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ABSTRACT. Here we study arithmetically Cohen-Macaulay rank 2 vector bun-
dles with trivial determinant on K3 and Enriques surfaces.

1. INTRODUCTION

Let X be either an Enriques surface or a K3-surface defined over an algebraically
closed field K such that char(K) # 2. Let ny denote the set of all ample line bundles
on X. Let E be any vector bundle on X. We will say that £ is WACM or that it is
weakly arithmetically Cohen-Macaulay if h' (X, E® L) = h* (X, E® L*) = 0 for all
L € ny. We will say that E is ACM or that it is arithmetically Cohen-Macaulay if
it is WACM and h!'(X, E) = 0. We will say that E is SACM or that it is strongly
arithmetically Cohen-Macaulay if it is ACM and h'(X,EF ® wx) = 0. Hence on
a K3 surface a vector bundle is ACM if and only if it is SACM. This definition
is very natural, but different from the usual one (unless X is a K3 surface with
Pic(X) & Z) in which we fix an ample H € Z and only require h' (X, E® H®") =0
for all ¢ € Z (sec [6] and references therein for many papers using the classical
definition on varieties with Pic(X) # Z). To state our results we introduce a few
definitions. We recall that an Enriques surface X is said to be nodal if there is an

integral curve T such that 7% < 0. A generic Enriques surface is not nodal ([3],
Th. 4).

Theorem 1. Let X be a non-nodal Enriques surface and E a rank 2 ACM vector
bundle on X such that det(E) =2 Ox. Then one of the following cases occurs.
(i) c1(E) =1 and E is a member of the family of ACM vector bundles described
i Fxample 1;
(ii) E is an extension of a line bundle A* by its dual A.

In case (ii) co(E) = —A? is an even integer. If E # A ® A* and we are in case
(1), then co(E) € {0,2}.
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Roughly speaking, the family {£;} of ACM vector bundles described in Example
1 depends from two parameters: each E; uniquely determines a point Z € X and
a very general point Z € X determines one of these vector bundles.

We will say that a K3-surface X has Property (4) if X contains no smooth
rational curve, i.e. (adjunction formula) no integral curve T such that T? = —2.
The adjunction formula shows that X has Property (+) if and only if there is no
effective divisor D on X such that D? < 0. Hence X has Property (+) if and only
if every effective divisor is nef. If K = C, then a global Torelli theorem makes easy
to construct K 3-surfaces with Property (4) (see [7], Lemma 4.3, for a construction
of an elliptic K3 surface with p = 2 and Property (+)).

Theorem 2. Let X be a K3-surface with Property (+) and not quasi-elliptic. Let
0 be the minimal self-intersection of an ample line bundle on X. 6 is a positive
even integer. Let E be a rank 2 ACM vector bundle on X such that det(E) = Ox.
Then one of the following cases occurs:

(i) There is an integer t such that 2 <t < §/2+4 2 and E is one of the vector
bundles E; described in Example 2; in this case co(E) =t;
(ii) FE is an extension of a line bundle A* by its dual A.
In case (ii) co(E) = —A? is an even integer. If E # A ® A* and we are in case
(1), then co(E) € {0,2,4}.

If char(K) # 2,3, then no surface is quasi-elliptic. Fix any integer ¢ such that
2 <t <4/2+2. Roughly speaking, the set {E:} of ACM vector bundles described
in Example 2 for the integer ¢ depends from 2¢+(t—1) parameters: each E; uniquely
determines a length ¢ zero-dimensional subschemes of X and a very general length
t zero-dimensional subschemes of X determines a (¢ — 1)-dimensional family of
non-isomorphic bundles contained in the set {E;}.

