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Abstract. Here we study arithmetically Cohen-Macaulay rank 2 vector bun-
dles with trivial determinant on K3 and Enriques surfaces.

1. Introduction

Let X be either an Enriques surface or a K3-surface defined over an algebraically
closed field K such that char(K) 6= 2. Let η+ denote the set of all ample line bundles
on X. Let E be any vector bundle on X. We will say that E is WACM or that it is
weakly arithmetically Cohen-Macaulay if h1(X,E ⊗ L) = h1(X,E ⊗ L∗) = 0 for all
L ∈ η+. We will say that E is ACM or that it is arithmetically Cohen-Macaulay if
it is WACM and h1(X,E) = 0. We will say that E is SACM or that it is strongly
arithmetically Cohen-Macaulay if it is ACM and h1(X,E ⊗ ωX) = 0. Hence on
a K3 surface a vector bundle is ACM if and only if it is SACM. This definition
is very natural, but different from the usual one (unless X is a K3 surface with
Pic(X) ∼= Z) in which we fix an ample H ∈ Z and only require h1(X,E⊗H⊗t) = 0
for all t ∈ Z (see [6] and references therein for many papers using the classical
definition on varieties with Pic(X) 6= Z). To state our results we introduce a few
definitions. We recall that an Enriques surface X is said to be nodal if there is an
integral curve T such that T 2 < 0. A generic Enriques surface is not nodal ([3],
Th. 4).

Theorem 1. Let X be a non-nodal Enriques surface and E a rank 2 ACM vector
bundle on X such that det(E) ∼= OX . Then one of the following cases occurs.

(i) c1(E) = 1 and E is a member of the family of ACM vector bundles described
in Example 1;

(ii) E is an extension of a line bundle A∗ by its dual A.
In case (ii) c2(E) = −A2 is an even integer. If E 6= A ⊕ A∗ and we are in case
(ii), then c2(E) ∈ {0, 2}.
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Roughly speaking, the family {E1} of ACM vector bundles described in Example
1 depends from two parameters: each E1 uniquely determines a point Z ∈ X and
a very general point Z ∈ X determines one of these vector bundles.

We will say that a K3-surface X has Property (+) if X contains no smooth
rational curve, i.e. (adjunction formula) no integral curve T such that T 2 = −2.
The adjunction formula shows that X has Property (+) if and only if there is no
effective divisor D on X such that D2 < 0. Hence X has Property (+) if and only
if every effective divisor is nef. If K = C, then a global Torelli theorem makes easy
to construct K3-surfaces with Property (+) (see [7], Lemma 4.3, for a construction
of an elliptic K3 surface with ρ = 2 and Property (+)).

Theorem 2. Let X be a K3-surface with Property (+) and not quasi-elliptic. Let
δ be the minimal self-intersection of an ample line bundle on X. δ is a positive
even integer. Let E be a rank 2 ACM vector bundle on X such that det(E) ∼= OX .
Then one of the following cases occurs:

(i) There is an integer t such that 2 ≤ t ≤ δ/2 + 2 and E is one of the vector
bundles Et described in Example 2; in this case c2(E) = t;

(ii) E is an extension of a line bundle A∗ by its dual A.
In case (ii) c2(E) = −A2 is an even integer. If E 6= A ⊕ A∗ and we are in case
(ii), then c2(E) ∈ {0, 2, 4}.

If char(K) 6= 2, 3, then no surface is quasi-elliptic. Fix any integer t such that
2 ≤ t ≤ δ/2 + 2. Roughly speaking, the set {Et} of ACM vector bundles described
in Example 2 for the integer t depends from 2t+(t−1) parameters: each Et uniquely
determines a length t zero-dimensional subschemes of X and a very general length
t zero-dimensional subschemes of X determines a (t − 1)-dimensional family of
non-isomorphic bundles contained in the set {Et}.

