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Abstract. Let R be a ring, σ1 an automorphism of R and δ1 a σ1-derivation

of R. Let σ2 be an automorphism of O1(R) = R[x;σ1, δ1], and δ2 be a σ2-

derivation of O1(R). Let S ⊆ Z(O1(R)), the center of O1(R). Then it is
proved that σi is identity when restricted to S, and δi is zero when restricted

to S; i = 1, 2. The result is proved for iterated extensions also.

1. Introduction

A ring R means an associative ring with identity 1 6= 0. Z(R) denotes the center
of R. The set of positive integers is denoted by N. Let A be a nonempty set and
α : A→ A be a map and B ⊆ A. Then α | B means α restricted to B.

In this paper we investigate the nature of an automorphism σ and a σ-derivation
δ of a ring R, when restricted to the center of R.

Recall that a σ-derivation of R is an additive map δ : R→ R such that
δ(ab) = δ(a)σ(b) + aδ(b), for all a, b ∈ R.

Let σ be an endomorphism of a ring R and δ : R→ R any map.
Let φ : R→M2(R) be a homomorphism defined by

φ(r) =
(
σ(r) 0
δ(r) r

)
, for all r ∈ R.

Then δ is a σ-derivation of R.
In case σ is the identity map, δ is called just a derivation of R. For example let

F be a field and R = F [x]. Then the formal derivative d
dx is a derivation of R.

Recall that the Ore extension R[x;σ, δ] = {f =
∑n

i=0 x
iai, ai ∈ R, n ∈ N},

subject to the relation ax = xσ(a) + δ(a) for all a ∈ R. We take coefficients on the
right as followed in McConnell and Robson [13]. Some authors take coefficients on
the left as in Goodearl and Warfield [7]. We denote the Extension ring R[x;σ, δ] by
O1(R). In case σ is the identity map, we denote R[x; δ] by D1(R) and in case δ is
the zero map, we denote R[x;σ] by S1(R).
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We also recall that the skew-Laurent extension R[x, x−1;σ] = {
∑n

i=−m xiai,
ai ∈ R; m, n ∈ N}, where multiplication is subject to the relation ax = xσ(a) for
all a ∈ R.

The rings that we deal with are the above mentioned rings and their iterations
as given below:

(1) St(R) = R[x1;σ1][x2;σ2]...[xt;σt], the iterated skew-polynomial ring, where
each σi is an automorphism of Si−1(R).

(2) Lt(R) = R[x1, x
−1
i ;σ1][x2, x

−1
2 ;σ2]...[xt, x

−1
t ;σt], the iterated skew-Laurent

polynomial ring, where each σi is an automorphism of Li−1(R).
(3) Dt(R) = R[x1; δ1][x2; δ2]...[xt; δt], the iterated differential operator ring,

where each δi is a derivation of Di−1(R).
(4) Ot(R) = R[x1;σ1, δ1][x2;σ2, δ2]...[xt;σt, δt], the iterated Ore extension, where

σi is an automorphism of Oi−1(R) and δi is a σi-derivation of Oi−1(R).
We note that if σ is an automorphism of a ring R and δ is a σ-derivation of R,

then σ can be extended to an automorphism of R[x;σ, δ] by taking σ(x) = x, i.e.
σ(xa) = xσ(a), for all a ∈ R. Also δ can be extended to a σ-derivation of R[x;σ, δ]
by taking δ(x) = 0, i.e. δ(xa) = xδ(a), for all a ∈ R.

In view of this, we note that each σi is an automorphism of St(R) and Ot(R).
Also each δi is a derivation (respectively σ-derivation) ofDt(R) (respectivelyOt(R)).

2. Automorphisms and derivations

We prove the following:
(1) Let L ⊆ Z(Kt(R)), where Kt(R) is any of St(R) or Lt(R). Then σi | L is

the identity map; for all i, 1 ≤ i ≤ t.
(2) Let T ⊆ Z(Dt(R)), where R is an integral domain. Then δi | T is the zero

map; for all i, 1 ≤ i ≤ t.
(3) Let S ⊆ Z(Ot(R)). Then δi | S is the identity map, and δi | S is the zero

map; for all i, 1 ≤ i ≤ t.
For more details on Ore extensions, and the basic results, the reader is referred

to chapters (1) and (2) of [7]. Ore-extensions including skew-polynomial rings and
differential operator rings have been of interest to many authors. For example
[1, 5, 7, 8, 9, 10, 11].