Remark 1. Let X be a K3-surface with Property (+). Assume that X has no
elliptic pencil. Equivalently, assume that there is no integral curve T such that
T? < 0. If this condition is satisfied we will say that X has Property (++).
Assume that X has Property (++). This assumption implies that every effective
divisor D # 0 on X is nef and big. We have h%(X, D) > D?/2 + 2 and hence the
linear system |D| covers X. Fix any integral curve ' C X. If T is not contained
in a divisor of |D|, then D - T > 0, because |D| covers X. If T is contained in a
divisor of |D|, then D-T > 0, because T? > 0. Hence D is ample by Nakai criterion
([5], Th. 1.5.1). Use also Riemmann-Roch to see that if X has Property (++) and
L € Pic(X), then the following conditions are equivalent:

(i) L €ny;

(ii) A°(X,L) >0 and L # Ox;

(ifi) hO(X,L) > 2;

(iv) L? >0, L # Ox, and L* ¢ ny;

(v) L? > 0 and L* ¢ n,.

Theorem 3. Let X be a K3-surface with Property (++). Let E be a rank 2 vector
bundle on X such that det(E) = Ox and c3(E) < 0. Then one of the following
cases s true:
(i) B~ 0%
(ii) E there is L € Pic(X) such that L is ample and ACM, c3(E) = —L? < 0
and E= L& L*.
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2. X AN ENRIQUES SURFACE

In this section X is an Enriques surface defined over an algebraically closed field
K such that char(K) # 2. Hence wx # Ox and w$? = Ox ([4], p. 76). Since
char(K) # 2, hi(X,O0x) =0 fori = 1,2, wx # Ox (i.e. wx has order 2) and wy is
the only non-trivial torsion line bundle on X ([4], p. 76). The intersection product
on NS(X) is a perfect pairing of Z-modules ([4], p. 78).

Let T C X be an integral curve such that 72 < 0. Since T -wy = 0, T? = —2
and p,(T) = 0, i.e. T = P'. X is said to be nodal if there is an integral curve T
such that 7% < 0. A generic Enriques surface is not nodal ([3], Th. 4).

For any M € Pic(X) and any rank 2 vector bundle E on X Riemann-Roch
says x(M) = M?/2 + 1 and x(E) = ¢1(E)?/2 — co(E) + 2. Fix any L € 0.
Kodaira vanishing gives h*(X,L*) =0, i = 0,1 (see [3], Th. 2.6, when L is nef and
big). Nakai criterion of ampleness ([5], 1.5.1) shows that wx ® L is ample. Hence
Kodaira vanishing ([3], Th. 2.6) and Serre duality gives hi(X,L) = 0, i = 1,2.
Hence Rieman-Roch gives h°(X,L) = 1 + L?/2. We just checked that both Ox
and wx are SACM.

Remark 2. Fix any A € Pic(X). Serre duality gives that A is SACM if and only
if both A and A* are ACM.

Example 1. Fix an integer ¢t > 2 and L € 7, such that L?/2 +1 > t. We just
saw that hO(X,L) = L?/2+ 1. Since t < h°(X,L) and h'(X,L) = 0, we have
h'(X,Z; ® L) =0 for a general Z C X such that #(Z) = t. Now assume that K is
uncountable. Since PicO(X ) is countable, there are only countably many ample line
bundles on X. Hence there is a non-empty set W; of the Hilbert scheme Hilb’(X)
of all zero-dimensional length ¢ subschemes of Z such that Hilb’(X)\W; is a union
of countably many proper algebraic subsets of Hilbt(X ), each Z € W, is locally a
complete intersection and h!(X,Zz ® L) = 0 for all L € n, such that L?/2+1 >t
and all Z € W;. Fix any Z € W, and consider the general extension