Remark 1. Let X be a K3-surface with Property (+). Assume that X has no
elliptic pencil. Equivalently, assume that there is no integral curve T such that
T 2 ≤ 0. If this condition is satisfied we will say that X has Property (++).
Assume that X has Property (++). This assumption implies that every effective
divisor D 6= 0 on X is nef and big. We have h0(X,D) ≥ D2/2 + 2 and hence the
linear system |D| covers X. Fix any integral curve T ⊂ X. If T is not contained
in a divisor of |D|, then D · T > 0, because |D| covers X. If T is contained in a
divisor of |D|, then D ·T > 0, because T 2 > 0. Hence D is ample by Nakai criterion
([5], Th. 1.5.1). Use also Riemmann-Roch to see that if X has Property (++) and
L ∈ Pic(X), then the following conditions are equivalent:

(i) L ∈ η+;
(ii) h0(X,L) > 0 and L 6= OX ;
(iii) h0(X,L) ≥ 2;
(iv) L2 ≥ 0, L 6= OX , and L∗ /∈ η+;
(v) L2 > 0 and L∗ /∈ η+.

Theorem 3. Let X be a K3-surface with Property (++). Let E be a rank 2 vector
bundle on X such that det(E) ∼= OX and c2(E) ≤ 0. Then one of the following
cases is true:

(i) E ∼= O⊕2
X ;

(ii) E there is L ∈ Pic(X) such that L is ample and ACM, c2(E) = −L2 < 0
and E ∼= L⊕ L∗.
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2. X an Enriques surface

In this section X is an Enriques surface defined over an algebraically closed field
K such that char(K) 6= 2. Hence ωX 6= OX and ω⊗2

X
∼= OX ([4], p. 76). Since

char(K) 6= 2, hi(X,OX) = 0 for i = 1, 2, ωX 6= OX (i.e. ωX has order 2) and ωX is
the only non-trivial torsion line bundle on X ([4], p. 76). The intersection product
on NS(X) is a perfect pairing of Z-modules ([4], p. 78).

Let T ⊂ X be an integral curve such that T 2 < 0. Since T · ωX = 0, T 2 = −2
and pa(T ) = 0, i.e. T ∼= P1. X is said to be nodal if there is an integral curve T
such that T 2 < 0. A generic Enriques surface is not nodal ([3], Th. 4).

For any M ∈ Pic(X) and any rank 2 vector bundle E on X Riemann-Roch
says χ(M) = M2/2 + 1 and χ(E) = c1(E)2/2 − c2(E) + 2. Fix any L ∈ η+.
Kodaira vanishing gives hi(X,L∗) = 0, i = 0, 1 (see [3], Th. 2.6, when L is nef and
big). Nakai criterion of ampleness ([5], I.5.1) shows that ωX ⊗ L is ample. Hence
Kodaira vanishing ([3], Th. 2.6) and Serre duality gives hi(X,L) = 0, i = 1, 2.
Hence Rieman-Roch gives h0(X,L) = 1 + L2/2. We just checked that both OX
and ωX are SACM.

Remark 2. Fix any A ∈ Pic(X). Serre duality gives that A is SACM if and only
if both A and A∗ are ACM.

Example 1. Fix an integer t ≥ 2 and L ∈ η+ such that L2/2 + 1 ≥ t. We just
saw that h0(X,L) = L2/2 + 1. Since t ≤ h0(X,L) and h1(X,L) = 0, we have
h1(X, IZ ⊗ L) = 0 for a general Z ⊂ X such that ](Z) = t. Now assume that K is
uncountable. Since Pic0(X) is countable, there are only countably many ample line
bundles on X. Hence there is a non-empty set Wt of the Hilbert scheme Hilbt(X)
of all zero-dimensional length t subschemes of Z such that Hilbt(X)\Wt is a union
of countably many proper algebraic subsets of Hilbt(X), each Z ∈ Wt is locally a
complete intersection and h1(X, IZ ⊗L) = 0 for all L ∈ η+ such that L2/2 + 1 ≥ t
and all Z ∈Wt. Fix any Z ∈Wt and consider the general extension