Prime ideals (in particular minimal prime ideals and associated prime ideals) of
these extensions have been characterized in [1, 4, 6, 14].

Recall that a ringR is said to be 2-primal if the prime radical (i.e. the intersection
of prime ideals of R) coincides with the set of all nilpotent elements of R. This
property has been discussed in [2, 3, 12].

We begin with the following Proposition:

Proposition 2.1. Let R be a ring σ be an automorphism of R. Then σ | Z(R) is
an automorphism.

Proof. It is enough to show that a ∈ Z(R) implies that σ(a) ∈ Z(R). Let a ∈ Z(R)
and r ∈ R. Then σ(a)r = σ(aσ−1(r)) = σ(σ−1(r)a) = rσ(a) Therefore, σ(a) ∈
Z(R). �

We now have the following proposition which is used to prove Proposition (2.5)
and Theorem (2.6).

Proposition 2.2. Let R be an integral domain. Then O1(R) is an integral domain.
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Proof. The proof is easy. We give a sketch. Let f , g ∈ O1(R) be such that fg = 0.
Say f =

∑n
i=0 x

iai, and g =
∑m

i=0 x
ibi, m, n ∈ N. Suppose that g 6= 0.

To prove the result, we use induction on m, n. For m = n = 0, the result is
trivial. For m = n = 1, we have f = xa1 + a0 and g = xb1 + b0. Now fg = 0
implies that

x[xσ(a1) + δ(a1)]b1 + [xσ(a0) + δ(a0)]b1 + xa1b0 + a0b0 = 0;

i.e.

x2σ(a1)b1 + xδ(a1)b1 + xσ(a0)b1 + xa1b0 + δ(a0)b1 + a0b0 = 0,

and so we have σ(a1)b1 = 0, δ(a1)b1 + σ(a0)b1 + a0b0 = 0, δ(a0)b1 + a0b0 = 0. Now
g 6= 0. Therefore, there are three possibilities:

(1) b1 6= 0, b0 6= 0. In this case σ(a1)b1 = 0 implies that σ(a1) = 0; i.e. a1 = 0.
Now δ(a1)b1 + σ(a0)b1 + a1b0 = 0 implies that σ(a0)b1 = 0. Therefore
σ(a0) = 0; i.e. a0 = 0. Thus f = 0.

(2) b1 6= 0, b0 = 0. This could be treated similarly as above.
(3) b1 = 0, b0 6= 0. In this case δ(a1)b1 + σ(a0)b1 + a1b0 = 0 implies that

a1b0 = 0, and therefore, a1 = 0. Also δ(a0)b1 + a0b0 = 0 implies that
a0b0 = 0, and so a0 = 0. Thus f = 0. So, in all cases we have f = 0.

Therefore, the result is true for m = n = 1. Suppose the result is true for m = k
and n = 1. We shall prove for m = k + 1. Now for m = k + 1 and n = 1, fg = 0
implies that

(xk+1ak+1 + xkak + ...+ a0)(xb1 + b0) = 0,

i.e.

xk+2σ(ak+1)b1 + xk+1δ(ak+1)b1 + xk+1σ(ak)b1 + xk+1ak+1b0 + ...+

xσ(a0)b1 + δ(a0)b1 + a0b0 = 0.

Now for g 6= 0, there are three possibilities:
(1) b1 6= 0, b0 6= 0. In this case σ(ak+1)b1 = 0 implies that σ(ak+1) = 0; i.e.

ak+1 = 0. Therefore fg = 0 reduces to (xkak + xk−1ak−1 + ...+ a0)(xb1 +
b0) = 0, and induction hypothesis implies that f = 0.

(2) b1 6= 0, b0 = 0. This could be treated similarly as above.
(3) b1 = 0, b0 6= 0. In this case δ(ak+1)b1 + σ(ak)b1 + ak+1b0 = 0 implies

that ak+1b0 = 0, and therefore, ak+1 = 0. Therefore fg = 0 reduces to
(xkak +xk−1ak−1 + ...+a0)(xb1 +b0) = 0, and induction hypothesis implies
that f = 0.

Therefore, in all the cases f = 0. In a similar way the result could be proved for
higher degrees of g. Hence O1(R) is an integral domain. �

Proposition 2.3. Let R be a ring and consider St(R). Let L ⊆ St(R). Then σi | L
is the identity map for all i, 1 ≤ i ≤ t.