(1) 0—-0Ox - FE,—-7Z7;—0

Since h?(X,wx) = 0, the Cayley-Bacharach condition is satisfied ([1], Th. 1.4)
and hence Ej is locally free. Since h'(X,0x) = 0, [1], Th. 1.4, gives that the
set of all non-trivial extensions is parametrized by a (¢ — 1)-dimensional projec-
tive space. Two non-proportional extensions gives non-isomorphic vector bundles,
because h°(X, E;) = 1 and hence each E; fits in a unique extension (1). In par-
ticular, if ¢ = 1, then the point Z gives, up to isomorphisms, a unique vector
bundle E;. Now take any t. Since Z # (), h°(X,E;) = 1. Thus E; uniquely
determines Z as the scheme-theoretic locus at which any non-zero section of E;
drops rank. We have det(F;) = Ox, c3(F:) =t and E; is slope properly semistable
with respect to any polarization on X. Since Oy is spanned, h?(X,Ox) = 1 and
hY(X,0x) = 0, we have h'(X,Zz) =t — 1. Hence (1) gives h*(X,E;) = 0 and
M(X,E)=t—1>0ift > 1. Fix L € n.. We saw that h'(X,L) = 0. Since
Z € Wy, WM(X,Zz ® L) = 0. Hence h'(X,E; ® L) = 0. Since det(E;) & Ox and
rank(E;) = 2, Ef = E;. Hence h'(X,E ® L*) = h'(X,E ® (L ® wx)). Since
L ® wx € ny by Nakai criterion of ampleness ([5], I.5.1), we get that F; is WACM
and it is ACM if and only if ¢t = 1. Tensor the case t = 1 of (1) with wy. Since
(X, wx) = h'(X,wx) = 0, we get h' (X, E1 ® wx) = 1. Hence E; is not SACM.
Obviously, if E; is as above, then E; ® wx is WACM. Since rank(F) = 2 and
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w$? = Oy, det(F; ® wx) = Ox. Hence (F; ® wx)* & F; ® wy. By tensoring (1)
with the numerically trivial line bundle wx we get co(E; @ wx) = t. Serre duality
gives W' (X, By @ wy) = h'(X, (E; @ wx)* @ wx) = h'(X, E;). Hence E; ® wx is
ACM if and only if t = 1. F; ® wx is properly semistable in the sense of Mumford-
Takemoto with respect to any polarization of X. By tensoring (1) with wx we get
that h°(X, F; ® wx) = 0. Hence E; and E; ® wx are not isomorphic. Now assume
t > 2. Fix any Z € W, and consider a general extension

(2) 0wy -Gt —Iz—0

Since h(X,Zz/) = 0 for any length ¢ — 1 subscheme Z’ of Z, the Cayley-Bacharach
condition is satisfied and hence G is locally free. We need to exclude the caset = 1,
because in this case the Cayley-Bacharach condition is not satisfied and hence the
middle term of any such extension is not locally free. det(G;) = wx and c2(Gy) = t.
As above we see that G is WACM, but not ACM. Gy is properly semistable with
respect to any polarization of X. Again, each Z; determines a (¢ — 1)-dimensional
family of vector bundles G; and each of them uniquely determine Z as the scheme
at which any non-zero section of H%(X,G; ® w¥) drops rank. Fix H € 7.

Claim: E; and G; are not an extensions of two line bundles.

Proof of the Claim: We will only write down the proof for E;, since the one
for G requires only notational modifications (e.g. using h°(X, Gy ® wx) instead of
h°(X, E;)). In order to obtain a contradiction we assume that E is an extension of a
line bundle M* by M. Here we use det(E;) = Ox. Set z := M-H. Notice that F is
properly H-semistable. Hence z < 0. Since h°(X, E;) > 0, either h%(X, M) > 0 or
hO(X, M*) > 0. First assume z < 0. Hence h°(X, M) = 0. Thus h°(X, M*) > 0.
However, any non-zero section o of E drops rank exactly at the non-zero zero-
dimensional scheme Z. Since h°(X, M) = 0, o drops rank on the zero locus D of
the section o’ of M* induced by o. Since D has pure codimension one, we got a
contradiction. Now assume z = 0. Since H € ny, H-M* = —H - M = 0, and
RO (X, M) + h%(X, M*) > 0, M must be trivial. Thus cz(E;) = 0, contradiction.

