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ABSTRACT. Let R be a ring, o1 an automorphism of R and §; a oj-derivation
of R. Let o2 be an automorphism of O1(R) = R[z;01,61], and d2 be a oo-
derivation of O1(R). Let S C Z(O1(R)), the center of O1(R). Then it is
proved that o; is identity when restricted to S, and §; is zero when restricted
to S; 4 = 1,2. The result is proved for iterated extensions also.

1. INTRODUCTION

A ring R means an associative ring with identity 1 # 0. Z(R) denotes the center
of R. The set of positive integers is denoted by N. Let A be a nonempty set and
a:A— Abeamap and B C A. Then « | B means « restricted to B.

In this paper we investigate the nature of an automorphism o and a o-derivation
0 of a ring R, when restricted to the center of R.

Recall that a o-derivation of R is an additive map § : R — R such that

d(ab) = d(a)o(b) + ad(b), for all a,b € R.
Let 0 be an endomorphism of a ring R and § : R — R any map.
Let ¢ : R — M3(R) be a homomorphism defined by

o(r) = ( f;((:)) S ) for all 7 € R.

Then 0 is a o-derivation of R.

In case o is the identity map, § is called just a derivation of R. For example let
F be a field and R = F[z]. Then the formal derivative -L is a derivation of R.

Recall that the Ore extension R[z;0,d8] = {f = >I"  z%a;, a; € R, n € N},
subject to the relation ax = zo(a) + §(a) for all a € R. We take coefficients on the
right as followed in McConnell and Robson [13]. Some authors take coefficients on
the left as in Goodearl and Warfield [7]. We denote the Extension ring R[z; 0, d] by
O1(R). In case o is the identity map, we denote R[x;d] by D;1(R) and in case § is
the zero map, we denote R[z; o] by Si(R).
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We also recall that the skew-Laurent extension R[z,z ';0] = {> 1. z'a;,
a; € R; m, n € N}, where multiplication is subject to the relation ax = zo(a) for
all a € R.

The rings that we deal with are the above mentioned rings and their iterations
as given below:

(1) S¢(R) = R[z1;01][x2;02)...[Tt; 0¢], the iterated skew-polynomial ring, where
each o; is an automorphism of S;_1(R).

(2) Li(R) = Rlx1,x; ' 01)[w2, 25 15 02). [ws, 7, 15 0], the iterated skew-Laurent
polynomial ring, where each o; is an automorphism of L;_;(R).

(3) Di(R) = Rlx1;61][m2;02]...[x4; 0], the iterated differential operator ring,
where each J; is a derivation of D;_1(R).

(4) O¢(R) = R[z1;01,01][x2; 02, 02]...[x+; 01, 04], the iterated Ore extension, where
o; is an automorphism of O;_1(R) and ¢; is a o;-derivation of O;_1(R).

We note that if o is an automorphism of a ring R and § is a o-derivation of R,
then o can be extended to an automorphism of R[z;0,d] by taking o(z) = z, i.e.
o(xa) = zo(a), for all a € R. Also § can be extended to a o-derivation of R|x; o, 0]
by taking §(z) =0, i.e. §(za) = xd(a), for all a € R.

In view of this, we note that each o; is an automorphism of S;(R) and O:(R).
Also each §; is a derivation (respectively o-derivation) of Dy (R) (respectively O¢(R)).

2. AUTOMORPHISMS AND DERIVATIONS

We prove the following:

(1) Let L C Z(K¢(R)), where K;(R) is any of S;(R) or Ly(R). Then o; | L is
the identity map; for all i, 1 < i < t.

(2) Let T C Z(D¢(R)), where R is an integral domain. Then ¢; | T' is the zero
map; for all i, 1 <7 <.

(3) Let S C Z(O(R)). Then §; | S is the identity map, and §; | S is the zero
map; for all i, 1 < i <.

