2.
- (1) \Rightarrow (3) By Proposition 2.6, $M = M_1 \oplus M_2$, where M_1 is semisimple module and M_2 is module with $\tau(M_2)$ essential in M_2 . By (1), M_2 is τ - \oplus -supplemented.
- (1) \Rightarrow (4) By Proposition 2.8, $M = M_1 \oplus M_2$ such that $\tau(M_2) = M_2$ and M_1, M_2 are τ - \oplus -supplemented by (1).
 - $(3) \Rightarrow (2), (4) \Rightarrow (2)$ follows by Theorem 1.2.

Lemma 2.10. Let M be an indecomposable module. Then for any preradical τ , M is completely torsion if and only if M is completely τ - \oplus -supplemented.

Proof. Clear. \Box

Proposition 2.11. Let $M = M_1 \oplus M_2$ such that M_1 and M_2 have local endomorphism rings. Then for any preradical τ , M is completely τ - \oplus -supplemented if and only if M_1 and M_2 are completely torsion modules.

Proof. The necessity is clear from Lemma 2.10. Conversely, let K be a direct summand of M. If K = M then by Corollary 1.3, K is τ - \oplus -supplemented. Assume $K \neq M$. Then either $K \cong M_1$ or $K \cong M_2$ by [3, Corollary 12.7]. In either case K is τ - \oplus -supplemented. Thus M is completely τ - \oplus -supplemented.

References

- [1] M. Alkan, On τ -lifting and τ -semiperfect modules, Turkish J. Math. 33 (2009), 117–130.
- [2] K. Al-Takhman, C. Lomp and R. Wisbaure, τ-complemented and τ-supplemented modules, Algebra and Discrete Mathematics, 3 (2006), 1-15.
- [3] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Springer-Verlog, New York, 1992.
- [4] K. R. Goodearl, Ring Theory, Nonsingular Rings and Modules, Marcel Dekker New York -Basel, 1976.
- [5] A. Harmanci, D.Keskin and P. F. Smith, On ⊕-supplemented modules, Acta Math. Hungar. 83 (1999), 161–169.
- [6] A. Idelhadj and R. Tribak, On some properties of ⊕-supplemented modules, *International Journal of Mathemathics and Mathematical Sciences*, **69** (2003), 4373–4378.
- [7] D. Keskin, On lifting modules, Comm. Alg. 28(7) (2000), 3427-3440.
- [8] D. Keskin, Finite direct sum of (D_1) -modules, Turkish J. Math. 22(1) (1998), 85-91.
- [9] M. T. Kosan and A. Harmanci, Modules supplemented relative to a torsion theory, Turkish J. Math. 28 (2004), 177-184.
- [10] S. M. Mohamed and B. J. Müller, Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
- [11] A. Ç. Özcan and M. Alkan, Semiperfect modules with respect to a preradical, Commun. Alg. 34 (2006), 841–856.
- [12] T. Ozen, C₁ modules with respect to a hereditary torsion theory, Turkish J. Math. 33 (2009), 321-329.
- [13] Y. Talebi and N. Vanaja, The torsion theory cogenerated by M-small modules, Comm. Alg. 30(3) (2002), 1449-1460.
- [14] R. Tribak and D. Keskin, On \overline{Z}_M -semiperfect modules, East-West J. of Mathematicas, 8(2) (2006), 193–203.
- [15] K. Varadarajan, Dual Goldie dimension, Comm. Alg. 21 (1993), 1809-1847.
- [16] R. Wisbauer, Foundations of module and ring theory, Gordon and Breach, Reading, 1991.
- Y. Talebi, Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

 $E ext{-}mail\ address:$ talebi@umz.ac.ir

T. Amoozegar, Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

 $E ext{-}mail\ address:$ t.amoozegar@umz.ac.ir

A. R. Moniri Hamzekolaei, Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran, Babolsar, Iran

 $E ext{-}mail\ address:$ a.monirih@umz.ac.ir