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EXPONENTIAL SUMS FOR NONLINEAR RECURRING

SEQUENCES IN RESIDUE RINGS

EDWIN EL-MAHASSNI

Abstract. We prove some new bounds on exponential sums for nonlinear re-

curring sequences over residue rings. In addition, we also show similar novel
results when the modulus is almost squarefree, thereby improving the results

in El-Mahassni, Shparlinski, and Winterhof [11] and El-Mahassni and Winter-

hof [13] This is done by using a technique employed by Niederreiter and Win-
terhof [26] and through the generalisation of a Lemma found in [11] and [13].

Lastly, applications to the distribution of nonlinear congruential pseudoran-

dom numbers are also given.

1. Introduction

For an integer M ≥ 2, we let f(X) ∈ ZZM [X] be a polynomial of degree d ≥ 2 over
the residue ring ZZM modulo M , defined by a recurrence relation of the form

(1) un+1 ≡ f (un) (mod M), 0 ≤ un ≤M − 1, n = 0, 1, . . .

with some initial value u0 = v. It is obvious that the sequence (1) eventually
becomes periodic with some period t ≤M .

We define the sequence of polynomials fk(X), by the recurrence relation

(2) fk(X) = f (fk−1(X)) , k = 1, 2, . . . ,

where f0(X) = X. It is clear that if deg f = d ≥ 2 then deg fk ≤ dk and that
un+k ≡ fk (un) (mod M).

Throughout this paper we assume that this sequence is purely periodic, that is,
un = un+t beginning with n = 0, otherwise we consider a shift of the original
sequence.

We define eM (x) = exp(2πix/M) and consider the incomplete exponential sums

Sa(M,N) =

N−1∑
n=0

eM

s−1∑
j=0

ajun+j

 , 1 ≤ N ≤ t, s ≥ 1,

where a = (a0, . . . , as−1) 6≡ 0 (mod M). Now, throughout the rest of the paper we
assume that f is of degree at least 2 modulo every prime divisor of M .
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We now go on to recall some previous bounds which we will improve upon. First, we
assume that G = gcd(a0, . . . , as−1,M) < M/2. We start by noting that from [13],
for an arbitrary modulus M , the bound

max
gcd(a0,...,as−1,M)=G

Sa(M,N) = O

(
N1/2 M1/2

(log log(M/G))1/2

)
(3)

holds, where the implied constant depends only on d and s.

Then, in [11], an improvement on this bound was proven when the modulus is
almost squarefree. This was defined to be when

ω(M) ≤ 2 log logM and ρ(M) ≥ M

(log logM)2
,(4)

where ω(M) denotes the number of distinct prime divisors of M and ρ(M) is the
largest squarefree divisor of M . In those cases, for any ε ≥ 0, the bound

max
gcd(a0,...,as−1,M)≤M1−ε

Sa(M,N) = O

(
N1/2M1/2 (log logM)1/2

(logM)1/2

)
(5)

holds, where the implied constant depends on d, s and ε.

Further, in [11], it has also been proven that if the constraints of (4) are satisfied,
for every sufficiently large integer Q, the bound given by (5) holds for all positive
integers M ≤ Q except o(Q) of them.

The rest of the paper is structured as follows. In Section 2, we list some previously
established results which we use to prove our main bound. In Section 3, using a
similar technique to that in [26], we modify the methods in [11] and [13] to provide
new bounds for Sa(M,N). We will show that we can obtain improvements for the
bounds in (3) and (5) when N ≥M/ logM and by placing some restrictions on the
size of p1, the smallest prime divisor of M . In Section 4, we apply the exponential
sum bound to analyse the distribution of nonlinear congruential pseudorandom
numbers un/M, n ≥ 0, in the unit interval in terms of a discrepancy bound. We
refer to [22, Chapter 8], [24] and [1] for further background on nonlinear congruential
pseudorandom numbers.

2. Preliminaries

We now recall some results which will aid us in proving our main results. For a
sequence of N points

(6) Γ = (γ1,n, . . . , γs,n)
N
n=1

of the half-open interval [0, 1)s, denote by ∆Γ its discrepancy , that is,

∆Γ = sup
B⊆[0,1)s

∣∣∣∣TΓ(B)

N
− |B|

∣∣∣∣ ,
where TΓ(B) is the number of points of the sequence Γ which hit the box

B = [α1, β1)× . . .× [αs, βs) ⊆ [0, 1)s
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and the supremum is taken over all such boxes. For an integer vector
a = (a0, . . . , as−1) ∈ ZZs we put

(7) |a| = max
i=0,...,s−1

|ai| and r(a) =

s−1∏
i=0

max{|ai|, 1}.