For more details on Ore extensions, and the basic results, the reader is referred
to chapters (1) and (2) of [7]. Ore-extensions including skew-polynomial rings and
differential operator rings have been of interest to many authors. For example
[1,5,7,38,9, 10, 11].

Prime ideals (in particular minimal prime ideals and associated prime ideals) of
these extensions have been characterized in [1, 4, 6, 14].

Recall that a ring R is said to be 2-primal if the prime radical (i.e. the intersection
of prime ideals of R) coincides with the set of all nilpotent elements of R. This
property has been discussed in [2, 3, 12].

We begin with the following Proposition:

Proposition 2.1. Let R be a ring o be an automorphism of R. Then o | Z(R) is
an automorphism.

Proof. Tt is enough to show that a € Z(R) implies that o(a) € Z(R). Let a € Z(R)
and r € R. Then o(a)r = a(ac™!(r)) = o(c71(r)a) = ro(a) Therefore, o(a) €
Z(R). O

We now have the following proposition which is used to prove Proposition (2.5)
and Theorem (2.6).

Proposition 2.2. Let R be an integral domain. Then O1(R) is an integral domain.
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Proof. The proof is easy. We give a sketch. Let f, g € O1(R) be such that fg = 0.
Say f=>" y2'a;, and g = > " x'b;, m, n € N. Suppose that g # 0.

To prove the result, we use induction on m, n. For m = n = 0, the result is
trivial. For m = n = 1, we have f = xa; 4+ ap and g = xb; + bg. Now fg =0
implies that

x[zo(ar) + d(a1)]br + [zo(ag) + 0(ag)]br + xai1bo + agby = 0;
i.e.
xQO(al)bl + xé(al)bl + .Z‘O'(ao)bl + zai1bg + (5(&0)[)1 ~+ agby = 0,

and so we have o(aq)b; = 0, §(ay1)by + o(ag)by + apbp = 0, d(ag)b1 + agby = 0. Now
g # 0. Therefore, there are three possibilities:

(1) by #0, by # 0. In this case o(a1)b; = 0 implies that o(a;) = 0; i.e. a; =0.
Now 6(a1)by + o(ag)by + a1bp = 0 implies that o(ag)by = 0. Therefore
o(ag) = 0;i.e. ag =0. Thus f =0.

(2) b1 #0, by = 0. This could be treated similarly as above.

(3) by =0, by # 0. In this case d(a1)b1 + o(ag)bs + a1by = 0 implies that
a1bg = 0, and therefore, a; = 0. Also §(ag)by + agbp = 0 implies that
aogbg = 0, and so ag = 0. Thus f = 0. So, in all cases we have f = 0.

Therefore, the result is true for m = n = 1. Suppose the result is true for m = k
and n = 1. We shall prove for m=k+ 1. Nowform=k+1landn=1, f¢g =0
implies that

(wF a1 + 2Fap + ... + ag)(zby + by) = 0,
ie.
o525 (aps1)by + 2515 (ag11)by + 25 o (ag)by + 2 agy1bo + .t
zo(ag)by + 6(ag)by + agbp = 0.

Now for g # 0, there are three possibilities:

(1) b1 # 0, by # 0. In this case o(ags+1)by = 0 implies that o(ag+1) = 0; ie.
apy1 = 0. Therefore fg = 0 reduces to (xFay + ¥ tap_1 + ... + ao)(zby +
bp) = 0, and induction hypothesis implies that f = 0.

(2) by #0, by = 0. This could be treated similarly as above.

(3) b1 = 0, bo 7é 0. In this case 5(ak+1)b1 + O'(ak)bl + ak+1b0 =0 implies
that agy1b9 = 0, and therefore, ary; = 0. Therefore fg = 0 reduces to
(zFap+2%tag_1+...4+ap)(wb; +by) = 0, and induction hypothesis implies

that f = 0.
Therefore, in all the cases f = 0. In a similar way the result could be proved for
higher degrees of g. Hence O;(R) is an integral domain. [l

Proposition 2.3. Let R be a ring and consider S;(R). Let L C S¢(R). Theno; | L
is the identity map for all i, 1 < i <t.

