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SOME CLASSES OF GENERAL NONCONVEX VARIATIONAL

INEQUALITIES

MUHAMMAD ASLAM NOOR

Abstract. In this paper, we introduce and consider a new class of variational

inequalities, which is called the general nonconvex variational inequality. We
establish the equivalence between the general nonconvex variational inequali-

ties and the fixed point problems as well as the Wiener-Hopf equations using

the projection method. This alternative equivalent formulation is used to
study the existence of a solution of the general convex variational inequalities.

We also use this equivalence formulation to suggest some iterative methods.

Convergence criteria of these new iterative is also discussed under suitable
conditions. Our method of proofs is very simple as compared with other tech-

niques.

1. Introduction

Variational inequalities theory, which was introduced by Stampacchia [39], can
be viewed as a natural generalization and extension of the variational principles,
the origin of can be traced back to Fermat, Newton, Leibniz, Bernoulli, Euler
and Lagrange. It is tool of great power that can be applied to a wide variety
of problems, which arise in almost all branches of pure, applied, physical, regional
and engineering sciences. During this period, variational inequalities have played an
important, fundamental and significant part as a unifying influence and as a guide in
the mathematical interpretation of many physical phenomena. In fact, it has been
shown that the variational inequalities provide the most natural, direct, simple and
efficient framework for the general treatment of wide range of problems.Variational
inequalities have been extended and generalized in several directions for studying a
wide class of equilibrium problems arising in financial, economics, transportation,
elasticity, optimization, pure and applied sciences, see [1-40] and the references
therein. An important and useful generalization of variational inequalities is called
the general variational inequality introduced by Noor [12] in 1988, which enables
us to study the odd-order and nonsymmetric problems in a unified framework. See,
for example 2.1 and example 2.2 for some applications of the general variational
inequalities in differential equations and nonlinear optimization.
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It is worth mentioning that almost all the results regarding the existence and
iterative schemes for variational inequalities, which have been investigated and con-
sidered in the classical convexity. This is because all the techniques are based on the
properties of the projection operator over convex sets, which may not hold in gen-
eral for nonconvex sets. Motivated and inspired by the ongoing research in this area,
we introduce and consider a new class of variational inequalities, which is called the
general nonconvex variational inequality in conjunction with the uniformly prox-
regular sets. It is well-known that the prox-regular are nonconvex sets and include
the convex sets as a special case, see [7,37]. Using the idea and technique of Noor
[26-30], we show that the projection technique can be extended for the general non-
convex variational inequalities. We establish the equivalence between the general
nonconvex variational inequalities and fixed point problems using essentially the
projection technique. This equivalent alternative formulation is used to discuss the
existence of a solution of the nonconvex variational inequalities, which is Theorem
3.1. Theorem 3.1 extends the previous results for the general nonconvex variational
inequalities. We use this alternative equivalent formulation to suggest and analyze
an implicit type iterative methods for solving the nonconvex variational inequali-
ties. In order to implement this new implicit method, we use the predictor-corrector
technique to suggest a two-step method for solving the nonconvex variational in-
equalities, which is Algorithm 3.4. We also consider the convergence (Theorem 3.2)
of the new iterative method under some suitable conditions. Some special cases are
also discussed.

Related to the general nonconvex variational inequalities, we consider the prob-
lem of solving the nonconvex Wiener-Hopf equations. Using essentially the pro-
jection technique and Lemma 3.1, we show that the general nonconvex variational
inequalities are equivalent to the Wiener-Hopf equations, which is Lemma 4.1. This
alternative equivalent formulation is more general and flexible than the projection
operator technique. This alternative equivalent formulation is used to suggest and
analyze a number of iterative methods for solving the nonconvex variational in-
equalities. These iterative methods is the subject of Section 4. We also consider
the convergence criteria of the proposed iterative methods under some suitable con-
ditions. Several special cases are also discussed. Results obtained in this paper can
be viewed as refinement and improvement of the previously known results for the
variational inequalities and related optimization problems. We would like to point
out that our methods of proof are very simple as compared with other techniques.
It is an open problem to implement these methods numerically. The comparison
of these new methods with other similar methods for solving nonconvex variational
inequalities is also open problem and needs further research.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by
〈·, ·〉 and ‖.‖ respectively. Let K be a nonempty and convex set in H.

We, first of all, recall the following well-known concepts from nonlinear convex
analysis and nonsmooth analysis [7,37].

Definition 2.1. The proximal normal cone of K at u ∈ H is given by

NP
K(u) := {ξ ∈ H : u ∈ PK [u+ αξ]},



NONCONVEX VARIATIONAL INEQUALITIES 177

where α > 0 is a constant and

PK [u] = {u∗ ∈ K : dK(u) = ‖u− u∗‖}.

Here dK(.) is the usual distance function to the subset K, that is

dK(u) = inf
v∈K
‖v − u‖.