We also need the Erdös–Turán–Koksma inequality (see [5, Theorem 1.21]) for the
discrepancy of a sequence of points of the s-dimensional unit cube, which we present
in the following form.

Lemma 1. There exists a constant Cs > 0 depending only on the dimension s
such that, for any integer L ≥ 1, for the discrepancy of a sequence of points (6) the
bound

∆Γ < Cs

 1

L
+

1

N

∑
0<|a|≤L

1

r(a)

∣∣∣∣∣∣
N∑

n=1

exp

2πi

s−1∑
j=0

ajγj,n

∣∣∣∣∣∣


holds, where |a| and r(a) are defined by (7) and the sum is taken over all integer
vectors

a = (a0, . . . , as−1) ∈ ZZs

with 0 < |a| ≤ L.

The currently best value of Cs is given in [3].

We also make use of the Hua Loo Keng bound in a form which is a relaxation of
the main result of [27] (see also Section 3 of [2]).

Lemma 2. For any polynomial F (X) = BDX
D + . . . + B1X + B0 ∈ ZZM [X] of

degree D ≥ 1, there is a constant c0 > 0 so that the bound∣∣∣∣∣
M∑
x=1

eM (F (x))

∣∣∣∣∣ < ec0DM1−1/DG1/D

holds, where G = gcd(BD, . . . , B1,M).

Note that the currently best known constant is c0 = 1.74 see [4].

We now list the following lemmas. The first is listed in a slightly weaker form
than found in [11, Lemma 4], whilst the second is an extension of [13, Lemma 3]
respectively.

Lemma 3. Let F (X) =
∑D

i=0BiX
i ∈ ZZM [X] be of degree D. Then∣∣∣∣∣

M−1∑
x=0

eM (F (x))

∣∣∣∣∣ ≤ (D − 1)ω(M)M∆1/2ρ(M)−1/2,

where ∆ = gcd(B1, ..., BD,M).

Lemma 4. Let f(X) ∈ ZZM [X] be a polynomial of degree at least 2 modulo every
prime divisor of M , with p1 being the least prime divisor of M , and let

s−1∑
j=0

aj
(
(fk1+j (X) + . . .+ fkr+j(X))−

(
fkr+1+j (X) + . . . fk2r+j (X)

))
= BDX

D + . . .+B1X +B0.
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Then, if {k1, . . . , kr} 6= {kr+1, . . . , k2r} as multisets, for any p1 > r ≥ 1, we have

gcd(BD, . . . , B1,M) = gcd(a0, . . . , as−1,M).

Proof. We put Aj = aj/G, j = 0, . . . , s− 1 and m = M/G, where
G = gcd(a0, . . . , as−1,M). In particular,

gcd(A0, . . . , As−1,m) = 1.(8)

It is enough to show that the polynomial

H(X) =
s−1∑
j=0

Aj

(
(fk1+j (X) + . . .+ fkr+j (X))−

(
fkr+1+j (X) + . . .+ fk2r+j(X)

))
is not a constant polynomial modulo p for any prime p|m.

We take f (p) to be the reduction of f modulo p. By our assumption, deg f (p) =

dp ≥ 2. Denoting by f
(p)
k the kth iteration of f (p) defined similarly to (2) and by

H(p)(X) as H(X) mod p. Thus,

H(p)(X) =

r∑
t=1

s−1∑
j=0

Aj

(
f

(p)
kt+j(X)− f (p)

kr+t+j(X)
)

(mod p).

Let h be the largest j = 1, . . . , s with gcd(Aj , p) = 1 (we see from (8) that such
h exists). Then for {k1, . . . , kr} 6= {kr+1, . . . , k2r} as multisets, where r < p1, the
polynomial H(X) is of degree exactly dk+h

p ≥ 1 modulo p, where k is the largest ki
which appears in one of the two sets more often than in the other one, such that
ki 6= ki+r, for some 1 ≤ i ≤ t, which finishes the proof. ut

The following statement proceeds immediately from the classical result of Hardy-
Ramanujan on the typical order of ω(M), see [18, Theorem 431], [28, Section 3.4,
Theorem 4], and used also in [11, Lemma 6].

Lemma 5. For every sufficiently large Q, the bound ω(M) ≤ 2 log logM holds for
all positive integers M ≤ Q except o(Q) of them.