Proof. Consider S1(R) and its automorphism oy. Let @ € L. Now af; = fia for
all fy =" oxib; € Si(R), n €N,

a(zby, + ... + by) = (zTby, + ... + bg)a.

So we have
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(xPof(a)by + ... + x101(a)by + abg = (zTbpa + ... + x1b1a + boa).

Therefore o1(a) = a.

Now consider S3(R) and its automorphism o3. Let a € L. Then afs = foa for
all fo € So(R). Let fo = 2k fi + ... + 22f1 + fo, where f; € S1(R). Then afs = foa
implies that

a(@h fr + ..+ xafi + fo) = (@5 fx + . + 22f1 + fo)a;
ie.
k ok _ ok
z303(a) fx + ... + x202(a) f1 + afo = 25 fra+ ... + 2 fra + foa.

Therefore, o2(a)f1 = fia = af; as a € Z(S3(R)). Hence o2(a) = a. With the same
process, we can see that o; | L is the identity map for all i, 1 <1 < ¢. O

Remark 2.4. The above result holds if Si(R) is replaced by L:(R), and the proof
follows on the same lines.

Proposition 2.5. Let R be an integral domain and consider Dy(R). If T C
Z(D(R)). Then §; | T is the zero map, for all i, 1 < i <t.

Proof. Let a € T. Consider D1(R). Let fi = z1b+ ¢, b # 0. Then afi = fia; ie.
a(x11b + ¢) = (21b + ¢)a, which implies that

x1ab+ 61(a)b+ ac = xz1ba + ca.

Now a € Z(D;1(R)) implies that d1(a)b + ac = ca = ac, and d1(a)b = 0. Thus
d1(a) = 0. Polynomials of higher degree could be treated in a similar way.
Now consider Do(R). Let fo = 2291 + go, where g1 # 0; g1, go € D1(R). Then
afs = foa implies that
a(z291 + go) = (2291 + go)a,

or,
z2ag1 + d2(a)g1 + ago = z291a + goa.
Now a € Z(D2(R)) implies that

d2(a)g1 + ago = goa = ago.

Therefore d2(a)g; = 0, and so Proposition (2.2) implies that d2(a) = 0. With the
same process it can be shown that ¢; | T' is the zero map, for all i, 1 < i <+t. O

Theorem 2.6. Let R be an integral domain and consider Oy (R). If S C Z(O+(R)),
then o; | S is the identity map and 0; | S is the zero map, for all i, 1 <1i <t{.

Proof. Let a € S. Let fi =210+ c € O1(R), b # 0. Then af; = fia, and we have
a(z1b+ ¢) = (z1b + ¢)a, which implies that

x101(a)b+ 01(a)b + ac = x1ba + ca.

Therefore o1(a)b = ba = ab as a € Z(Oy(R)). So we have o1(a) = a . Also,
01(a)b + ac = ca = ac. Thus 61(a)b = 0, and so d1(a) = 0. Polynomials of higher
degree can be treated similarly.

Now let fo = x2g1 + go € O2(R), g1 # 0. Then afs = foa implies that

a(r291 + g0) = (w201 + go)a.
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Therefore
Ta02(a)g1 + d2(a)g1 + ago = x2g1a + goa
Now a € Z(Oy(R)) implies that
x202(a)g1 = g1a + agx.

Thus o3(a) = a. Also d2(a)g1 + ago = goa = ago as a € Z(O¢(R)). Therefore
02(a)g1 = 0 and thus Proposition (2.2) implies that dz(a) = 0. Polynomials of
higher degree can be treated similarly.

With the same process it can be shown that o; | S is the identity map for all i,
1<i<tandd;|S is the zero map for all i, 1 < i <+t. O
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