
ALBANIAN JOURNAL
OF MATHEMATICS
Volume 3, Number 2, Pages 81–85
ISSN 1930-1235: (2009)

A REMARK ON GIUGA’S CONJECTURE AND LEHMER’S
TOTIENT PROBLEM

WILLIAM D. BANKS, C. WESLEY NEVANS, AND CARL POMERANCE

Abstract. Giuga has conjectured that if the sum of the (n − 1)-st powers

of the residues modulo n is −1 (mod n), then n is 1 or prime. It is known
that any counterexample is a Carmichael number. Lehmer has asked if ϕ(n)

divides n−1, with ϕ being Euler’s function, must it be true that n is 1 or prime.

No examples are known, but a composite number with this property must be
a Carmichael number. We show that there are infinitely many Carmichael

numbers n that are not counterexamples to Giuga’s conjecture and also do

not satisfy ϕ(n) | n− 1.

1. Introduction

1.1. Carmichael numbers. In a letter to Frenicle dated October 18, 1640, Fermat
wrote that if p is a prime number, then p divides ap−1 − 1 for any integer a not
divisible by p. This result, known as Fermat’s little theorem, is equivalent to the
statement:

ap ≡ a (mod p) for all a ∈ Z.
Almost three centuries later, Carmichael [5] began an in-depth study of composite

natural numbers n with the property that

an ≡ a (mod n) for all a ∈ Z;

these are now called Carmichael numbers. More than eighty years elapsed after
Carmichael’s initial investigations before the existence of infinitely many Carmichael
numbers was established by Alford, Granville, and Pomerance [1]. Denoting by C
the set of Carmichael numbers, it is shown in [1] that for every ε > 0 and all
sufficiently large X, the lower bound

(1)
∣∣{n 6 X : n ∈ C}

∣∣ > Xβ−ε

holds, where

β = β0 =
5
12

(
1− 1

2
√
e

)
= 0.290306 · · · > 2

7
.

More recently, Harman [7] has shown that the lower bound (1) holds with the larger
constant β = β1 = 0.3322408.

The purpose of the present note is to show that the bound (1) with β = β1 also
holds with a set of Carmichael numbers n 6 X that are consistent with Giuga’s
conjecture and support the nonexistence of examples to Lehmer’s totient problem.
Our results are described in more detail below.
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1.2. Giuga’s conjecture. Fermat’s little theorem implies

p | 1p−1 + 2p−1 + · · ·+ (p− 1)p−1 + 1

for every prime p. In 1950, Giuga [6] conjectured that the converse is true, i.e., that
there are no composite natural numbers n for which

1n−1 + 2n−1 + · · ·+ (n− 1)n−1 ≡ −1 (mod n),

and he verified this conjecture for all n 6 101000. Any counterexample to Giuga’s
conjecture is called a Giuga number.

Denoting by G the (presumably empty) set of Giuga numbers, Giuga showed
that n ∈ G if and only if n is composite and

(2) p2(p− 1) | n− p for every prime p dividing n.

As this condition implies that n is squarefree, every Giuga number is a Carmichael
number in view of the following criterion.

Korselt’s criterion. For a positive integer n, an ≡ a (mod n) for all integers a
if and only if n is squarefree and p− 1 divides n− 1 for every prime p dividing n.

The condition (2) appears to be a much stronger requirement for a composite
natural number n to satisfy than Korselt’s criterion, thus it is reasonable to expect
that there are infinitely many Carmichael numbers which are not Giuga numbers.
Indeed, it is widely believed (see [1]) that∣∣{n 6 X : n ∈ C}

∣∣ = X1+o(1) as X →∞,

whereas Luca, Pomerance and Shparlinski [10] have established the bound

(3)
∣∣{n 6 X : n ∈ G}

∣∣� X1/2

(logX)2
,

improving slightly on a result of Tipu [15]. However, the result that C \ G is an
infinite set does not follow from (3) and the unconditional bound (1) with β = β1.
Nevertheless, we are able to prove the following result.

Theorem 1. For any fixed ε > 0 and all sufficiently large X, we have∣∣{n 6 X : n ∈ C \ G}
∣∣ > Xβ1−ε.

It is known that if n is a Giuga number, then

(4) − 1
n

+
∑
p |n

1
p
∈ N.

There are known composites that satisfy (4), for example n = 30. A weak Giuga
number is a composite number n satisfying (4). Denoting by W the set of weak
Giuga numbers, we have G ⊂ W, hence Theorem 1 is an immediate consequence of
the following theorem.

Theorem 2. For any fixed ε > 0 and all sufficiently large X, we have∣∣{n 6 X : n ∈ C \W}
∣∣ > Xβ1−ε.

Our proof of Theorem 2 is given in §2 below.
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1.3. Lehmer’s totient problem. Let ϕ denote Euler’s function. In 1932, Lehmer [8]
asked whether there are any composite natural numbers n for which ϕ(n) | n − 1.
This question, known as Lehmer’s totient problem, remains unanswered to this day.

