AUTOMORPHISMS AND DERIVATIONS ON THE CENTER OF A RING

V.K.Bhat

School of Mathematics, SMVD University, P/o Kakryal, Katra, J and K, India- 182320 vijaykumarbhat2000@yahoo.com

ABSTRACT. Let R be a ring, σ_1 an automorphism of R and δ_1 a σ_1 -derivation of R. Let σ_2 be an automorphism of $O_1(R) = R[x; \sigma_1, \delta_1]$, and δ_2 be a σ_2 -derivation of $O_1(R)$. Let $S \subseteq Z(O_1(R))$, the center of $O_1(R)$. Then it is proved that σ_i is identity when restricted to S, and δ_i is zero when restricted to S; i = 1, 2. The result is proved for iterated extensions also.

1. Introduction

A ring R means an associative ring with identity $1 \neq 0$. Z(R) denotes the center of R. The set of positive integers is denoted by N. Let A be a nonempty set and $\alpha : A \to A$ be a map and $B \subseteq A$. Then $\alpha \mid B$ means α restricted to B.

In this paper we investigate the nature of an automorphism σ and a σ -derivation δ of a ring R, when restricted to the center of R.

Recall that a σ -derivation of R is an additive map $\delta: R \to R$ such that

$$\delta(ab) = \delta(a)\sigma(b) + a\delta(b)$$
, for all $a, b \in R$.

Let σ be an endomorphism of a ring R and $\delta: R \to R$ any map. Let $\phi: R \to M_2(R)$ be a homomorphism defined by

$$\phi(r) = \begin{pmatrix} \sigma(r) & 0 \\ \delta(r) & r \end{pmatrix}$$
, for all $r \in R$.

Then δ is a σ -derivation of R.

In case σ is the identity map, δ is called just a derivation of R. For example let F be a field and R = F[x]. Then the formal derivative $\frac{d}{dx}$ is a derivation of R. Recall that the Ore extension $R[x;\sigma,\delta] = \{f = \sum_{i=0}^n x^i a_i, \ a_i \in R, \ n \in \mathbb{N}\},$

Recall that the Ore extension $R[x; \sigma, \delta] = \{f = \sum_{i=0}^{n} x^{i} a_{i}, a_{i} \in R, n \in \mathbb{N}\}$, subject to the relation $ax = x\sigma(a) + \delta(a)$ for all $a \in R$. We take coefficients on the right as followed in McConnell and Robson [13]. Some authors take coefficients on the left as in Goodearl and Warfield [7]. We denote the Extension ring $R[x; \sigma, \delta]$ by $O_1(R)$. In case σ is the identity map, we denote $R[x; \delta]$ by $D_1(R)$ and in case δ is the zero map, we denote $R[x; \sigma]$ by $S_1(R)$.

¹⁹⁹¹ Mathematics Subject Classification. 16-XX; Secondary 16S36,16P40,16P50,16U20. Key words and phrases. Center; automorphism; σ -derivation; ore extension.

We also recall that the skew-Laurent extension $R[x, x^{-1}; \sigma] = \{\sum_{i=-m}^{n} x^{i} a_{i}, a_{i} \in R; m, n \in \mathbb{N}\}$, where multiplication is subject to the relation $ax = x\sigma(a)$ for all $a \in R$.

The rings that we deal with are the above mentioned rings and their iterations as given below:

- (1) $S_t(R) = R[x_1; \sigma_1][x_2; \sigma_2]...[x_t; \sigma_t]$, the iterated skew-polynomial ring, where each σ_i is an automorphism of $S_{i-1}(R)$.
- (2) $L_t(R) = R[x_1, x_i^{-1}; \sigma_1][x_2, x_2^{-1}; \sigma_2]...[x_t, x_t^{-1}; \sigma_t]$, the iterated skew-Laurent polynomial ring, where each σ_i is an automorphism of $L_{i-1}(R)$.
- (3) $D_t(R) = R[x_1; \delta_1][x_2; \delta_2]...[x_t; \delta_t]$, the iterated differential operator ring, where each δ_i is a derivation of $D_{i-1}(R)$.
- (4) $O_t(R) = R[x_1; \sigma_1, \delta_1][x_2; \sigma_2, \delta_2]...[x_t; \sigma_t, \delta_t]$, the iterated Ore extension, where σ_i is an automorphism of $O_{i-1}(R)$ and δ_i is a σ_i -derivation of $O_{i-1}(R)$.

We note that if σ is an automorphism of a ring R and δ is a σ -derivation of R, then σ can be extended to an automorphism of $R[x;\sigma,\delta]$ by taking $\sigma(x)=x$, i.e. $\sigma(xa)=x\sigma(a)$, for all $a\in R$. Also δ can be extended to a σ -derivation of $R[x;\sigma,\delta]$ by taking $\delta(x)=0$, i.e. $\delta(xa)=x\delta(a)$, for all $a\in R$.