Lastly, we also use the next result which was proved in [11, Lemma 7].

Lemma 6. For any integer Y ≥ 1 the bound ρ(M) > M/Y holds for all positive
integers M ≤ Q except O(Q/Y 1/2).

3. Bounds of Exponential Sums

In this section, through the use of the Hölder inequality as employed in [26], we
improve bounds (3) and (5) respectively, by refining the method of bounding expo-
nential sums that were applied in [11] and [13].

Theorem 7. Let the sequence (un), given by (1) with a polynomial f(X) ∈ ZZM [X],
of total degree d, be purely periodic modulo M with period t. Assume that for every
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prime divisor p of M , we have p ≥ 2 log log logM and also f of degree at least 2
modulo every prime p|M . If t ≥ N ≥M/ log logM , then the bound

max
gcd(a0,...,as−1,M)=G

|Sa(M,N)| = O

(
N

(
log(2M/N)

log log(M/G)

)1/2
)

holds, where the implied constant depends only on d and s.

Proof. We first prove that, for any integer 2 log log logM > r ≥ 1, and
gcd(a0, . . . , as−1,M) = G, we have

Sa(M,N) = O

(
Nr1/2(M/N)1/(2r)

×
(

min
{
blog log(M/G)/3 log dc ,

⌊
rc1e

(log(M/G))1/3/r
⌋})−1/2

)
for T ≥ N ≥ M/ log logM and some positive constant c1. It is obvious that for
any integer k ≥ 0 we have∣∣∣∣∣∣Sa(M,N)−

N−1∑
n=0

eM

s−1∑
j=0

ajun+k+j

∣∣∣∣∣∣ ≤ 2k.

Therefore, for any integer K ≥ 1,

K|Sa(M,N)| ≤W +K(K − 1),(9)

where

W =

N−1∑
n=0

∣∣∣∣∣∣
K−1∑
k=0

eM

s−1∑
j=0

ajun+k+j

∣∣∣∣∣∣ .
By the Hölder inequality, and using

Fk(X) =

s−1∑
j=0

ajfk+j(X),

we obtain

W 2r ≤ N2r−1
N−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

eM (Fk(un))

∣∣∣∣∣
2r

≤ N2r−1
∑

x∈ZZM

∣∣∣∣∣
K−1∑
k=0

eM (Fk(x))

∣∣∣∣∣
2r

≤ N2r−1
K−1∑

k1,...,k2r=0

∣∣∣∣∣ ∑
x∈ZZM

eM (Fk1,...,k2r
(x))

∣∣∣∣∣ ,
where Fk1,...,k2r (X) = Fk1(X) + . . .+ Fkr (X)− Fkr+1(X)− . . .− Fk2r (X).

If {k1, . . . , kr} = {kr+1, . . . , k2r} as multisets, then Fk1,...,k2r (X) is constant and
the inner sum is trivially equal to M . There are at most r!Kr ≤ rrKr such sums.
Otherwise, we can apply Lemma 2 together with Lemma 4, to get the upper bound

ec0d
K+s−2

M1−1/dK+s−2

G1/dK+s−2

for at most K2r. Hence,

W 2r ≤ rrKrN2r−1M + ec0d
K+s−2

M1−1/dK+s−2

G1/dK+s−2

K2rN2r−1(10)
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Choose

K = min

{⌊
log log(M/G)

3 log d

⌋
,
⌊
rc1e

(log(M/G))1/3/r
⌋}

,

for some positive constant c1. Note that we get
⌊

log log(M/G)
3 log d

⌋
, when r = 1 and

using this value for ec0d
K+s−2

we then obtain
⌊
rc1e

(log(M/G))1/3/r
⌋

for arbitrary r.

Then it is easy to see that the first term in the right-hand side of (10) dominates the
second one in terms of the order of magnitude in M , and we get the first equation
of the proof from (9) and (10) after simple calculations.

Finally, we choose

r = dlog(2M/N)e .
Note that 1 ≤ r < 2 log log logM , since N ≥ M/ log logM . Thus, for all suitable
large M , we have

c1re
(log(M/G))1/3/r ≥ log log(M/G).

To see this is true, we note that this is equivalent to proving

log r + log c1 +
(log(M/G))1/3

r
≥ log log log(M/G).

If log r ≥ log log log(M/G) then we are done, else we have r < log log(M/G). In
this case, we simply need to show that for all large enough M

(log(M/G))1/3

(log log(M/G))
≥ log log(M/G).