(1) 0→ OX → Et → IZ → 0

Since h0(X,ωX) = 0, the Cayley-Bacharach condition is satisfied ([1], Th. 1.4)
and hence Et is locally free. Since h1(X,OX) = 0, [1], Th. 1.4, gives that the
set of all non-trivial extensions is parametrized by a (t − 1)-dimensional projec-
tive space. Two non-proportional extensions gives non-isomorphic vector bundles,
because h0(X,Et) = 1 and hence each Et fits in a unique extension (1). In par-
ticular, if t = 1, then the point Z gives, up to isomorphisms, a unique vector
bundle Et. Now take any t. Since Z 6= ∅, h0(X,Et) = 1. Thus Et uniquely
determines Z as the scheme-theoretic locus at which any non-zero section of Et
drops rank. We have det(Et) ∼= OX , c2(Et) = t and Et is slope properly semistable
with respect to any polarization on X. Since OX is spanned, h0(X,OX) = 1 and
h1(X,OX) = 0, we have h1(X, IZ) = t − 1. Hence (1) gives h1(X,E1) = 0 and
h1(X,Et) = t − 1 > 0 if t > 1. Fix L ∈ η+. We saw that h1(X,L) = 0. Since
Z ∈ Wt, h1(X, IZ ⊗ L) = 0. Hence h1(X,Et ⊗ L) = 0. Since det(Et) ∼= OX and
rank(Et) = 2, E∗t ∼= Et. Hence h1(X,E ⊗ L∗) = h1(X,E ⊗ (L ⊗ ωX)). Since
L⊗ ωX ∈ η+ by Nakai criterion of ampleness ([5], I.5.1), we get that Et is WACM
and it is ACM if and only if t = 1. Tensor the case t = 1 of (1) with ωX . Since
h0(X,ωX) = h1(X,ωX) = 0, we get h1(X,E1 ⊗ ωX) = 1. Hence E1 is not SACM.
Obviously, if Et is as above, then Et ⊗ ωX is WACM. Since rank(E) = 2 and
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ω⊗2
X
∼= OX , det(Et ⊗ ωX) ∼= OX . Hence (Et ⊗ ωX)∗ ∼= Et ⊗ ωX . By tensoring (1)

with the numerically trivial line bundle ωX we get c2(Et ⊗ ωX) = t. Serre duality
gives h1(X,Et ⊗ ωX) = h1(X, (Et ⊗ ωX)∗ ⊗ ωX) = h1(X,Et). Hence Et ⊗ ωX is
ACM if and only if t = 1. Et⊗ωX is properly semistable in the sense of Mumford-
Takemoto with respect to any polarization of X. By tensoring (1) with ωX we get
that h0(X,Et ⊗ ωX) = 0. Hence Et and Et ⊗ ωX are not isomorphic. Now assume
t ≥ 2. Fix any Z ∈Wt and consider a general extension

(2) 0→ ωX → Gt → IZ → 0

Since h0(X, IZ′) = 0 for any length t−1 subscheme Z ′ of Z, the Cayley-Bacharach
condition is satisfied and hence Gt is locally free. We need to exclude the case t = 1,
because in this case the Cayley-Bacharach condition is not satisfied and hence the
middle term of any such extension is not locally free. det(Gt) ∼= ωX and c2(Gt) = t.
As above we see that Gt is WACM, but not ACM. Gt is properly semistable with
respect to any polarization of X. Again, each Zt determines a (t− 1)-dimensional
family of vector bundles Gt and each of them uniquely determine Z as the scheme
at which any non-zero section of H0(X,Gt ⊗ ω∗X) drops rank. Fix H ∈ η+.

Claim: Et and Gt are not an extensions of two line bundles.
Proof of the Claim: We will only write down the proof for Et, since the one

for Gt requires only notational modifications (e.g. using h0(X,Gt⊗ωX) instead of
h0(X,Et)). In order to obtain a contradiction we assume that E is an extension of a
line bundle M∗ by M . Here we use det(Et) ∼= OX . Set z := M ·H. Notice that Et is
properly H-semistable. Hence z ≤ 0. Since h0(X,Et) > 0, either h0(X,M) > 0 or
h0(X,M∗) > 0. First assume z < 0. Hence h0(X,M) = 0. Thus h0(X,M∗) > 0.
However, any non-zero section σ of E drops rank exactly at the non-zero zero-
dimensional scheme Z. Since h0(X,M) = 0, σ drops rank on the zero locus D of
the section σ′ of M∗ induced by σ. Since D has pure codimension one, we got a
contradiction. Now assume z = 0. Since H ∈ η+, H ·M∗ = −H ·M = 0, and
h0(X,M) + h0(X,M∗) > 0, M must be trivial. Thus c2(Et) = 0, contradiction.

