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AUXILIARY PRINCIPLE TECHNIQUE FOR NONCONVEX
VARIATIONAL INEQUALITIES

MUHAMMAD ASLAM NOOR

Abstract. In this paper, we suggest and analyze some iterative methods for

solving nonconvex variational inequalities using the auxiliary principle tech-
nique, the convergence of these methods either requires only pseudomono-

tonicity or partially relaxed strongly monotonicity. Our proofs of convergence

are very simple. As special cases, we obtain earlier known results for solving
variational inequalities involving the convex sets.

1. Introduction

Variational inequalities theory, which was introduced by Stampacchia [30], can
be viewed as an important and significant extension of the variational principles,
the origin of which can be traced back to Fermat, Bernoulli brother, Euler, La-
grange. This provides us with a simple, general and unified framework to study a
wide class of problems arising in pure and applied sciences. This theory combines
the theory of extremal problems and monotone operators under a unified view-
point. It is perhaps part of the fascinating of this theory that so many branches
of pure and applied sciences are involved. During the last five decades, there has
been considerable activity in the development of numerical techniques for solving
variational inequalities. There are a substantial number of numerical methods in-
cluding projection method and its variant forms, Wiener-Hopf equations, auxiliary
principle, and descent framework for solving variational inequalities and comple-
mentarity problems; see [1,2,4-28]. It is worth mentioning that almost all the results
regarding the existence and iterative schemes for solving variational inequalities and
related optimization problems are being considered in the convexity setting. This
is because all the techniques are based on the properties of the projection operator
over convex sets, which may not hold in general, when the sets are nonconvex. In
recent years, Noor [13, 18-21,24], Bounkhel et al [2] and Pang et al [28] have consid-
ered variational inequality in the context of uniformly prox-regular sets. They have
shown that the nonconvex variational inequalities are equivalent to the fixed point
problems using the projection techniques. They have used this alternative equiva-
lent formulation to suggest and analyze some projection-type iterative schemes for
solving nonconvex variational inequalities. It has been shown that the convergence
of these projection-type methods requires that the operator must be both strongly
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monotone and Lipschitz continuous. These strict conditions rule out many its ap-
plications. Secondly it is very difficult to evaluate the projection of the space onto
the uniformly prox-regular sets. To overcome this drawback, we use the auxiliary
principle technique, which is mainly due to Glowinski, Lions and Tremolieres [5].
Noor [10-15, 24] has used this technique to develop some iterative schemes for solv-
ing various classes of variational inequalities. We point out that this technique does
not involve the projection of the operator and is flexible. In this paper, we show
that the auxiliary principle technique can be used to suggest and analyze a class
of iterative methods for solving nonconvex variational inequalities. We also prove
that the convergence of these new methods either require pseudomonotonicity or
partially relaxed strongly monotonicity, which are weaker conditions. In this re-
spect, our results represent an improvement and refinement of the known results
for nonconvex variational inequalities.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by
〈·, ·〉 and ‖.‖ respectively. Let K be a nonempty and convex set in H.

We, first of all, recall the following well-known concepts from nonlinear convex
analysis and nonsmooth analysis [3,29].
Definition 2.1. The proximal normal cone of K at u ∈ H is given by

NP
K(u) := {ξ ∈ H : u ∈ PK [u+ αξ]},

where α > 0 is a constant and

PK [u] = {u∗ ∈ K : dK(u) = ‖u− u∗‖}.

Here dK(.) is the usual distance function to the subset K, that is

dK(u) = inf
v∈K
‖v − u‖.

The proximal normal cone NP
K(u) has the following characterization.

Lemma 2.1. Let K be a nonempt, closed and convex subset in H. Then ζ ∈
NP

K(u) if and only if there exists a constant α > 0 such that

〈ζ, v − u〉 ≤ α‖v − u‖2, ∀v ∈ K.

Definition 2.2. The Clarke normal cone, denoted by NC
K(u), is defined as

NP
K(u) = co[NP

K(u)],

where co means the closure of the convex hull. Clearly NP
K(u) ⊂ NC

K(u), but the
converse is not true. Note that NP

K(u) is always closed and convex, whereas NC
K(u)

is convex, but may not be closed, see [29].
Poliquin et al. [29] and Clarke et al [3] have introduced and studied a new

class of nonconvex sets, which are called uniformly prox-regular sets. This class
of uniformly prox-regular sets has played an important part in many nonconvex
applications such as optimization, dynamic systems and differential inclusions.
Definition 2.3. For a given r ∈ (0,∞], a subset Kr is said to be normalized
uniformly r-prox-regular if and only if every nonzero proximal normal to Kr can
be realized by an r-ball, that is, ∀u ∈ Kr and 0 6= ξ ∈ NP