But, taking logarithms from both sides we can then indeed see that

log log(M/G) ≥ 4 log log log(M/G)).

If we then note that r1/2(M/N)1/2r < log(2M/N), the theorem then follows from
the first equation of the proof. ut

This next bound is an improvement for the exponential sum of nonlinear congru-
ential generators with an “almost squarefree” modulus.

Theorem 8. Let an integer M ≥ 1 be such that

ω(M) ≤ 2 log logM and ρ(M) ≥ M

(log logM)2
,

where ω(M) denotes the number of distinct prime divisors of M and ρ(M) is the
largest squarefree divisor of M .

Let the sequence (un), given by (1) with a polynomial f(X) ∈ ZZM [X], of total
degree d, be purely periodic modulo M with period t. Assume that for every prime
divisor p of M , we have p ≥ 2 log log logM and also f of degree at least 2 modulo
every prime p|M . If t ≥ N ≥M/ log logM , then, for any ε > 0, the bound

max
gcd(a0,...,as−1,M)≤M1−ε

|Sa(M,N)| = O

(
N

(
(log(2M/N) log logM)

logM

)1/2
)

holds, where the implied constant depends on d, s and ε.
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Proof. Put w = ω(M) and R = ρ(M). We first prove that, for any integer
2 log log logM > r ≥ 1, and gcd(a0, . . . , as−1,M) ≤M1−ε, we have

Sa(M,N) =

O

(
Nr1/2(M/N)1/(2r)

(
min

{
bε logM/(5 log d log logM)c ,⌊
r
(
Mε/10/ (log logM)

)1/r⌋})−1/2
)
,

for M/ log logM ≤ t ≤M . It is obvious that for any integer k ≥ 0 we have∣∣∣∣∣∣Sa(M,N)−
N−1∑
n=0

eM

s−1∑
j=0

ajun+k+j

∣∣∣∣∣∣ ≤ 2k.

Therefore, for any integer K ≥ 1,

K|Sa(M,N)| ≤W +K(K − 1),(11)

where

W =

N−1∑
n=0

∣∣∣∣∣∣
K−1∑
k=0

eM

s−1∑
j=0

ajun+k+j

∣∣∣∣∣∣ .
By the Hölder inequality, and using

Fk(X) =

s−1∑
j=0

ajfk+j(X),

we obtain

W 2r ≤ N2r−1
N−1∑
n=0

∣∣∣∣∣
K−1∑
k=0

eM (Fk(un))

∣∣∣∣∣
2r

≤ N2r−1
∑

x∈ZZM

∣∣∣∣∣
K−1∑
k=0

eM (Fk(x))

∣∣∣∣∣
2r

≤ N2r−1
K−1∑

k1,...,k2r=0

∣∣∣∣∣ ∑
x∈ZZM

eM (Fk1,...,k2r
(x))

∣∣∣∣∣ ,
where Fk1,...,k2r

(X) = Fk1
(X) + . . .+ Fkr

(X)− Fkr+1
(X)− . . .− Fk2r

(X)

If {k1, . . . , kr} = {kr+1, . . . , k2r} as multisets, then Fk1,...,k2r
(X) is constant and

the inner sum is trivially equal to M . There are at most r!Kr ≤ rrKr such sums.
Otherwise, we can apply Lemma 3, together with Lemma 4 to the inner sum, to
get the upper bound d(K+s−2)wM (3−ε)/2R−1/2 for at most K2r. Hence,

(12)

W 2r ≤ rrKrN2r−1M + d2(K+s−2) log log MK2rN2r−1M1−ε/2 log logM

Choose

K = min

{⌊
ε logM

5 log d log logM

⌋
,

⌊
r
(
Mε/10/ log logM

)1/r
⌋}

.
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Note that we get
⌊

ε log M
5 log d log log M

⌋
when r = 1 and using this value for

d2(K+s−2) log log M we then obtain
⌊
r
(
Mε/10/ log logM

)1/r⌋
for arbitrary r.

Then it is easy to see that the first term in the right-hand side of (12) dominates the
second one in terms of the order of magnitude in M , and we get the first equation
of the proof from (11) and (12) after simple calculations.