The proximal normal cone NP
K(u) has the following characterization.

Lemma 2.1. Let K be a nonempty, closed and convex subset in H. Then
ζ ∈ NP

K(u),
if and only if, there exists a constant α > 0 such that

〈ζ, v − u〉 ≤ α‖v − u‖2, ∀v ∈ K.

Poliquin et al. [37] and Clarke et al [7] have introduced and studied a new class of
nonconvex sets, which are called uniformly prox-regular sets. This class of uniformly
prox-regular sets has played an important part in many nonconvex applications such
as optimization, dynamic systems and differential inclusions.

Definition 2.2. For a given r ∈ (0,∞], a subset Kr is said to be normalized
uniformly r-prox-regular if and only if every nonzero proximal normal to Kr can
be realized by an r-ball, that is, ∀u ∈ Kr and 0 6= ξ ∈ NP

Kr
(u), one has

〈(ξ)/‖ξ‖, v − u〉 ≤ (1/2r)‖v − u‖2, ∀v ∈ K.

It is clear that the class of normalized uniformly prox-regular sets is sufficiently
large to include the class of convex sets, p-convex sets, C1,1submanifolds (possibly
with boundary) of H, the images under a C1,1 diffeomorphism of convex sets and
many other nonconvex sets; see [7,37]. It is clear that if r = ∞, then uniformly
prox-regularity of Kr is equivalent to the convexity of K. It is known that if Kr is
a uniformly prox-regular set, then the proximal normal cone NP

Kr
(u) is closed as a

set-valued mapping.

For a given nonlinear operator T, g, we consider the problem of finding u ∈ H :
g(u) ∈ Kr such that

〈Tu, g(v)− g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ Kr,(1)

which is called the general nonconvex variational inequality.

If g ≡ I, the identity operator, then problem (1) is equivalent to finding u ∈ Kr

such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ Kr,(2)

which is known as the nonconvex variational inequality, studied and introduced by
Noor [26].

If Kr ≡ K, the convex set in H, then problem (1) is equivalent to finding u ∈
H : g(u) ∈ K such that

〈Tu, g(v)− g(u)〉 ≥ 0,∀v ∈ H : g(v) ∈ K,(3)

which was introduced and studied by Noor [12] in 1988. To convey an idea of the
applications of the general variational inequalities (3) in the differential equations,
we have the following.
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Example 2.1. For simplicity, we consider the third-order obstacle boundary
value problem of finding u such that

(4)


−u′′′ ≥ f(x) on Ω = [0, 1]
u ≥ ψ(x) on Ω = [0, 1]
[−u′′′ − f(x)][u− ψ(x)] = 0 on Ω = [0, 1]
u(0) = 0, u′(0) = 0, u′(1) = 0.

where f(x) is a continuous function and ψ(x) is the obstacle function. We study
the problem (4) in the framework of variational inequality approach. To do so, we
first define the set K as

K = {v : v ∈ H2
0 (Ω) : v ≥ ψ on Ω},

which is a closed convex set in H2
0 (Ω), where H2

0 (Ω) is a Sobolev (Hilbert) space,
see [9]. One can easily show that the energy functional associated with the problem
(4) is

I[v] = −
∫ 1

0

(
d3v

dx3

)(
dv

dx

)
dx− 2

∫ 1

0

f(x)

(
dv

dx

)
dx, for all dv

dx ∈ K

=

∫ 1

0

(
d2v

dx2

)2

dx− 2

∫ 1

0

f(x)

(
dv

dx

)
dx

= 〈Tv, g(v)〉 − 2〈f, g(v)〉(5)

where

〈Tu, g(v)〉 =

∫ 1

0

(
d2u

dx2

)(
d2v

dx2

)
dx(6)

〈f, g(v)〉 =

∫ 1

0

f(x)
dv

dx
dx

and g =
d

dx
is the linear operator.

It is clear that the operator T defined by (6) is linear, g-symmetric, that is,
〈Tu, g(v)〉 = 〈Tv, g(u), 〉 ∀u, v ∈ H and g-positive, that is, 〈Tu, g(u) ≥ 0, ∀u ∈
H. Using the technique of Noor [20], one can easily show that the minimum u ∈ H
of the functional I[v] defined by (5) associated with the problem (4) on the closed
convex set K can be characterized by the inequality of type

〈Tu, g(v)− g(u)〉 ≥ 〈f, g(v)− g(u)〉, ∀g(v) ∈ K,

which is exactly the general variational inequality (3). It is worth mentioning that
a wide class of unrelated odd-order and nonsymmetric obstacle, unilateral, contact,
free, moving, and equilibrium problems arising in regional, physical, mathematical,
engineering and applied sciences can be studied in the unified and general framework
of the general variational inequalities (1), see [2-5, 14-24,32-34] and the references
therein.