Proposition 1. Fiz an integer t > 2 and L € ny. The following conditions are
equivalent:

(a) t < L?/2+1;

(b) h'(X,E, @ L) = 0;
(¢) h'(X,E; ® L*) = 0;
(d) h'(X,Gy® L) = 0;
(e) h'(X,Gy® L*) = 0.

Proof. We will do the proofs for F;, since the proofs for G; require only notational
modifications. First assume ¢ < L?/2 + 1. We saw that h'(X,L) = 0. Since
Z € Wy, hM(X,Zz ® L) = 0. Hence h'(X,E; ® L) = 0, i.e. (a) implies (b). Since
det(E;) = Ox and rank(E;) = 2, Ef & E;. Hence h'(X,E® L*) = h'(X,E ®
(L ® wx)). Since L ® wx € n4 by Nakai criterion of ampleness ([5], 1.5.1) and
(L®wx)? = L2, the definition of the set W; gives that (a) implies (c). Now assume
t>L?/2+2=1+h%X,L). Hence h*(X,Z; ® L) > 0. Since h'(X,L) = 0 ([3],
Th. 2.6), tensoring (1) with L we get h'(X, L) = 0. Since (L®wx)? = L?, we also
get h'(X, E® (wx ® L) > 0. Since Ef = Ey, Serre duality gives h! (X, B, ® L*) > 0.
Since L? = (L ® wx)?, we also see that (a), (b) and (c) are equivalent. O
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Proof of Theorem 1. Let E be a rank 2 ACM vector bundle on X such
that det(F) = Ox. Since x(Ox) = 1 and wx and det(E) are numerically trivial,
Riemann-Roch gives x(F) = ¢1(E)?/2 — ca(E) + 2. Since h! (X, E) = 0 and ¢, (E)
is numerically trivial, we get h°(X,E) + h?(X,E) — c2(E) +2 > 0. Fix H € 1,
and let A be the rank 1 subsheaf of E such that w := A - H is maximal. The
maximality of the integer w and the ampleness of H gives that A is saturated in
E. Since det(E) = Ox, we get an exact sequence

(3) 0A—-F—-I;,0A" >0

with Z a zero-dimensional subscheme of X and c3(E) = length(Z) — A2. Since
hU(X,E) = 0, we get h'(X,T; ® A*) < h2(X, A) and h'(X, A) < hO(X,T; ® A*).
Serre duality gives h?(X, A) = h%(X, A* ® wy).

(a) Here we assume w = 0. Since H is ample and wx has order 2, h°(X, A* ®
wx) > 0 if and only if A = wy. Hence h'(X,Z; ® A*) = 0 if A # wx. For
the same reason h’(X, A) + h%(X, A*) > 0 if and only if A € {Ox,wx}. First
assume A ¢ {Ox,wx}. We get h'(X,Z; @ A*) = 0. Hence h'(X,A*) = 0 and
length(Z) < h°(X, A*) = 0. Thus E is an extension of A* by A.

(al) Here we assume h'(X, A%?) > 0. If h%(X, A®?) = h%(X, A®?) = 0, then
Riemann-Roch gives 4% < 0 and hence A2 = —2. Now assume h°(X, A®?) +
h?(X, A®?) > 0 and that X is not nodal. Since X has no curve with negative self-
intersection, every effective divisor is nef. Since h°(X, A®?) + h?(X, A®?) > 0 and
wyx is numerically trivial, we get that A®? is nef. Hence A% > 0. Riemann-Roch
gives that either h%(X, A) > 0 or h%(X, A*®wx) > 0. Hence either h(X, A%?) >0
or h%(X, A®=2) > (. Since w = 0 any of these inequalities implies A®2 € {Ox,wx}.
We cannot have A%? = wy, because Tors(X) = Z/27Z is generated by wy. Hence
A®? = Oy contradicting the assumption h'(X, A%2?) > 0. In summary, if w = 0,
A ¢ {Ox,wx}and E # A® A*, then A2 = —2.