Proof. Consider S1(R) and its automorphism σ2. Let a ∈ L. Now af1 = f1a for
all f1 =

∑n
i=0 x

i
1bi ∈ S1(R), n ∈ N,

a(xn
1 bn + ...+ b0) = (xn

1 bn + ...+ b0)a.

So we have
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(xn
1σ

n
1 (a)bn + ...+ x1σ1(a)b1 + ab0 = (xn

1 bna+ ...+ x1b1a+ b0a).

Therefore σ1(a) = a.
Now consider S2(R) and its automorphism σ3. Let a ∈ L. Then af2 = f2a for

all f2 ∈ S2(R). Let f2 = xk
2fk + ...+ x2f1 + f0, where fi ∈ S1(R). Then af2 = f2a

implies that

a(xk
2fk + ...+ x2f1 + f0) = (xk

2fk + ...+ x2f1 + f0)a;

i.e.

xk
2σ

k
2 (a)fk + ...+ x2σ2(a)f1 + af0 = xk

2fka+ ...+ x2f1a+ f0a.

Therefore, σ2(a)f1 = f1a = af1 as a ∈ Z(S2(R)). Hence σ2(a) = a. With the same
process, we can see that σi | L is the identity map for all i, 1 ≤ i ≤ t. �

Remark 2.4. The above result holds if St(R) is replaced by Lt(R), and the proof
follows on the same lines.

Proposition 2.5. Let R be an integral domain and consider Dt(R). If T ⊆
Z(Dt(R)). Then δi | T is the zero map, for all i, 1 ≤ i ≤ t.

Proof. Let a ∈ T . Consider D1(R). Let f1 = x1b + c, b 6= 0. Then af1 = f1a; i.e.
a(x11b+ c) = (x1b+ c)a, which implies that

x1ab+ δ1(a)b+ ac = x1ba+ ca.

Now a ∈ Z(D1(R)) implies that δ1(a)b + ac = ca = ac, and δ1(a)b = 0. Thus
δ1(a) = 0. Polynomials of higher degree could be treated in a similar way.

Now consider D2(R). Let f2 = x2g1 + g0, where g1 6= 0; g1, g0 ∈ D1(R). Then
af2 = f2a implies that

a(x2g1 + g0) = (x2g1 + g0)a,

or,

x2ag1 + δ2(a)g1 + ag0 = x2g1a+ g0a.

Now a ∈ Z(D2(R)) implies that

δ2(a)g1 + ag0 = g0a = ag0.

Therefore δ2(a)g1 = 0, and so Proposition (2.2) implies that δ2(a) = 0. With the
same process it can be shown that δi | T is the zero map, for all i, 1 ≤ i ≤ t. �

Theorem 2.6. Let R be an integral domain and consider Ot(R). If S ⊆ Z(Ot(R)),
then σi | S is the identity map and δi | S is the zero map, for all i, 1 ≤ i ≤ t.

Proof. Let a ∈ S. Let f1 = x1b+ c ∈ O1(R), b 6= 0. Then af1 = f1a, and we have
a(x1b+ c) = (x1b+ c)a, which implies that

x1σ1(a)b+ δ1(a)b+ ac = x1ba+ ca.

Therefore σ1(a)b = ba = ab as a ∈ Z(Ot(R)). So we have σ1(a) = a . Also,
δ1(a)b + ac = ca = ac. Thus δ1(a)b = 0, and so δ1(a) = 0. Polynomials of higher
degree can be treated similarly.

Now let f2 = x2g1 + g0 ∈ O2(R), g1 6= 0. Then af2 = f2a implies that

a(x2g1 + g0) = (x2g1 + g0)a.
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Therefore

x2σ2(a)g1 + δ2(a)g1 + ag0 = x2g1a+ g0a

Now a ∈ Z(Ot(R)) implies that

x2σ2(a)g1 = g1a+ ag1.

Thus σ2(a) = a. Also δ2(a)g1 + ag0 = g0a = ag0 as a ∈ Z(Ot(R)). Therefore
δ2(a)g1 = 0 and thus Proposition (2.2) implies that δ2(a) = 0. Polynomials of
higher degree can be treated similarly.

With the same process it can be shown that σi | S is the identity map for all i,
1 ≤ i ≤ t and δi | S is the zero map for all i, 1 ≤ i ≤ t. �
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