In view of this, we note that each σ_i is an automorphism of $S_t(R)$ and $O_t(R)$. Also each δ_i is a derivation (respectively σ -derivation) of $D_t(R)$ (respectively $O_t(R)$).

2. Automorphisms and derivations

We prove the following:

- (1) Let $L \subseteq Z(K_t(R))$, where $K_t(R)$ is any of $S_t(R)$ or $L_t(R)$. Then $\sigma_i \mid L$ is the identity map; for all i, $1 \le i \le t$.
- (2) Let $T \subseteq Z(D_t(R))$, where R is an integral domain. Then $\delta_i \mid T$ is the zero map; for all i, $1 \le i \le t$.
- (3) Let $S \subseteq Z(O_t(R))$. Then $\delta_i \mid S$ is the identity map, and $\delta_i \mid S$ is the zero map; for all i, $1 \le i \le t$.

For more details on Ore extensions, and the basic results, the reader is referred to chapters (1) and (2) of [7]. Ore-extensions including skew-polynomial rings and differential operator rings have been of interest to many authors. For example [1, 5, 7, 8, 9, 10, 11].

Prime ideals (in particular minimal prime ideals and associated prime ideals) of these extensions have been characterized in [1, 4, 6, 14].

Recall that a ring R is said to be 2-primal if the prime radical (i.e. the intersection of prime ideals of R) coincides with the set of all nilpotent elements of R. This property has been discussed in [2, 3, 12].

We begin with the following Proposition:

Proposition 2.1. Let R be a ring σ be an automorphism of R. Then $\sigma \mid Z(R)$ is an automorphism.

Proof. It is enough to show that $a \in Z(R)$ implies that $\sigma(a) \in Z(R)$. Let $a \in Z(R)$ and $r \in R$. Then $\sigma(a)r = \sigma(a\sigma^{-1}(r)) = \sigma(\sigma^{-1}(r)a) = r\sigma(a)$ Therefore, $\sigma(a) \in Z(R)$.

We now have the following proposition which is used to prove Proposition (2.5) and Theorem (2.6).

Proposition 2.2. Let R be an integral domain. Then $O_1(R)$ is an integral domain.

Proof. The proof is easy. We give a sketch. Let $f, g \in O_1(R)$ be such that fg = 0. Say $f = \sum_{i=0}^n x^i a_i$, and $g = \sum_{i=0}^m x^i b_i$, $m, n \in \mathbb{N}$. Suppose that $g \neq 0$.

To prove the result, we use induction on m, n. For m = n = 0, the result is trivial. For m = n = 1, we have $f = xa_1 + a_0$ and $g = xb_1 + b_0$. Now fg = 0 implies that

$$x[x\sigma(a_1) + \delta(a_1)]b_1 + [x\sigma(a_0) + \delta(a_0)]b_1 + xa_1b_0 + a_0b_0 = 0;$$

i.e.

$$x^{2}\sigma(a_{1})b_{1} + x\delta(a_{1})b_{1} + x\sigma(a_{0})b_{1} + xa_{1}b_{0} + \delta(a_{0})b_{1} + a_{0}b_{0} = 0,$$

and so we have $\sigma(a_1)b_1 = 0$, $\delta(a_1)b_1 + \sigma(a_0)b_1 + a_0b_0 = 0$, $\delta(a_0)b_1 + a_0b_0 = 0$. Now $g \neq 0$. Therefore, there are three possibilities:

- (1) $b_1 \neq 0$, $b_0 \neq 0$. In this case $\sigma(a_1)b_1 = 0$ implies that $\sigma(a_1) = 0$; i.e. $a_1 = 0$. Now $\delta(a_1)b_1 + \sigma(a_0)b_1 + a_1b_0 = 0$ implies that $\sigma(a_0)b_1 = 0$. Therefore $\sigma(a_0) = 0$; i.e. $a_0 = 0$. Thus f = 0.
- (2) $b_1 \neq 0$, $b_0 = 0$. This could be treated similarly as above.
- (3) $b_1 = 0$, $b_0 \neq 0$. In this case $\delta(a_1)b_1 + \sigma(a_0)b_1 + a_1b_0 = 0$ implies that $a_1b_0 = 0$, and therefore, $a_1 = 0$. Also $\delta(a_0)b_1 + a_0b_0 = 0$ implies that $a_0b_0 = 0$, and so $a_0 = 0$. Thus f = 0. So, in all cases we have f = 0.