(a2) Here we assume h'(X, A®?) = 0. Hence (4) splits. Hence both A and A*
are ACM. Remark 2 gives that both A and A* are SACM. Hence E is SACM.

(a3) Here we assume A € {Ox,wx}. First assume Z # ). Since length(Z) <
h?(X, A), we get A = Ox and that Z is a point. Hence F is one of the vector bundles
E; described in Example 1. If Z = (), then E =~ A @ A*, because h'(X,0x) = 0.

(b) Here we assume w > 0. Hence h°(X,A*) = 0. Serre duality gives
h*(X,A) = 0. Hence Z = () and h'(X,A) = h'(X,A*) = 0. Thus Riemann-
Roch gives h°(X,A) = A%/2 + 1 and h?(X,A*) = A%/2 + 1. Hence A% > —2.
Since h0(X, A*) = h?(X,A) = 0, (4) gives h°(X, E) = h°(X, A) and h*(X,E) =
h?(X,A*). Since Z = 0, (4) gives co(E) = —A?. Since det(E) = Ox, x(E) =
—co(E)+2=A?+2.

(bl) Here we assume h'(X, A®?) > 0. As in case (al) we get A? = —2 if
RO (X, A®?) = h?(X,A%®?) = 0. Now assume A2 > 0 and that X is not nodal.
Riemma-Roch gives h¥(X, A®%) + h%(X, A®2) > 0 . Hence either h?(X, A®?)) >0
or h%(X,A®"2 @ wy) > 0. The latter inequality cannot occur, because w > 0.
Hence A®? is effective. Since X is not nodal, A®? is nef. Hence the assumption
h'(X, A®?) > 0 and the vanishing theorem [3], Theorem 2.6, for nef and big effective
divisors gives 42 = 0.

(b2) Here we assume h'(X, A®?) = 0. Hence (4) splits. Hence both A and A*
are ACM. Remark 2 gives that both A and A* are SACM. Hence E is SACM.

(c) Here we assume w < 0. Hence E is H-stable in the sense of Mumford and
Takemoto. Since ¢;(E) - H = 0, this implies h°(X, E) = 0. Since E is H-stable,



8 ENRIQUES SURFACE

E* @ wy is an H-stable with trivial determinant. Hence h%(X,E ® wy) = 0, i.e.
h?(X,E) = 0. Since F is ACM, Riemman-Roch gives —c2(E) + 2 = x(E) = 0,
i.e. —A2% +length(Z) = 2. Riemann-Roch for A gives that A? is an even integer.
Since w < 0, h?(X,A) = 0. Hence h'(X,E) = 0 implies h!(X,Zz @ A*. Hence
h'(X,A*) = 0 and h°(X, A*) > length(Z). Thus Z = 0 if h°(X, A*) = 0. Hence
hO(X, A*) = 0 implies cp(E) = —A? = 2.

(c1) Here we assume that X is not nodal. Assume h°(X, A*) > 0. Since X is
not nodal, A% > 0. Hence if X is not nodal and Z # (), then length(Z) = 2 and
A% = 0. However, h'(X,A*) = 0 and A? = 0, gives h%(X, A*) < 1 < length(Z).
Hence if X is not nodal, then Z = (), co(E) = 2 = A? and E is an extension of A*
by A. O

Remark 3. Fix A, B € Pic(X). Let E be the middle term of an extension € of B
by A. If e = 0 and A = B, then h°(X, End(E)) = 4. If e = 0 and A # B, then
h(X, End(E)) = 2 and any element of H°(X, End(FE)) may be put is a diagonal
form. Now assume € # 0 and h°(X, F ® A*) = 1. The latter condition is satisfied
if there is an ample line bundle H such that either A- H > B- H or A # B and
A-H = B-H. Then h°(X, End(E)) = 1+ h°(X, A ® B*) and every element of
H°(X, End(E)) may be put in a triangular form with the same constant on the two
diagonal elements and an element of H°(X, A ® B*) as the (1,2)-entry.