Denote by L the (possibly empty) set of composite natural numbers n such that
ϕ(n) | n − 1. It follows easily from Euler’s theorem that every element of L is a
Carmichael number. On the other hand, one expects that there are infinitely many
Carmichael numbers which do not lie in L.

In a series of papers (see [11, 12, 13]), Pomerance considered the problem of
bounding the number of natural numbers n 6 X that lie in L. In his third pa-
per [13], he established the bound

(5)
∣∣{n 6 X : n ∈ L}

∣∣� X1/2(logX)3/4.

Refinements of the underlying method of [13] led to subsequent improvements of
the bound (5) by Shan [14], Banks and Luca [4], Banks, Güloğlu and Nevans [3],
and Luca and Pomerance [9]; however, it is still unknown whether the bound∣∣{n 6 X : n ∈ L}

∣∣� Xα

holds with some constant α < 1/2. In particular, the result that C \L is an infinite
set does not follow from only the unconditional bound (1) with β = β1. In this
note we prove the following theorem.

Theorem 3. For any fixed ε > 0 and all sufficiently large X, we have∣∣{n 6 X : n ∈ C \ L}
∣∣ > Xβ1−ε.

Our proof of Theorem 3 is given in §2 below.

2. Construction

Let N denote the set of composite natural numbers n such that∑
p |n

1
p
<

1
3
.

Lemma 1. The sets N and W are disjoint.

Proof. Let n ∈ N . Since
1
n
<
∑
p |n

1
p
<

1
3
< 1 +

1
n
,

it is clear that ∑
p |n

1
p
6≡ 1
n

(mod 1),

hence n is not a weak Giuga number. �

Lemma 2. The sets N and L are disjoint.

Proof. Let n ∈ N . Using the inequality

log(1− t) > −2 t (0 < t 6 1/2),

we have

log
ϕ(n)
n

= log
∏
p |n

(
1− 1

p

)
=
∑
p |n

log
(

1− 1
p

)
> −2

∑
p |n

1
p
> −2

3
.
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Consequently,

(6)
n− 1
ϕ(n)

<
n

ϕ(n)
< e2/3 < 2,

and it follows that n 6∈ L. Indeed, (6) and the condition ϕ(n) | n − 1 together
imply that n = 1 or ϕ(n) = n− 1, which possibilities cannot occur for a composite
natural number n. �

In view of Lemmas 1 and 2, Theorems 2 and 3 follow from the following result.

Theorem 4. For any fixed ε > 0 and all sufficiently large X, we have∣∣{n 6 X : n ∈ C ∩ N}
∣∣ > Xβ1−ε.

Proof. With the existing proofs of the infinitude of Carmichael numbers given in
[1] and [7], a careful reading, or with small changes, shows that the Carmichael
numbers constructed lie in N . Since Harman [7, Theorem 1] has the stronger
result, we give the details on how that proof supports our assertion. As mentioned,
he has shown that for every ε > 0 and all sufficiently large X, the lower bound

(7)
∣∣{n 6 X : n ∈ C}

∣∣ > Xβ1−ε

holds. To prove Theorem 4, it suffices to show that the Carmichael numbers con-
structed by Harman all lie in N if X is large enough. We begin with the following
statement, which is [7, Theorem 3].

Lemma 3. Let ε > 0, and suppose y > y0(ε). Put

δ =
ε θ

1.888
, x = exp

(
y1+δ

)
, θ =

1
0.2961

.

Then there is a positive integer k < x0.528 and a set of squarefree numbers B such
that

(i) B ⊂ [x0.4, x0.472];
(ii) |B| > xβ1−ε;

(iii) dk + 1 is prime for every d ∈ B;
(iv) if p | d, then

0.5 yθ < p < yθ, p - k, P (p− 1) < y,

where P (n) denotes the greatest prime factor of n.

Let n be one of the Carmichael numbers constructed in [7, Theorem 1]. Such a
number n is composed of at most t = exp

(
y1+δ/2

)
primes of the form p = dk + 1

with d ∈ B, so that
• n 6 X, where X = xt;
• p > x0.4 for every prime p | n.

Taking into account that t = xo(1) as x→∞, it follows that∑
p |n

1
p
6 t x−0.4 <

1
3

if x is sufficiently large. Since the value of x is determined uniquely by X, this
shows that the Carmichael number n lies in N once X is large enough, completing
the proof. �
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We remark that in [2] it is shown that for each fixed k there are infinitely many
Carmichael numbers n with

∑
p |n 1/p < 1/(log n)k. This result too supports our

principal assertion that C ∩ N is infinite, but the bound for the counting function
proved here is even smaller than that given in [1]. On the other hand, it is not
known if there is some ε > 0 such that for infinitely many Carmichael numbers n
we have

∑
p |n 1/p > ε. In particular, it is not known if the set C \ N is infinite.
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