Therefore, the result is true for m = n = 1. Suppose the result is true for m = k and n = 1. We shall prove for m = k + 1. Now for m = k + 1 and n = 1, fg = 0 implies that

$$(x^{k+1}a_{k+1} + x^k a_k + \dots + a_0)(xb_1 + b_0) = 0,$$

i.e.

$$x^{k+2}\sigma(a_{k+1})b_1 + x^{k+1}\delta(a_{k+1})b_1 + x^{k+1}\sigma(a_k)b_1 + x^{k+1}a_{k+1}b_0 + \dots + x\sigma(a_0)b_1 + \delta(a_0)b_1 + a_0b_0 = 0.$$

Now for $g \neq 0$, there are three possibilities:

- (1) $b_1 \neq 0$, $b_0 \neq 0$. In this case $\sigma(a_{k+1})b_1 = 0$ implies that $\sigma(a_{k+1}) = 0$; i.e. $a_{k+1} = 0$. Therefore fg = 0 reduces to $(x^k a_k + x^{k-1} a_{k-1} + ... + a_0)(xb_1 + b_0) = 0$, and induction hypothesis implies that f = 0.
- (2) $b_1 \neq 0$, $b_0 = 0$. This could be treated similarly as above.
- (3) $b_1 = 0$, $b_0 \neq 0$. In this case $\delta(a_{k+1})b_1 + \sigma(a_k)b_1 + a_{k+1}b_0 = 0$ implies that $a_{k+1}b_0 = 0$, and therefore, $a_{k+1} = 0$. Therefore fg = 0 reduces to $(x^k a_k + x^{k-1} a_{k-1} + ... + a_0)(xb_1 + b_0) = 0$, and induction hypothesis implies that f = 0.

Therefore, in all the cases f = 0. In a similar way the result could be proved for higher degrees of g. Hence $O_1(R)$ is an integral domain.

Proposition 2.3. Let R be a ring and consider $S_t(R)$. Let $L \subseteq S_t(R)$. Then $\sigma_i \mid L$ is the identity map for all $i, 1 \le i \le t$.

Proof. Consider $S_1(R)$ and its automorphism σ_2 . Let $a \in L$. Now $af_1 = f_1a$ for all $f_1 = \sum_{i=0}^n x_1^i b_i \in S_1(R)$, $n \in \mathbb{N}$,

$$a(x_1^n b_n + \dots + b_0) = (x_1^n b_n + \dots + b_0)a.$$

So we have

$$(x_1^n \sigma_1^n(a)b_n + \dots + x_1 \sigma_1(a)b_1 + ab_0 = (x_1^n b_n a + \dots + x_1 b_1 a + b_0 a).$$

Therefore $\sigma_1(a) = a$.

Now consider $S_2(R)$ and its automorphism σ_3 . Let $a \in L$. Then $af_2 = f_2a$ for all $f_2 \in S_2(R)$. Let $f_2 = x_2^k f_k + ... + x_2 f_1 + f_0$, where $f_i \in S_1(R)$. Then $af_2 = f_2a$ implies that

$$a(x_2^k f_k + \dots + x_2 f_1 + f_0) = (x_2^k f_k + \dots + x_2 f_1 + f_0)a;$$

i.e.

$$x_2^k \sigma_2^k(a) f_k + \dots + x_2 \sigma_2(a) f_1 + a f_0 = x_2^k f_k a + \dots + x_2 f_1 a + f_0 a.$$

Therefore, $\sigma_2(a)f_1 = f_1a = af_1$ as $a \in Z(S_2(R))$. Hence $\sigma_2(a) = a$. With the same process, we can see that $\sigma_i \mid L$ is the identity map for all i, $1 \le i \le t$.

Remark 2.4. The above result holds if $S_t(R)$ is replaced by $L_t(R)$, and the proof follows on the same lines.

Proposition 2.5. Let R be an integral domain and consider $D_t(R)$. If $T \subseteq Z(D_t(R))$. Then $\delta_i \mid T$ is the zero map, for all $i, 1 \le i \le t$.

Proof. Let $a \in T$. Consider $D_1(R)$. Let $f_1 = x_1b + c$, $b \neq 0$. Then $af_1 = f_1a$; i.e. $a(x_11b + c) = (x_1b + c)a$, which implies that

$$x_1ab + \delta_1(a)b + ac = x_1ba + ca.$$

Now $a \in Z(D_1(R))$ implies that $\delta_1(a)b + ac = ca = ac$, and $\delta_1(a)b = 0$. Thus $\delta_1(a) = 0$. Polynomials of higher degree could be treated in a similar way.