3. X A K3-SURFACE

In this section X is a smooth and projective K3-surface. Hence wx = Oy,
h'(X,0x) = 0, ba(X) = 22 and Pic(X) = Z* for some integer p such that 1 <
p < 22. If char(K) = 0, then p < 20. For any L € Pic(X) and any rank 2
vector bundle on X we have y(L) = L?/2 + 2 and x(E) = det(E)?/2 — c2(E) + 4
(Rieman-Roch). Hence L? is always an even integer. Now assume L € 1. Hence
hO(X,L*) = h?(X,L) = 0. Kodaira vanishing gives h'(X,L) = h!(X,L*) = 0.
In positive characteristic we use [8] to get Kodaira vanishing. However, to apply
[8], Cor. 8, we need to assume that X is not quasi-elliptic. We just recall that
no surface is quasi-elliptic if char(K) # 2,3. Hence h(X,L) = L?/2 + 2 for every
L € n4 if char(K) # 2, 3.

Example 2. Set § := min{L? : L € n,}. J is a positive even integer. Fix an integer
t such that 2 <t < §/2+2. Fix L € ny. Since L? > §, we have h°(X, L) = L?/2 +
1 >t. Since h°(X, L) >t and h*(X, L) = 0, we have h'(X,Zz®L) = 0 for a general
Z C X such that #(Z) = t. Now assume that K is uncountable. Since Pic’(X) is
countable, there are only countably many ample line bundles on X. Hence there is
a non-empty set W; of the Hilbert scheme Hilb’(X) of all zero-dimensional length
t subschemes of Z such that Hilb’(X)\W; is a union of countably many proper
algebraic subsets of Hilb’(X), each Z € W; is locally a complete intersection and
h'(X,Zz ® L) = 0 for all L € ny such that L?/2+ 2 > t and all Z € W,. Fix
any Z € W, and consider the general extension (1). Since h%(X,wx) = 0 and
t > 2, the Cayley-Bacharach condition is satisfied ([1], Th. 1.4) and hence E; is
locally free. We have det(E;) = Ox, co(E;) = t and E is slope properly semistable
with respect to any polarization on X. Since h'(X,Ox) = 0, [1], Th. 1.4, gives
that the set of all non-trivial extensions is parametrized by a (¢t — 1)-dimensional
projective space. Since Z # 0, h%(X, E;) = 1. Thus E; uniquely determines Z as
the scheme-theoretic locus at which any non-zero section of E; drops rank. Since
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Ox is spanned, h°(X,0x) = 1 and h'(X,0x) = 0, we have h'(X,Z7) =t — 1.
Hence (1) gives h'(X,E;) = 0 and h!'(X,E;) > 0if t > 1. Fix L € ;. We saw
that h*(X,L) = 0. Since Z € W, and t < h%(X,L), h'(X,Zz ® L) = 0. Hence
h'(X,E; ® L) = 0. Since det(E;) = Ox and rank(E;) = 2, Ef = E,. Hence
h'(X,E® L*) = h'(X,E ® L). Thus E; is WACM, but not ACM. E; is properly
semistable in the sense of Mumford-Takemoto with respect to any polarization of
X. As in the case of an Enriques surface we see that F is not an extension of two
line bundles. Conversely, take a zero-dimensional scheme Z C X, Z # () and take
any extension (1) with locally free middle term, F'. set ¢ := length(Z). Since F is
locally free, the Cayley-Bacharach condition must be satisfied and hence t > 2. Now
assume that F' is WACM. Fix L € ny. Since h?(X,L) =0 and h'(X,F ® L) = 0,
we get h'(X,Zz ® L) = 0. Hence t > h°(X,L). Taking L with minimal self-
intersection, we get t < §/2 + 2. Since h'(X,Z; ® L) = 0 for all L € 7, we see
that all WACM non-trivial vector bundles E with det(E) = Ox, h°(X,E) > 0,
h(X, E(—D)) = 0 for every divisor D > 0 are given by our construction for some
integer ¢ := co(F) such that 2 <¢ < §/2+ 2.