Example 2.2. We now show that the minimum of a class of differentiable
nonconvex functions on g-convex set K in H can be characterized by general vari-
ational inequality (3). For the sake of completeness and to convey an idea of the
applications, we give all the details.

For this purpose, we recall the following well known concepts, see [8].
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Definition 2.3. Let K be any set in H. The set K is said to be g-convex, if there
exist a function g : H −→ H such that

g(u) + t(g(v)− g(u)) ∈ K, ∀u, v ∈ H : g(u), g(v) ∈ K, t ∈ [0, 1].

Note that every convex set is g-convex, but the converse is not true, see [8]. We
would like to mention that the g-convex set K was introduced by Noor [12] in 1998
implicitly. See also Youness [40] for other properties of the g-convex set.

Definition 2.4. The function F : K −→ H is said to be g-convex, if there exists
a function g such that

F (g(u) + t(g(v)− g(u))) ≤ (1− t)F (g(u)) + tF (g(v)),

∀u, v ∈ H : g(u), g(v) ∈ K, t ∈ [0, 1].

Clearly every convex function is g-convex, but the converse is not true, see [8,40].
We now show that the minimum of a differentiable g-convex function on the

g-convex set K in H can be characterized by the general variational inequality (1)
and this is the main motivation of our next result, which is due to Noor [16].

Lemma 2.2[16]. Let F : K −→ H be a differentiable g-convex function. Then
u ∈ H : g(u) ∈ K is the minimum of g-convex function F on K, if and only if,
u ∈ H : g(u) ∈ K satisfies the inequality

〈F ′(g(u)), g(v)− g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K,(7)

where F ′(u) is the differential of F at g(u) ∈ K.
Proof. Let u ∈ H : g(u) ∈ K be a minimum of g-convex function F on K. Then

F (g(u)) ≤ F (g(v)), ∀v ∈ H : g(v) ∈ K.(8)

Since K is a g-convex set, so, for all u, v ∈ H : g(u), g(v) ∈ K, t ∈ [0, 1], g(vt) =
g(u) + t(g(v)− g(u)) ∈ K. Setting g(v) = g(vt) in (8), we have

F (g(u)) ≤ F (g(u) + t(g(v)− g(u))).

Dividing the above inequality by t and taking t −→ 0, we have

〈F ′(g(u)), g(v)− g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K, 〈F ′(g(u)), g(v)− g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K,
which is the required result(7).

Conversely, let u ∈ H : g(u) ∈ K satisfy the inequality (7). Since F is a g-convex
function, ∀u, v ∈ H : g(u), g(v) ∈ K, t ∈ [0, 1], g(u) + t(g(v)− g(u)) ∈ K and

F (g(u) + t(g(v)− g(u))) ≤ (1− t)F (g(u)) + tF (g(v)),

which implies that

F (g(v))− F (g(u)) ≥ F (g(u) + t(g(v)− g(u)))− F (g(u))

t
.

Letting t −→ 0, and using (7), we have

F (g(v))− F (g(u)) ≥ 〈F ′(h(u)), g(v)− g(u)〉 ≥ 0,

which implies that

F (g(u)) ≤ F (g(v)), ∀v ∈ H : g(v) ∈ K
showing that u ∈ H : g(u) ∈ K is the minimum of F on K in H. �

Lemma 2.2 implies that g-convex programming problem can be studied via the
general variational inequality (1) with Tu = F ′(g(u)). In a similar way, one can
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show that the general variational inequality (1) is the Fritz-John condition of the
inequality constrained optimization problem.

If g ≡ I, the identity operator, then problem (3) is equivalent to finding u ∈ K
such that

〈Tu, v − u〉 ≥ 0, v ∈ K,(9)

which is known as the classical variational inequality, introduced and studied by
Stampacchia [39] in 1964. It turned out that a number of unrelated obstacle, free,
moving, unilateral and equilibrium problems arising in various branches of pure
and applied sciences can be studied via variational inequalities, see [1-39] and the
references therein.

It is well-known that problem (9) is equivalent to finding u ∈ K such that

0 ∈ Tu+NK(u),(10)

where NK(u) denotes the normal cone of K at u in the sense of convex analysis.
Problem (10) is called the variational inclusion associated with variational inequal-
ity (9).

Similarly, if Kr is a nonconvex (uniformly prox-regular) set, then problem (1) is
equivalent to finding u ∈ Kr such that

0 ∈ ρTu+ g(u)− g(u) + ρNP
Kr

(g(u)),(11)

where NP
Kr

(g(u)) denotes the normal cone of Kr at g(u) in the sense of nonconvex
analysis. Problem (11) is called the nonconvex variational inclusion problem asso-
ciated with nonconvex variational inequality (1). This implies that the variational
inequality (1) is equivalent to finding a zero of the sum of two monotone operators
(11). This equivalent formulation plays a crucial and basic part in this paper. We
would like to point out this equivalent formulation allows us to use the projection
operator technique for solving the general nonconvex variational inequality (1).