Now consider $D_2(R)$. Let $f_2 = x_2g_1 + g_0$, where $g_1 \neq 0$; $g_1, g_0 \in D_1(R)$. Then $af_2 = f_2a$ implies that

$$a(x_2g_1 + g_0) = (x_2g_1 + g_0)a,$$

or,

$$x_2ag_1 + \delta_2(a)g_1 + ag_0 = x_2g_1a + g_0a.$$

Now $a \in Z(D_2(R))$ implies that

$$\delta_2(a)q_1 + aq_0 = q_0a = aq_0.$$

Therefore $\delta_2(a)g_1 = 0$, and so Proposition (2.2) implies that $\delta_2(a) = 0$. With the same process it can be shown that $\delta_i \mid T$ is the zero map, for all i, $1 \le i \le t$. \square

Theorem 2.6. Let R be an integral domain and consider $O_t(R)$. If $S \subseteq Z(O_t(R))$, then $\sigma_i \mid S$ is the identity map and $\delta_i \mid S$ is the zero map, for all $i, 1 \leq i \leq t$.

Proof. Let $a \in S$. Let $f_1 = x_1b + c \in O_1(R)$, $b \neq 0$. Then $af_1 = f_1a$, and we have $a(x_1b + c) = (x_1b + c)a$, which implies that

$$x_1\sigma_1(a)b + \delta_1(a)b + ac = x_1ba + ca.$$

Therefore $\sigma_1(a)b = ba = ab$ as $a \in Z(O_t(R))$. So we have $\sigma_1(a) = a$. Also, $\delta_1(a)b + ac = ca = ac$. Thus $\delta_1(a)b = 0$, and so $\delta_1(a) = 0$. Polynomials of higher degree can be treated similarly.

Now let $f_2 = x_2g_1 + g_0 \in O_2(R)$, $g_1 \neq 0$. Then $af_2 = f_2a$ implies that

$$a(x_2g_1 + g_0) = (x_2g_1 + g_0)a.$$

Therefore

$$x_2\sigma_2(a)g_1 + \delta_2(a)g_1 + ag_0 = x_2g_1a + g_0a$$

Now $a \in Z(O_t(R))$ implies that

$$x_2\sigma_2(a)g_1 = g_1a + ag_1.$$

Thus $\sigma_2(a) = a$. Also $\delta_2(a)g_1 + ag_0 = g_0a = ag_0$ as $a \in Z(O_t(R))$. Therefore $\delta_2(a)g_1 = 0$ and thus Proposition (2.2) implies that $\delta_2(a) = 0$. Polynomials of higher degree can be treated similarly.

With the same process it can be shown that $\sigma_i \mid S$ is the identity map for all i, $1 \leq i \leq t$ and $\delta_i \mid S$ is the zero map for all i, $1 \leq i \leq t$.

References

- S. Annin, Associated primes over skew polynomial rings. Comm. Algebra, Vol. 30 (2002), 2511-2528.
- [2] V. K. Bhat, On 2-primal Ore extensions, Ukr. Math. Bull., Vol. 4(2) (2007), 173-179.
- [3] V. K. Bhat, Differential operator rings over 2-primal rings, Ukr. Math. Bull., Vol. 5(2) (2008), 153-158.
- [4] V. K. Bhat, Associated prime ideals of skew polynomial rings, Beitrge Algebra Geom., Vol. 49(1) (2008), 277-283.
- [5] V. K. Bhat, Decomposability of extension rings, Albanian J. Math., Vol. 2(4) (2008), 283-291
- [6] C. Faith, Associated primes in commutative polynomial rings, Comm. Algebra, Vol. 28 (2000), 3983-3986.
- [7] K. R. Goodearl and R. B. Warfield Jr., An introduction to non-commutative Noetherian rings, Cambridge Uni. Press, 1989.
- [8] C. Y. Hong, N. K. Kim and T.K.Kwak, Ore-extensions of baer and p.p.-rings, J. Pure Appl. Algebra, Vol. 151(3) (2000), 215-226.
- [9] A. V. Jategaonkar, Skew-Polynomial rings over order in artinian rings, J. Algebra, Vol. 21 (1972), 51-59.
- [10] J. Krempa, Some examples of reduced rings. Algebra Colloq., Vol. 3(4) (1996), 289-300.
- [11] T. K. Kwak, Prime radicals of skew-polynomial rings, Int. J. Math. Sci., Vol. 2(2) (2003), 219-227.
- [12] G. Marks, On 2-primal Ore extensions, Comm. Algebra, Vol. 29 (5) (2001), 2113-2123.
- [13] J. C. McConnell and J. C. Robson, Noncommutative Noetherian Rings, (Wiley 1987; revised edition: American Math. Society 2001).
- [14] H. Nordstrom, Associated primes over Ore extensions, J. Algebra, Vol. 286(1) (2005), 69-75.