Proof of Theorem 2. Let E be a rank 2 ACM vector bundle on X. Fix
H € ny and let A be the rank 1 subsheaf of E such that w := A - H is maximal.
The maximality of the integer w and the ampleness of H gives that A is saturated
in E. Since det(F) =2 Ox, we get an exact sequence

(4) 0 A—F—-7I;,0A" =0

with Z a zero-dimensional subscheme of X and c3(E) = length(Z) — A2. Since
hY(X,E) = 0, we get h'(X,Zz © A*) < h%(X, A) and h'(X, A) < BO(X,T; ® A*).
Serre duality gives h?(X, A) = h0(X, A*).

(a) Here we assume w = 0. Since H is ample, h?(X, A*) > 0 if and only if
A= Ox. Hence h'(X,Zz ® A*) = 0 if A # Ox. For the same reason h°(X, A) +
hO(X, A*) > 0 if and only if A = Ox. First assume A # Ox. We get h'(X, Tz ®
A*) = 0. Hence h'(X,A*) = 0 and length(Z) < h°(X,A*) = 0. Thus F is an
extension of A* by A if A # Ox.

(al) Here we assume A # Ox and h'(X, A®?) > 0. If

hY(X, A®?) = h?(X, A®?) = 0,
then Riemann-Roch gives A% < 0 and hence A? € {—4, —2}. Now assume
hO(X, A®%) + h?(X, A®?) > 0

and that X has Property (+). Since X has no curve with negative self-intersection,
every effective divisor is nef. Since h%(X, A%?) + h?(X, A®?) > 0 and wx = Oy,
we get that A®? is nef. Hence A2 > 0. Assume A2 > 0. Riemann-Roch gives
that either h%(X, A) > 0 or h°(X, A* ® wx) > 0. Hence either h°(X, A%%) > 0
or h%(X,A®=2) > 0. Since w = 0 any of these inequalities implies A®? = Oy,
contradicting the assumption on A and the fact that Pic(X) has no torsion.

(a2) Here we assume h'(X, A®?) = 0. Hence (4) splits. Hence both A and A*
are ACM.

(a3) Here we assume A = Oy. Since length(Z) < h%(X, A*) = 1, Z is a point.
Since wy = Ox and Z is a point, we get the Cayley-Bacharach condition is not
satisfied and hence the middle term of any extension (4) with Ox and Z a point is
not locally free, contradiction. Hence Z = () if w = 0.
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(b) Here we assume w > 0. Hence h%(X,A*) = 0. Serre duality gives
h?(X,A) = 0. Hence Z = () and h'(X,A) = h}(X,A*) = 0. Thus Riemann-
Roch gives h%(X, A) = A%/2 + 2 and h?(X, A*) = A%/2 + 2. Since h°(X, A*) =
h2(X,A) = 0, (4) gives h°(X,E) = h°(X,A) and h*(X,E) = h?(X, A*). Since
Z =10, (4) gives c2(F) = —A?. Since det(F) 2 Ox, x(E) = —c2(E) +4 = A% + 4.
Since h!(X, E) =0, x(E) > 0. Hence A% > —4. Riemann-Roch gives that A% is an
even integer.