Proposition 1. Fix an integer t ≥ 2 and L ∈ η+. The following conditions are
equivalent:

(a) t ≤ L2/2 + 1;
(b) h1(X,Et ⊗ L) = 0;
(c) h1(X,Et ⊗ L∗) = 0;
(d) h1(X,Gt ⊗ L) = 0;
(e) h1(X,Gt ⊗ L∗) = 0.

Proof. We will do the proofs for Et, since the proofs for Gt require only notational
modifications. First assume t ≤ L2/2 + 1. We saw that h1(X,L) = 0. Since
Z ∈ Wt, h1(X, IZ ⊗ L) = 0. Hence h1(X,Et ⊗ L) = 0, i.e. (a) implies (b). Since
det(Et) ∼= OX and rank(Et) = 2, E∗t ∼= Et. Hence h1(X,E ⊗ L∗) = h1(X,E ⊗
(L ⊗ ωX)). Since L ⊗ ωX ∈ η+ by Nakai criterion of ampleness ([5], I.5.1) and
(L⊗ωX)2 = L2, the definition of the set Wt gives that (a) implies (c). Now assume
t ≥ L2/2 + 2 = 1 + h0(X,L). Hence h1(X, IZ ⊗ L) > 0. Since h1(X,L) = 0 ([3],
Th. 2.6), tensoring (1) with L we get h1(X,L) = 0. Since (L⊗ωX)2 = L2, we also
get h1(X,E⊗(ωX⊗L) > 0. Since E∗t ∼= Et, Serre duality gives h1(X,Et⊗L∗) > 0.
Since L2 = (L⊗ ωX)2, we also see that (a), (b) and (c) are equivalent. �
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Proof of Theorem 1. Let E be a rank 2 ACM vector bundle on X such
that det(E) ∼= OX . Since χ(OX) = 1 and ωX and det(E) are numerically trivial,
Riemann-Roch gives χ(F ) = c1(E)2/2− c2(E) + 2. Since h1(X,E) = 0 and c1(E)
is numerically trivial, we get h0(X,E) + h2(X,E) − c2(E) + 2 ≥ 0. Fix H ∈ η+
and let A be the rank 1 subsheaf of E such that w := A · H is maximal. The
maximality of the integer w and the ampleness of H gives that A is saturated in
E. Since det(E) ∼= OX , we get an exact sequence

(3) 0→ A→ E → IZ ⊗A∗ → 0

with Z a zero-dimensional subscheme of X and c2(E) = length(Z) − A2. Since
h1(X,E) = 0, we get h1(X, IZ ⊗ A∗) ≤ h2(X,A) and h1(X,A) ≤ h0(X, IZ ⊗ A∗).
Serre duality gives h2(X,A) = h0(X,A∗ ⊗ ωX).

(a) Here we assume w = 0. Since H is ample and ωX has order 2, h0(X,A∗⊗
ωX) > 0 if and only if A ∼= ωX . Hence h1(X, IZ ⊗ A∗) = 0 if A 6= ωX . For
the same reason h0(X,A) + h0(X,A∗) > 0 if and only if A ∈ {OX , ωX}. First
assume A /∈ {OX , ωX}. We get h1(X, IZ ⊗ A∗) = 0. Hence h1(X,A∗) = 0 and
length(Z) ≤ h0(X,A∗) = 0. Thus E is an extension of A∗ by A.