Kr
(u), one has

〈(ξ)/‖ξ‖, v − u〉 ≤ (1/2r)‖v − u‖2, ∀v ∈ K.
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It is clear that the class of normalized uniformly prox-regular sets is sufficiently
large to include the class of convex sets, p-convex sets, C1,1submanifolds (possibly
with boundary) of H, the images under a C1,1 diffeomorphism of convex sets and
many other nonconvex sets; see [3,29]. It is clear that if r = ∞, then uniformly
prox-regularity of Kr is equivalent to the convexity of K. It is known that if Kr is
a uniformly prox-regular set, then the proximal normal cone NP

Kr
(u) is closed as a

set-valued mapping.
For a given nonlinear operator T, we consider the problem of finding u ∈ Kr

such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ Kr,(1)

which is called the nonconvex variational inequality, which was introduced and
studied by Noor [18-21,24]. See also [2, 27] for the variant forms of nonconvex
variational inequalities.

We note that, if Kr ≡ K, the convex set in H, then problem (2.1) is equivalent
to finding u ∈ K such that

(2) 〈Tu, v − u〉 ≥ 0, ∀v ∈ K.

Inequality of type (2) is called the variational inequality, which was introduced and
studied by Stampacchia [30] in 1964. It turned out that a number of unrelated ob-
stacle, free, moving, unilateral and equilibrium problems arising in various branches
of pure and applied sciences can be studied via variational inequalities, see [1-30]
and the references therein.

It is well-known that problem (2) is equivalent to finding u ∈ K such that

0 ∈ Tu+NK(u),(3)

where NK(u) denotes the normal cone of K at u in the sense of convex analysis.
Problem (3) is called the variational inclusion associated with variational inequality
(2).

Similarly, if Kr is a nonconvex (uniformly prox-regular) set, then problem (1) is
equivalent to finding u ∈ Kr such that

0 ∈ Tu+NP
Kr

(u),(4)

whereNP
Kr

(u) denotes the normal cone ofKr at u in the sense of nonconvex analysis.
Problem (4) is called the nonconvex variational inclusion problem associated with
nonconvex variational inequality (1). This implies that the variational inequality
(1) is equivalent to finding a zero of the sum of two monotone operators (4).

3. Main Results

In this section, we use the auxiliary principle technique of Glowinski, Lions and
Tremolieres [5] to suggest and analyze a some iterative methods for solving the
nonconvex variational inequality (1). The main advantage of this technique does
not involve the concept of the projection, which is the main advantage of this
technique.

For a given u ∈ Kr, a uniformly prox-regular set in H, consider the problem of
finding a u solution w ∈ Kr such that

〈ρTw + w − u, v − w〉 ≥ 0, ∀v ∈ Kr,(5)
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where ρ > 0 is a constant. Inequality of type (5) is called the auxiliary nonconvex
variational inequality. Note that if w = u, then w is a solution of (1). This simple
observation enables us to suggest the following iterative method for solving the
nonconvex variational inequalities (1).
Algorithm 3.1. For a given u0 ∈ Kr, compute the approximate solution un+1

by the iterative scheme

〈ρTun+1 + un+1 − un, v − un+1〉 ≥ 0, ∀v ∈ Kr.(6)

Algorithm 3.1 is called the proximal point algorithm for solving noconvex variational
inequality (1). In particular, if r = ∞, then the uniformly prox-regular set Kr

becomes the standard convex set K, and consequently Algorithm 3.1 reduces to:

Algorithm 3.2. For a given u0 ∈ K, compute the approximate solution un+1

by the iterative scheme

〈ρTun+1 + un+1 − un, v − un+1〉 ≥ 0, ∀v ∈ K,
which is known as the proximal point algorithm for solving variational inequalities
(2) and has been studied extensively, see [2,4-27].

For the convergence analysis of Algorithm 3.1, we recall the following concepts
and results.

Definition 3.1. For all u, v, z ∈ H, an operator T : H → H is said to be:
(i) monotone, if

〈Tu− Tv, u− v〉 ≥ 0.

(ii) pseudomonotone, if

〈Tu, v − u〉 ≥ 0 implies that 〈Tv, u− v〉 ≤ 0.

(iii) partially relaxed strongly monotone, if there exists a constant α > 0 such
that

〈Tu− Tv, z − v〉 ≥ −α‖z − u‖2.

Note that for z = u, partially relaxed strongly monotonicity reduces to mono-
tonicity. It is known that cocoercivity implies partially relaxed strongly monotonic-
ity, but the converse is not true. It is known that monotonicity implies pseudomono-
tonicity; but the converse is not true. Consequently, the class of pseudomonotone
operators is bigger than the one of monotone operators.

Lemma 3.1. ∀u, v ∈ H,
2〈u, v〉 = ‖u+ v‖2 − ‖u‖2 − ‖v‖2.(7)

We now consider the convergence criteria of Algorithm 3.1. The analysis is in
the spirit of Noor [13,14,15,24].