We now recall the well known proposition which summarizes some important
properties of the uniform prox-regular sets.

Lemma 2.3. Let K be a nonempty closed subset of H, r ∈ (0,∞] and set
Kr = {u ∈ H : d(u,K) < r}. If Kr is uniformly prox-regular, then
i. ∀u ∈ Kr, PKr (u) 6= ∅.
ii. ∀r′ ∈ (0, r), PKr

is Lipschitz continuous with constant r
r−r′ on Kr′ .

We now consider the problem of solving the nonlinear Wiener-Hopf equations.
To be more precise, let QKr

= I − PKr
, where PKr

is the projection operator, and
I is the identity operator. For given nonlinear operators T, g, consider the problem
of finding z ∈ H such that

Tg−1PKrz + ρ−1QKrz = 0,(12)

where g−1 is the inverse of the operator g. Equations of the type (12) are called
the general nonconvex Wiener-Hopf equations. Note that, if r = ∞, Then the
nonlinear Wiener-Hopf equations are exactly the same Wiener-Hopf equations as-
sociated with the general variational inequalities (3), which were introduced and
studied by Noor [14]. For g ≡ I, the identity operator and r = ∞, one can ob-
tain the original Wiener-Hopf equations which were introduced and studied by Shi
[38] in conjunction with the variational inequalities. This shows that the original
Wiener-Hopf equations are the special case of the general nonconvex Wiener-Hopf
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equations (12). The Wiener-Hopf equations technique has been used to study and
develop several iterative methods for solving variational inequalities and related
optimization problems, see [14-33].

Definition 2.6. An operator T : H → H is said to be:
(i) strongly monotone, if and only if, there exists a constant α > 0 such that

〈Tu− Tv, u− v〉 ≥ α||u− v||2, ∀u, v ∈ H.
(ii) Lipschitz continuous, if and only if, there exists a constant β > 0 such that

||Tu− Tv|| ≤ β||u− v||, ∀u, v ∈ H.

3. Projection Iterative Algorithms

In this section, we establish the equivalence between the general nonconvex vari-
ational inequality (1) and the fixed point problem using the projection operator
technique. This alternative formulation is used to discuss the existence of a solu-
tion of the problem (1) and to suggest some new iterative methods for solving the
general nonconvex variational inequality (1).

Lemma 3.1. u ∈ H : g(u) ∈ Kr is a solution of the general nonconvex variational
inequality (1) if and only if u ∈ H : g(u) ∈ Kr satisfies the relation

(13) g(u) = PKr
[g(u)− ρTu],

where PKr is the projection of H onto the uniformly prox-regular set Kr.

Proof. Let u ∈ H : g(u) ∈ Kr be a solution of (1). Then, for a constant ρ > 0,

0 ∈ g(u) + ρNP
Kr

(g(u))− (g(u)− ρTu) = (I + ρNP
Kr

)(g(u))− (g(u)− ρTu)

⇐⇒
g(u) = (I + ρNP

Kr
)−1[g(u)− ρTu] = PKr

[g(u)− ρTu],

where we have used the well-known fact that PKr ≡ (I +NP
Kr

)−1. �

Lemma 3.1 implies that the general nonconvex variational inequality (1) is equiv-
alent to the fixed point problem (13). This alternative equivalent formulation is
very useful from the numerical and theoretical point of views.

We rewrite the the relation (13) in the following form

F (u) = u− g(u) + PKr
[g(u)− ρTu],(14)

which is used to study the existence of a solution of the general nonconvex varia-
tional inequality (1).

We now study those conditions under which the general nonconvex variational
inequality (1) has a solution and this is the main motivation of our next result.

Theorem 3.1. Let PKr be the Lipschitz continuous operator with constant δ =
r

r−r′ . Let T, g be strongly monotone with constants α > 0, σ > 0 and Lipschitz

continuous with constants β > 0, δ > 0, respectively. If there exists a constant
ρ > 0 such that

|ρ− α

β2
| <

√
δ2α2 − β2(1− (1 + δ)k))2))

δβ2
,(15)

δα > β
√
k(1 + δ)(2− k(1 + δ)), k <

2

1 + δ
,(16)
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where

k =
√

1− 2σ + δ2,(17)

then there exists a solution of the general nonconvex variational inequality (1).