(a1) Here we assume h1(X,A⊗2) > 0. If h0(X,A⊗2) = h2(X,A⊗2) = 0, then
Riemann-Roch gives A2 < 0 and hence A2 = −2. Now assume h0(X,A⊗2) +
h2(X,A⊗2) > 0 and that X is not nodal. Since X has no curve with negative self-
intersection, every effective divisor is nef. Since h0(X,A⊗2) + h2(X,A⊗2) > 0 and
ωX is numerically trivial, we get that A⊗2 is nef. Hence A2 ≥ 0. Riemann-Roch
gives that either h0(X,A) > 0 or h0(X,A∗⊗ωX) > 0. Hence either h0(X,A⊗2) > 0
or h0(X,A⊗−2) > 0. Since w = 0 any of these inequalities implies A⊗2 ∈ {OX , ωX}.
We cannot have A⊗2 ∼= ωX , because Tors(X) ∼= Z/2Z is generated by ωX . Hence
A⊗2 ∼= OX , contradicting the assumption h1(X,A⊗2) > 0. In summary, if w = 0,
A /∈ {OX , ωX} and E 6= A⊕A∗, then A2 = −2.

(a2) Here we assume h1(X,A⊗2) = 0. Hence (4) splits. Hence both A and A∗

are ACM. Remark 2 gives that both A and A∗ are SACM. Hence E is SACM.
(a3) Here we assume A ∈ {OX , ωX}. First assume Z 6= ∅. Since length(Z) ≤

h2(X,A), we get A ∼= OX and that Z is a point. Hence E is one of the vector bundles
E1 described in Example 1. If Z = ∅, then E ∼= A⊕A∗, because h1(X,OX) = 0.

(b) Here we assume w > 0. Hence h0(X,A∗) = 0. Serre duality gives
h2(X,A) = 0. Hence Z = ∅ and h1(X,A) = h1(X,A∗) = 0. Thus Riemann-
Roch gives h0(X,A) = A2/2 + 1 and h2(X,A∗) = A2/2 + 1. Hence A2 ≥ −2.
Since h0(X,A∗) = h2(X,A) = 0, (4) gives h0(X,E) = h0(X,A) and h2(X,E) =
h2(X,A∗). Since Z = ∅, (4) gives c2(E) = −A2. Since det(E) ∼= OX , χ(E) =
−c2(E) + 2 = A2 + 2.

(b1) Here we assume h1(X,A⊗2) > 0. As in case (a1) we get A2 = −2 if
h0(X,A⊗2) = h2(X,A⊗2) = 0. Now assume A2 ≥ 0 and that X is not nodal.
Riemma-Roch gives h0(X,A⊗2) + h2(X,A⊗2) > 0 . Hence either h0(X,A⊗2)) > 0
or h0(X,A⊗−2 ⊗ ωX) > 0. The latter inequality cannot occur, because w > 0.
Hence A⊗2 is effective. Since X is not nodal, A⊗2 is nef. Hence the assumption
h1(X,A⊗2) > 0 and the vanishing theorem [3], Theorem 2.6, for nef and big effective
divisors gives A2 = 0.

(b2) Here we assume h1(X,A⊗2) = 0. Hence (4) splits. Hence both A and A∗

are ACM. Remark 2 gives that both A and A∗ are SACM. Hence E is SACM.
(c) Here we assume w < 0. Hence E is H-stable in the sense of Mumford and

Takemoto. Since c1(E) · H = 0, this implies h0(X,E) = 0. Since E is H-stable,



8 ENRIQUES SURFACE

E∗ ⊗ ωX is an H-stable with trivial determinant. Hence h0(X,E ⊗ ωX) = 0, i.e.
h2(X,E) = 0. Since E is ACM, Riemman-Roch gives −c2(E) + 2 = χ(E) = 0,
i.e. −A2 + length(Z) = 2. Riemann-Roch for A gives that A2 is an even integer.
Since w < 0, h2(X,A) = 0. Hence h1(X,E) = 0 implies h1(X, IZ ⊗ A∗. Hence
h1(X,A∗) = 0 and h0(X,A∗) ≥ length(Z). Thus Z = ∅ if h0(X,A∗) = 0. Hence
h0(X,A∗) = 0 implies c2(E) = −A2 = 2.