Finally, we choose

r = dlog(2M/N)e.
Note that r < 2 log log logM since N ≥M/ log logM . Clearly, for our choice of r
and all large enough M , we have

r
(
Mε/10/ log logM

)1/r

> log
(
Mε/10/ log logM

)
/2 log log logM

> logMε/5 log d log logM,

for any ε > 0. If we then note that r1/2(M/N)1/2r < log(2M/N), the theorem then
follows from the first equation of the proof. ut

Recalling Lemmas 5 and 6 we obtain:

Corollary 9. For every sufficiently large Q, the following statement holds for all
positive integers M ≤ Q except o(Q) of them:

Let the sequence (un), given by (1) with a polynomial f(X) ∈ ZZM [X], of total
degree d, be purely periodic modulo M with period t. Assume that for every prime
divisor p of M , we have p ≥ 2 log log logM and also f of degree at least 2 modulo
every prime p|M . If t ≥ N ≥M/ log logM , then, for any ε > 0, the bound

max
gcd(a0,...,as−1,M)≤M1−ε

|Sa(M,N)| = O

(
N

(
(log(2M/N) log logM)

logM

)1/2
)

holds, where the implied constant depends on d, s and ε.

We now present some new discrepancy bounds using our new results for the expo-
nential sums for the nonlinear congruential generator. The first bound applies to
arbitrary moduli, whilst the latter is for almost squarefree moduli.

Let Ds(M,N) denote the discrepancy of the points(un
M
, . . . ,

un+s−1

M

)
, n = 0, 1, . . . , N − 1,

given by (1) in the s-dimensional unit cube [0, 1)s.

Theorem 10. If the sequence (un), given by (1) with a polynomial f(X) ∈ ZZM [X],
of total degree d, be purely periodic modulo M with period t. Assume that for every
prime divisor p of M , we have p ≥ 2 log log logM and also f of degree at least 2
modulo every prime p|M . If t ≥ N ≥M/ log logM , then, the bound

Ds(M,N) = O

((
log(2M/N)

log logM

)1/2

(log log logM)s

)



11

holds, where the implied constant depends only on s and d.

Proof. The statement follows from Lemma 1, taken with

L =

⌈(
log logM

log(2M/N)

)1/2
⌉

and the bound of Theorem 7, as

gcd(a0, . . . , as−1,M) ≤ L ≤ 2 (log logM)
1/2 ≤ (logM)1/2 ≤M1/2

where for any nonzero vector a = (a1, . . . , as) ∈ ZZs with |a| ≤ L and sufficiently
large M . ut

Theorem 11. Let an integer M ≥ 1 be such that

ω(M) ≤ 2 log logM and ρ(M) ≥ M

(log logM)2
.

Let the sequence (un), given by (1) with a polynomial f(X) ∈ ZZM [X], of total
degree d, be purely periodic modulo M with period t. Assume that for every prime
divisor p of M , we have p ≥ 2 log log logM and also f of degree at least 2 modulo
every prime p|M . If t ≥ N ≥M/ log logM , then, for any ε > 0, the bound

Ds(M,N) = O

((
(log(2M/N)

logM

)1/2

(log logM)s+1/2

)
holds, where the implied constant depends only on s and d.

Proof. The statement follows from Lemma 1 taken with

L =

⌈(
logM

log(2M/N) log logM)

)1/2
⌉

and the bound of Theorem 8, as

gcd(a0, . . . , as−1,M) ≤ L ≤ 2 (logM)
1/2 ≤M1/2

for any nonzero vector a = (a1, . . . , as) ∈ ZZs with |a| ≤ L and sufficiently large
M . ut

Recalling Lemmas 5 and 6 we obtain:

Corollary 12. For every sufficiently large Q, the following statement holds for all
positive integers M ≤ Q except o(Q) of them:

Let the sequence (un), given by (1) with a polynomial f(X) ∈ ZZM [X], of total
degree d, be purely periodic modulo M with period t. Assume that for every prime
divisor p of M , we have p ≥ 2 log log logM and also f of degree at least 2 modulo
every prime p|M . If t ≥ N ≥M/ log logM , then, for any ε > 0, the bound

Ds(M,N) = O

((
(log(2M/N)

logM

)1/2

(log logM)s+1/2

)
holds, where the implied constant depends only on s and d.
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4. Discussion

We remark that for Theorems 7 and 8 results covering all possible N would be
desirable. We also note that for the counter-dependent generators, the Holdër
inequality was also applied to the prime modulus case [12]. However, we believe
that through a similar variant of Lemma 4, improvements on the bounds for the
arbitrary modulus case [10] and for the higher order cases (both prime and arbitrary
modulus [9, 17]) could also be obtained. We finally note that this technique does
not improve the bound of permutation polynomials modulo almost a squarefree
integer (see [11, Section 4]).
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