Proof. From Lemma 3.1, it follows that problems (13) and (1) are equivalent.
Thus it is enough to show that the map F (u), defined by (14), has a fixed point.
For all u 6= v ∈ Kr, we have

‖F (u)− F (v)‖ = ‖u− v − (g(u)− g(v))‖+ ‖PKr
[g(u)− ρTu]− PKr

[v − ρTv]||
≤ ‖u− v − (g(u)− g(v))‖+ δ‖g(u)− g(v)− ρ(Tu− Tv)‖,
≤ ‖u− v − (g(u)− g(v))‖+ δ‖u− v − ρ(Tu− Tv)‖

+δ‖u− v − (g(u)− g(v))‖,(18)

where we have used the fact that the operator PKr
is a Lipschitz continuous operator

with constant δ.
Since the operator T is strongly monotone with constant α > 0 and Lipschitz

continuous with constant β > 0, it follows that

‖u− v − ρ(Tu− Tv)‖2 ≤ ‖u− v‖2 − 2ρ〈Tu− Tv, u− v〉+ ρ2‖Tu− Tv‖2

≤ (1− 2ρα+ ρ2β2)‖u− v‖2.(19)

In a similar way, we have

‖u− v − (g(u)− g(v))‖ ≤
√

1− 2σ + δ2‖u− v| = k‖u− v‖,(20)

where σ > 0 is the strongly monotonicity constant and δ > 0 is the Lipschitz
continuity constant of the operator g respectively.

From (18), (19) and (20), we have

‖F (u)− F (v)‖ ≤
{
k + δ

{
k +

√
1− 2αρ+ β2ρ2)

}
‖u− v‖

∥∥∥
= θ‖u− v‖,

where

θ = k + δ
{√

1− 2αρ+ β2ρ2
}
.(21)

From (15) and (16), it follows that θ < 1, which implies that the map F (u) defined
by (14), has a fixed point, which is a unique solution of (1). �

This fixed point formulation (13) is used to suggest the following iterative method
for solving the nonconvex variational inequality (1).

Algorithm 3.1. For a given u0 ∈ Kr, find the approximate solution un+1 by the
iterative scheme

un+1 = (1− αn)un − αn{un − g(un)

+PKr
[g(un)− ρTun]}, n = 0, 1, 2, . . . ,(22)

where αn ∈ [0, 1],∀n ≥ 0 is a constant. Algorithm 3.1 is also called the Mann
iteration process.

For αn = 1, Algorithm 3.1 collapse to:

Algorithm 3.2. For a given u0 ∈ Kr, find the approximate solution un+1 by the
iterative scheme

g(un+1) = PKr
[g(un)− ρTun], n = 0, 1, 2, . . .
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We again use the fixed formulation to suggest and analyze an iterative method
for solving the nonconvex variational inequalities (1) as:

Algorithm 3.3. For a given u0 ∈ Kr, find the approximate solution un+1 by the
iterative scheme

g(un+1) = PKr
[g(un+1)− ρTun+1], n = 0, 1, 2, . . .

Algorithm 3.3 is an implicit type iterative method, which is difficult to implement.
To implement Algorithm 3.3, we use the predictor-corrector technique. Here we use
the Algorithm 3.1 as a predictor and Algorithm 3.3 as a corrector. Consequently,
we have the following iterative method

Algorithm 3.4. For a given u0 ∈ Kr, find the approximate solution un+1 by the
iterative schemes

g(yn) = PKr
[g(un)− ρTun]

g(un+1) = PKr
[g(yn)− ρTyn], n = 0, 1, 2, . . .

which is called the two-step or splitting type iterative method for solving the general
nonconvex variational inequalities (1). It is worth mentioning that Algorithm 3.4
can be suggested by using the updating the technique of the solution.

In this paper, we suggest and analyze the following two-step iterative method
for solving the general nonconvex variational inequalities (1).

Algorithm 3.5. For a given u0 ∈ Kr, find the approximate solution un+1 by the
iterative schemes

yn = (1− βn)un + βn{yn − g(yn) + PKr
[g(un)− ρTun]}

un+1 = (1− αn)un + αn{un − g(un) + PKr
[g(yn)− ρTyn]}, n = 0, 1, 2, . . . ,

where αn, βn ∈ [0, 1], ∀n ≥ 0.
Clearly for αn = βn = 1, Algorithm 3.5 reduces to Algorithm 3.4. It is worth

mentioning that, if r = ∞, then the nonconvex set Kr reduces to a convex set K.
Consequently Algorithms 3.1- 3.5 collapse to the following algorithms for solving
the general variational inequalities (6). We would like to point that Algorithm 3.4
appears to be a new one for solving the variational inequalities (2)

We now consider the convergence analysis of Algorithm 3.1 and this is the main
motivation of our next result. In a similar way, one can consider the convergence
criteria of other Algorithms.

Theorem 3.2. Let PKr
be the Lipschitz continuous operator with constant δ =

r
r−r′ . Let the operators T, g : H −→ H be strongly monotone with constants α >

0, σ > 0 and Lipschitz continuous with constants with β > 0, δ > 0, respectively. If
(15), (16) hold and αn,∈ [0, 1], ∀n ≥ 0 and

∑∞
n=0 αn =∞, then the approximate

solution un obtained from Algorithm 3.1 converges to a solution u ∈ Kr satisfying
the nonconvex variational inequality (1).