Theorem 3.1. Let the operator T : Kr −→ H be pseudomonotone. If un+1 is
the approximate solution obtained from Algorithm 3.2 and u ∈ Kr is a solution of
(1), then

‖u− un+1‖2 ≤ ‖u− un‖2 − ‖un − un+1‖2.(8)

Proof. Let u ∈ Kr be a solution of (1). Then

〈Tv, v − u〉 ≥ 0, ∀v ∈ Kr,(9)
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since T is pseudomonotone.
Taking v = un+1 in (5), we have

〈Tun+1, un+1 − u〉 ≥ 0.(10)

Setting v = u in (6), and using (10), we have

〈un+1 − un, u− un+1〉 ≥ ρ〈Tun+1, un+1 − u〉 ≥ 0.(11)

Setting v = u− un+1 and u = un+1 − un in (7), we obtain

2〈un+1 − un, u− un+1〉 = ‖u− un‖2 − ‖un − un+1‖2 − ‖u− un+1‖2.(12)

From (11) and (12), we obtain (8), the required result. �

Theorem 3.2. Let H be a finite dimension subspace and let un+1 be the
approximate solution obtained from Algorithm 3.1. If u ∈ K1 is a solution of (1),
then limn−→∞ un = u.

Proof. Let u ∈ Kr be a solution of (1). Then it follows from (8) that the sequence
{un} is bounded and

∞∑
n=0

‖un − un+1‖2 ≤ ‖u0 − u‖2,

which implies that

lim
n−→∞

‖un − un+1‖ = 0.(13)

Let û be a cluster point of the sequence {un} and let the subsequence {u
j
} of the

sequence {un} converge to û ∈ Kr. replacing un by unj
in (6) and taking the limit

nj −→∞ and using (13), we have

〈T û, v − û〉 ≥ 0, ∀ v ∈ Kr,

which implies that û solves the nonconvex variational inequality (1) and

‖un − un+1‖2 ≤ ‖û− un‖2.

Thus it follows from the above inequality that the sequence {un} has exactly one
cluster point û and limn−→∞ un = û. the required result. �

We note that for r = ∞, the r-prox-regular set K becomes a convex set and
nonconvex variational inequality (1) collapses to variational inequality (2). Thus
our results include the previous known results as special cases.

It is well-known that to implement the proximal point methods, one has to
calculate the approximate solution implicitly, which is in itself a difficult problem.
To overcome this drawback, we suggest another iterative method, the convergence
of which requires only partially relaxed strongly monotonicity, which is a weaker
condition that cocoercivity.

For a given u ∈ Kr, consider the problem of finding w ∈ Kr such that

〈ρTu+ w − u, v − w〉 ≥ 0, ∀ v ∈ Kr,(14)

which is also called the auxiliary variational inequality. Note that problems (6) and
(14) are quite different. If w = u, then clearly w is a solution of the nonconvex
variational inequality (1). This fact enables us to suggest and analyze the following
iterative method for solving the nonconvex variational inequality (1).
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Algorithm 3.3. For a given u0 ∈ Kr, compute the approximate solution un+1

by the iterative scheme

〈ρTun + un+1 − un, v − un+1〉 ≥ 0, ∀v ∈ Kr.(15)

Note that for r = ∞, the uniformly prox-regular set Kr becomes a convex set K
and Algorithm 3.3 reduces to:

Algorithm 3.4. For a given u0 ∈ K, calculate the approximate solution un+1 by
the iterative scheme

〈ρTun + un+1 − un, v − un+1〉 ≥ 0, ∀v ∈ K,

or equivalently

un+1 = PK [un − ρTun], n = 0, 1, 2, . . . ,

which is known as the projection iterative method for solving convex variational
inequalities (2) and have been studied extensively.

We now study the convergence of Algorithm 3.3 and this is the main motivation
of our next result.

Theorem 3.3. Let the operator T be partially relaxed strongly monotone with
constant α > 0. If un+1 is the approximate solution obtained from Algorithm 3.3
and u ∈ Kr is a solution of (1), then

‖u− un+1‖2 ≤ ‖u− un‖2 − {1− 2ρα}‖un − un+1‖2.(16)

Proof. Let u ∈ Kr be a solution of (1). Then

〈Tu, v − u〉 ≥ 0, ∀ v ∈ Kr.(17)

Taking v = un+1 in (17), we have

〈Tu, un+1 − u〉 ≥ 0.(18)

Letting v = u in (15), we obtain

〈ρTun + un+1 − un, u− un+1〉 ≥ 0,

which implies that

〈un+1 − un, u− un+1〉 ≥ 〈ρTun, un+1 − u〉
≥ ρ〈Tun − Tu, un+1 − u〉
≥ −αρ‖un − un+1‖2.(19)

since T is partially relaxed strongly monotone with constant α > 0.
Combining (19) and (12), we obtain the required result (16). �
Using essentially the technique of Theorem 3.2, one can study the convergence

analysis of Algorithm 3.3.
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