(c1) Here we assume that X is not nodal. Assume h0(X,A∗) > 0. Since X is
not nodal, A2 ≥ 0. Hence if X is not nodal and Z 6= ∅, then length(Z) = 2 and
A2 = 0. However, h1(X,A∗) = 0 and A2 = 0, gives h0(X,A∗) ≤ 1 < length(Z).
Hence if X is not nodal, then Z = ∅, c2(E) = 2 = A2 and E is an extension of A∗

by A. �

Remark 3. Fix A,B ∈ Pic(X). Let E be the middle term of an extension ε of B
by A. If ε = 0 and A ∼= B, then h0(X,End(E)) = 4. If ε = 0 and A 6= B, then
h0(X,End(E)) = 2 and any element of H0(X,End(E)) may be put is a diagonal
form. Now assume ε 6= 0 and h0(X,E ⊗ A∗) = 1. The latter condition is satisfied
if there is an ample line bundle H such that either A · H > B · H or A 6= B and
A · H = B · H. Then h0(X,End(E)) = 1 + h0(X,A ⊗ B∗) and every element of
H0(X,End(E)) may be put in a triangular form with the same constant on the two
diagonal elements and an element of H0(X,A⊗B∗) as the (1, 2)-entry.

3. X a K3-surface

In this section X is a smooth and projective K3-surface. Hence ωX ∼= OX ,
h1(X,OX) = 0, b2(X) = 22 and Pic(X) ∼= Zρ for some integer ρ such that 1 ≤
ρ ≤ 22. If char(K) = 0, then ρ ≤ 20. For any L ∈ Pic(X) and any rank 2
vector bundle on X we have χ(L) = L2/2 + 2 and χ(E) = det(E)2/2 − c2(E) + 4
(Rieman-Roch). Hence L2 is always an even integer. Now assume L ∈ η+. Hence
h0(X,L∗) = h2(X,L) = 0. Kodaira vanishing gives h1(X,L) = h1(X,L∗) = 0.
In positive characteristic we use [8] to get Kodaira vanishing. However, to apply
[8], Cor. 8, we need to assume that X is not quasi-elliptic. We just recall that
no surface is quasi-elliptic if char(K) 6= 2, 3. Hence h0(X,L) = L2/2 + 2 for every
L ∈ η+ if char(K) 6= 2, 3.

Example 2. Set δ := min{L2 : L ∈ η+}. δ is a positive even integer. Fix an integer
t such that 2 ≤ t ≤ δ/2 + 2. Fix L ∈ η+. Since L2 ≥ δ, we have h0(X,L) = L2/2 +
1 ≥ t. Since h0(X,L) ≥ t and h1(X,L) = 0, we have h1(X, IZ⊗L) = 0 for a general
Z ⊂ X such that ](Z) = t. Now assume that K is uncountable. Since Pic0(X) is
countable, there are only countably many ample line bundles on X. Hence there is
a non-empty set Wt of the Hilbert scheme Hilbt(X) of all zero-dimensional length
t subschemes of Z such that Hilbt(X)\Wt is a union of countably many proper
algebraic subsets of Hilbt(X), each Z ∈ Wt is locally a complete intersection and
h1(X, IZ ⊗ L) = 0 for all L ∈ η+ such that L2/2 + 2 ≥ t and all Z ∈ Wt. Fix
any Z ∈ Wt and consider the general extension (1). Since h0(X,ωX) = 0 and
t ≥ 2, the Cayley-Bacharach condition is satisfied ([1], Th. 1.4) and hence Et is
locally free. We have det(Et) ∼= OX , c2(Et) = t and Et is slope properly semistable
with respect to any polarization on X. Since h1(X,OX) = 0, [1], Th. 1.4, gives
that the set of all non-trivial extensions is parametrized by a (t − 1)-dimensional
projective space. Since Z 6= ∅, h0(X,Et) = 1. Thus Et uniquely determines Z as
the scheme-theoretic locus at which any non-zero section of Et drops rank. Since
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OX is spanned, h0(X,OX) = 1 and h1(X,OX) = 0, we have h1(X, IZ) = t − 1.
Hence (1) gives h1(X,E1) = 0 and h1(X,Et) > 0 if t > 1. Fix L ∈ η+. We saw
that h1(X,L) = 0. Since Z ∈ Wt and t ≤ h0(X,L), h1(X, IZ ⊗ L) = 0. Hence
h1(X,Et ⊗ L) = 0. Since det(Et) ∼= OX and rank(Et) = 2, E∗t ∼= Et. Hence
h1(X,E ⊗ L∗) = h1(X,E ⊗ L). Thus Et is WACM, but not ACM. Et is properly
semistable in the sense of Mumford-Takemoto with respect to any polarization of
X. As in the case of an Enriques surface we see that E is not an extension of two
line bundles. Conversely, take a zero-dimensional scheme Z ⊂ X, Z 6= ∅ and take
any extension (1) with locally free middle term, F . set t := length(Z). Since F is
locally free, the Cayley-Bacharach condition must be satisfied and hence t ≥ 2. Now
assume that F is WACM. Fix L ∈ η+. Since h2(X,L) = 0 and h1(X,F ⊗ L) = 0,
we get h1(X, IZ ⊗ L) = 0. Hence t ≥ h0(X,L). Taking L with minimal self-
intersection, we get t ≤ δ/2 + 2. Since h1(X, IZ ⊗ L) = 0 for all L ∈ η+, we see
that all WACM non-trivial vector bundles E with det(E) ∼= OX , h0(X,E) > 0,
h0(X,E(−D)) = 0 for every divisor D > 0 are given by our construction for some
integer t := c2(E) such that 2 ≤ t ≤ δ/2 + 2.