Proof. Let u ∈ H : g(u) ∈ Kr be a solution of the general nonconvex variational
inequality (2.1). Then, using Lemma 3.1, we have

u = (1− αn)u+ αn{u− g(u) + PKr
[g(u)− ρTu]},(23)

where 0 ≤ αn ≤ 1 is a constant.
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From (19), (20), (17), (22), (23) and using the Lipschitz continuity of the pro-
jection PKr with constant δ, we have

‖un+1 − u‖ = ‖(1− αn)(un − u) + αn{PKr [g(un)− ρTun]− PKr [g(u)− ρTu]}‖
+αn‖un − u− (g(un)− g(u)‖

≤ (1− αn)‖un − u‖+ αn‖PKr [g(un)− ρTun]− PKr [g(u)− ρTu]‖+ αnk‖un − u‖
≤ (1− αn)‖un − u‖+ αnδ‖g(un)− g(u) + ρ(Tun − Tu)‖+ αnk‖un − u‖
≤ (1− αn)‖un − u‖+ αnk‖un − u‖

δ‖un − u− (g(un)− g(u))‖+ δ‖un − u− ρ(Tun − Tu)‖

≤ (1− αn)‖un − u‖+ αn

{
k + δ

[
k +

√
1− 2αρ+ β2ρ2

]}
‖un − u‖

= [1− αn(1− θ)] ‖un − u‖

≤
n∏

i=0

[1− αi(1− θ)] ‖u0 − u‖,

where, using (15), we have

θ = k + δ
√

1− 2ρα+ β2ρ2 < 1.

Since
∑∞

n=0 αn diverges and 1−θ > 0, we have limn→∞ {
∏n

i=0[1− (1− θ)αi]} = 0.
Consequently the sequence {un} convergences strongly to u. This completes the
proof. �

4. Wiener-Hopf Equations Technique

In this section, we first establish the equivalence between the general nonconvex
variational inequality (1) and the Wiener-Hopf equations (12) using essentially the
projection method. This equivalence is used to suggest and analyze some iterative
methods for solving the general nonconvex variational inequality (1).

Using Lemma 3.1, we show that the general nonconvex variational inequality (1)
is equivalent to the Wiener-Hopf equations (12).

Lemma 4.1. The general nonconvex variational inequality (1) has a solution
u ∈ H : g(u) ∈ Kr if and only if the Wiener-Hopf equations (12) have a solution
z ∈ H, provided

g(u) = PKrz(24)

z = g(u)− ρTu,(25)

where ρ > 0 is a constant.

Proof. Let u ∈ H : g(u) ∈ Kr be a solution of (1). Then, from Lemma 3.1, we
have

g(u) = PKr
[g(u)− ρTu].(26)

Taking z = g(u)− ρTu in (26), we have

g(u) = PKr
z.(27)

From (26) and (27), we have

z = g(u)− ρTu = PKr
z − ρTg−1PKr

z,
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which shows that z ∈ H is a solution of the Wiener-Hopf equations (12). This
completes the proof. �

From Lemma 4.1, we conclude that the general nonconvex variational inequality
(1) and the Wiener-Hopf equations (12) are equivalent. This alternative formulation
plays an important and crucial part in suggesting and analyzing various iterative
methods for solving variational inequalities and related optimization problems. In
this paper, by suitable and appropriate rearrangement, we suggest a number of new
iterative methods for solving the general nonconvex variational inequality (1).

I. The Wiener-Hopf equations (12) can be written as

PKr
z = −ρTg−1PKr

z,

which implies that, using(4.2)

z = PKrz − ρTg−1PKrz = g(u)− ρTu.
This fixed point formulation enables us to suggest the following iterative method
for solving the general nonconvex variational inequality (1).

Algorithm 4.1. For a given z0 ∈ H, compute zn+1 by the iterative schemes

g(un) = PKr
zn(28)

zn+1 = (1− αn)zn + αn{g(un)− ρTun, } n = 0, 1, 2, .. . . . ,(29)

where 0 ≤ αn ≤ 1, for all n ≥ 0 and
∑∞

n=0 αn =∞.
II. The Wiener-Hopf equations (12) may be written as

z = PKr
z − ρTg−1PKr

z + (1− ρ−1)QKr
z

= g(u)− ρTu+ (1− ρ−1)QKrz.

Using this fixed point formulation, we suggest the following iterative method.

Algorithm 4.2. For a given z0 ∈ H, compute zn+1 by the iterative schemes

g(un) = PKr
zn

zn+1 = (1− αn)zn + αn{g(un)− ρTun + (1− ρ−1)QKrzn, } n = 0, 1, 2, . . . ,

where 0 ≤ αn ≤ 1, for all n ≥ 0 and
∑∞

n=0 αn =∞.
III. If the operator T is linear and T−1 exists, then the Wiener-Hopf equation (12)
can be written as

z = (I − ρ−1T−1)QKrz,

which allows us to suggest the iterative method.
Algorithm 4.3. For a given z0 ∈ H, compute zn+1 by the iterative scheme

zn+1 = (1− αn)zn + αn{(I − ρ−1T−1)QKr
zn, } n = 0, 1, 2 . . . ,

where 0 ≤ αn ≤ 1, for all n ≥ 0 and
∑∞

n=0 αn =∞.
We would like to point out that one can obtain a number of iterative methods for

solving the general nonconvex variational inequality (1) for suitable and appropriate
choices of the operators T, h and the space H. This shows that iterative methods
suggested in this paper are more general and unifying ones.