(b1) Here we assume h'(X, A®2) > 0. As in case (al) we get —4 < A% < —2/if
hO(X, A®?) = h?(X, A®?) = 0. Now assume A? > 0, that X has Property (+) and
that X is not quasi-elliptic. Riemann-Roch gives h?(X, A®?) + h?(X, A®?) > 0.
Hence either h°(X, A%2)) > 0 or h°(X,A® "2 ® wx) > 0. The latter inequality
cannot occur, because w > 0. HenceA®? is effective. Since X has Property (+),
A®2 is nef. Hence the assumption h'(X, A®2?) > 0 and (assuming X not quasi-
elliptic) the vanishing theorem [8], Cor. 8, for nef and big line bundles gives A% = 0.

(b2) Here we assume h'(X, A®?) = 0. Hence (4) splits. Hence both A and A*
are ACM.

(¢) Here we assume w < 0. Hence E is H-stable in the sense of Mumford and
Takemoto. Since ¢;(E)-H = 0, this implies h°(X, E) = 0. Since E is H-stable, E*
is H-stable. Hence h%(X,E) = 0, i.e. h*(X,E) = 0. Since E is ACM, Riemman-
Roch gives —ca(E) +4 = x(E) = 0, i.e. —A? + length(Z) = 4. Riemann-Roch for
A gives that A? is an even integer. Since w < 0, h?(X, A) = 0. Hence h'(X,E) =0
implies h'(X,Zz ® A*). Hence h'(X, A*) = 0 and h°(X, A*) > length(Z). Thus
Z=0if hO(X,A*) =0

(c1) Here we assume that X has Property (+). Assume Z # (. Hence
h%(X,A*) > 0. Since X has Property (+), A? > 0. Hence if X has Property
(+) and Z # 0, then length(Z) = 4 and A? = 0. However, h'(X,A*) = 0
h?(X,A*) = h%(X,A) = 0 and A? = 0 give h?(X, A*) = 2 < 4 = length(Z),
contradiction. Since Z = 0, co(E) = —A? = 4. O

Remark 4. Let X be a K3-surface such that Pic(X) = Z. Let § be the self-
intersection of a generator of Pic(X). Every line bundle on X is ACM. Hence the
proof of Theorem 2 shows that a rank 2 vector bundle on X such that det(F) = Ox
is ACM if and only if one of the following conditions is satisfied:
(i) E~ A® A* for some A € Pic(X);
(ii) there is an integer ¢t such that 2 <t < §/2 + 2 such that F is one of the
vector bundles E; described in Example 2.

Proposition 2. Let X be a projective K3 surface. The following conditions are
equivalent:
(i) Pic(X) 2 Z;
every line bundle on X is ACM;
every line bundle on X is WACM;
every ample line bundle on X is ACM;
every ample line bundle on X is WACM.

Proof. The first part of Remark 4 gives that (i) implies (ii). Hence it is sufficient to
show that if p > 2, then there is an ample line bundle on X which is not WACM.
Since p > 2, the intersection form on Pic(X) is not definite positive by Hodge Index
theorem. Hence there is A € Pic(X) such that A% < 0. Set B := A®2. Since A2 is
an even integer B2 < —4. Hence x(B) = B2 +2 < 0. Hence h'(X, B) > 0. Since
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every Cartier divisor on a projective variety is the difference of two very ample
divisors, there are ample R, L such that B := R® L*. Since h!(X, B) > 0, R is not
WACM. 0

Proof of Theorem 3. Since X has Property (4+4), it is not quasi-elliptic
and hence we may use Kodaira vanishing on X ([8], Cor. 8). Take E given by an
extension (4). We saw in the proof of Theorem 2 that Z = () and hence c3(E) =
—A2%. First assume A2 = 0, i.e. c3(E) = 0. Since x(A) = 2, either A or A* must
have a section. Since A2 = 0 and X has Property (++), we get A = Ox and hence
E = 092 Now assume A% > 0, i.e. co(E) < 0. Hence either A is ample or A*
is ample. In both cases we have h'(X, A®?) = 0 by Kodaira vanishing and Serre
duality. Hence E @ A @ A*, i.e. we are in case (ii). O
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