We now study the convergence analysis of Algorithm 4.1. In a similar way, one
can analyze the convergence analysis of other iterative methods.

Theorem 4.1. Let the operators T,A satisfy all the assumptions of Theorem
3.1. If the condition (15) holds and αn ∈ [0, 1], ∀n ≥ 0, and

∑∞
n=0 αn =∞, then
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the approximate solution {zn} obtained from Algorithm 4.1 converges to a solution
z ∈ H satisfying the Wiener-Hopf equation (12) strongly.

Proof. Let u ∈ H be a solution of (1). Then, using Lemma 4.1, we have

z = (1− αn)z + αn{g(u)− ρTu},(30)

where 0 ≤ αn ≤ 1, and
∑∞

n=0 an =∞.
From(29), (30), (19) and (20), we have

‖zn+1 − z‖ ≤ (1− αn)‖zn − z‖+ αn‖g(un)− g(u)− ρ(Tun − Tu)‖
≤ (1− αn)‖zn − z‖+ αn {‖un − u− (g(un)− g(u))‖+ ‖un − u− ρ(Tun − Tu)‖}

≤ (1− αn)‖zn − z‖+ αn

{
k +

√
1− 2ρα+ β2ρ2

}
‖un − u‖.(31)

Also from (28), (24) and the Lipschitz continuity of the projection operator PKr

with constant δ, we have

‖un − u‖ = ‖un − u− (g(un)− g(u))‖+ ‖PKr
zn − PKr

z‖
= k‖un − u‖+ δ‖zn − z‖

from which, we have

‖un − u‖ ≤
δ

1− k
‖zn − z‖.(32)

Combining (31), and (32), we have

‖zn+1 − z‖ ≤ (1− αn)‖zn − z‖+ αnδ
k +

√
1− 2ρα+ β2ρ2

1− k
‖zn − z‖

= (1− αn)‖zn − z‖+ αnθ1‖zn − z‖,(33)

where

θ1 = δ
k +

√
1− 2ρα+ ρ2β2

1− k
From (15) and (16), we see that θ1 < 1 and consequently

||zn+1 − z|| ≤ (1− αn)||zn − z||+ αnθ1||zn − z||
= [1− (1− θ1)αn]||zn − z||

≤
n∏

i=0

[1− (1− θ1)αi]||z0 − z||.

Since
∑∞

n=0 αn diverges and 1− θ1 > 0, we have limn→∞
∏n

i=0[1− (1− θ1)αi] = 0.
Consequently the sequence {zn} convergences strongly to z inH, the required result.
�

Acknowledgement. The author would like to express his gratitude to Dr. M.
Junaid Zaidi, Rector, CIIT, for providing excellent research facilities. The authhor
would like to thank Prof. Dr. Enkelejd Hashorva for the kind invitation.



NONCONVEX VARIATIONAL INEQUALITIES 187

References

[1] H. Brezis, Operateurs maximaux monotone, Mathematical Studies, No. 5, North-Holland,

1973.
[2] A. Bnouhachem and M. Aslam Noor, Numerical methods for general mixed variational in-

equalities, Appl. Math. Comput. 204(2008), 27-36.

[3] A. Bnouhachem, M. Aslam Noor and M. Khalfaoui, Modified descent-projection method for
solving variational inequalities, Appl. Math. Comput. 190(2008), 1691-1700.

[4] A. Bnouhachem and M. Aslam Noor, Numerical comparison between prediction-correction

methods for general variational inequalities, Appl. Math. Comput. 186(2007), 496-505.
[5] A. Bnouhachem and M. Aslam Noor, Inexact proximal point method for general variational

inequalities, J. Math. Anal. Appl. 324(2006), 1195-1212.

[6] M. Bounkhel, L. Tadj and A. Hamdi, Iterative schemes to solve nonconvex variational prob-
lems, J. Inequal. Pure Appl. Math.,4(2003), 1-14.

[7] F. H. Clarke, Y. S. Ledyaev and P. R. Wolenski, Nonsmooth Analysis and Control Theory,
Springer-Verlag, Berlin, 1998.

[8] G. Cristescu and L. Lupsa, Non-connected Convexities and Applications, Kluwer Academic

Publishers, Dordrecht, Holland, 2002.
[9] D. Kinderlehrer and G. Stampacchia, An Introduction to Variational Inequalities and Their

Applications, SIAM, Philadelphia, 2000.

[10] J. L. Lions and G. Stampacchia, Variational inequalities, Comm. Pure Appl. Math. 20(1967),
493-512.

[11] P. L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM

J. Numer. Anal. 16(1979), 964-979.
[12] M. Aslam Noor, General variational inequalities, Appl. Math. Letters, 1(1988), 119-121.

[13] M. Aslam Noor, Quasi variational inequalities, Appl. Math. Letters, 1(1988), 367-370.

[14] M. Aslam Noor, Wiener-Hopf equations and variational inequalities, J. Optim. Theory Appl.
79(1993), 197-206.

[15] M. Aslam Noor, Some recent advances in variational inequalities, Part II, other concepts,
New Zealand J. Math. 26(1997), 229-255.

[16] M. Aslam Noor, New approximation schemes for general variational inequalities, J. Math.

Anal. Appl. , 251(2000), 217-229.
[17] M. Aslam Noor, A Wiener-Hopf dynamical system for variational inequalities, New Zealand

J. Math. 31(2002), 173-182.

[18] M. Aslam Noor, New extragradient-type methods for general variational inequalities. J. Math.
Anal. Appl. 277(2003), 379-395.

[19] M. Aslam Noor, Mixed quasi variational inequalities, Appl. Math. Computation, 146(2003),

553-578.
[20] M. Aslam Noor, Some developments in general variational inequalities, Appl. Math. Compu-

tation, 152(2004), 199-277.

[21] M. Aslam Noor, Iterative schemes for nonconvex variational inequalities, J. Optim. Theory
Appl. 121(2004), 385-395.

[22] M. Aslam Noor, Fundamentals of mixed quasi variational inequalities, Inter. J. Pure Appl.
Math. 15(2004), 137-258.

[23] M. Aslam Noor, Fundamentals of equilibrium problems, Math. Inequal. Appl. 9(2006), 529-

566.
[24] M. Aslam Noor, Merit functions for general variational inequalities, J. Math. Anal. Appl.

316(2006), 736-752.
[25] M. Aslam Noor, Differentiable nonconvex functions and general variational inequalities, Appl.

Math. Computation, 199 (2008), 623-630
[26] M. Aslam Noor, Some iterative methods for general nonconvex variational inequalities, Com-

put. Math. Modeling, 21(2010).
[27] M. Aslam Noor, Projection methods for nonconvex variational inequalities, Optim. Let-

ters(2009), DOI: 10.1007/s11590-009-0121.1.

[28] M. Aslam Noor, Implicit iterative methods for nonconvex variational inequalities, J. Optim.
Theory Appl. 143(2009).



188 MUHAMMAD ASLAM NOOR

[29] M. Aslam Noor, Iterative methods for general nonconvex variational inequalities, Albanian

J. math. 3(2009).

[30] M. Aslam Noor, Variational Inequalities and Applications, Lecture Notes, Mathematics De-
partment, COMSATS Institute of Information Technology, Islamabad, Pakistan, 2007-2009.

[31] M. Aslam Noor and K. Inayat Noor, Projection algorithms for solving system of general

variational inequalities, Nonl. Anal. 70(2009), 2700-2706.
[32] M. Aslam Noor, K. Inayat Noor and Th. M. Rassias, Some aspects of variational inequalities,

J. Comput. Appl. Math. 47(1993), 285-312.

[33] M. Aslam Noor, K. Inayat Noor and H. Yaqoob, On general mixed variational inequalities,
Acta Appl. Math. (2008), DOI 10.1007/s10440-008-9402.4

[34] M. Aslam Noor and Th. M. Rassias, On nonconvex equilibrium problems, J. Math. Anal.

Appl. 312(2005), 289-299.
[35] L. P. Pang, J. Shen and H. S. Song, A modified predictor-corrector algorithm for solving

nonconvex generalized variational inequalities, Computers Math. Appl. 54(2007), 319-325.
[36] M. Patriksson, Nonlinear Programming and Variational Inequality Problems: A Unified Ap-

proach, Kluwer Academic Publishers, Dordrecht, 1998.

[37] R. A. Poliquin, R. T. Rockafellar and L. Thibault, Local differentiability of distance functions,
Trans. Amer. Math. Soc., 352(2000), 5231-5249.

[38] P. Shi, Equivalence of variational inequalities with Wiener-Hopf equations, Proc. Amer. Math.

Soc., 111(1991), 339-346.
[39] G. Stampacchia, Formes bilineaires coercitives sur les ensembles convexes, C. R. Acad. Sci,

Paris, 258(1964), 4413-4416

[40] E. A. Youness, E-convex sets, E-convex functions and E-convex programming, J. Optim.
Theory Appl. 102(1999),439-450.

COMSATS Institute of Information Technology, Mathematics Department, Islam-

abad, Pakistan
E-mail address: noormaslam@gmail.com and noormaslam@hotmail.com