Proof of Theorem 2. Let E be a rank 2 ACM vector bundle on X. Fix
H ∈ η+ and let A be the rank 1 subsheaf of E such that w := A ·H is maximal.
The maximality of the integer w and the ampleness of H gives that A is saturated
in E. Since det(E) ∼= OX , we get an exact sequence

(4) 0→ A→ E → IZ ⊗A∗ → 0

with Z a zero-dimensional subscheme of X and c2(E) = length(Z) − A2. Since
h1(X,E) = 0, we get h1(X, IZ ⊗ A∗) ≤ h2(X,A) and h1(X,A) ≤ h0(X, IZ ⊗ A∗).
Serre duality gives h2(X,A) = h0(X,A∗).

(a) Here we assume w = 0. Since H is ample, h0(X,A∗) > 0 if and only if
A ∼= OX . Hence h1(X, IZ ⊗ A∗) = 0 if A 6= OX . For the same reason h0(X,A) +
h0(X,A∗) > 0 if and only if A ∼= OX . First assume A 6= OX . We get h1(X, IZ ⊗
A∗) = 0. Hence h1(X,A∗) = 0 and length(Z) ≤ h0(X,A∗) = 0. Thus E is an
extension of A∗ by A if A 6= OX .

(a1) Here we assume A 6= OX and h1(X,A⊗2) > 0. If

h0(X,A⊗2) = h2(X,A⊗2) = 0,

then Riemann-Roch gives A2 < 0 and hence A2 ∈ {−4,−2}. Now assume

h0(X,A⊗2) + h2(X,A⊗2) > 0

and that X has Property (+). Since X has no curve with negative self-intersection,
every effective divisor is nef. Since h0(X,A⊗2) + h2(X,A⊗2) > 0 and ωX ∼= OX ,
we get that A⊗2 is nef. Hence A2 ≥ 0. Assume A2 > 0. Riemann-Roch gives
that either h0(X,A) > 0 or h0(X,A∗ ⊗ ωX) > 0. Hence either h0(X,A⊗2) > 0
or h0(X,A⊗−2) > 0. Since w = 0 any of these inequalities implies A⊗2 ∼= OX ,
contradicting the assumption on A and the fact that Pic(X) has no torsion.

(a2) Here we assume h1(X,A⊗2) = 0. Hence (4) splits. Hence both A and A∗

are ACM.
(a3) Here we assume A ∼= OX . Since length(Z) ≤ h0(X,A∗) = 1, Z is a point.

Since ωX ∼= OX and Z is a point, we get the Cayley-Bacharach condition is not
satisfied and hence the middle term of any extension (4) with OX and Z a point is
not locally free, contradiction. Hence Z = ∅ if w = 0.
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(b) Here we assume w > 0. Hence h0(X,A∗) = 0. Serre duality gives
h2(X,A) = 0. Hence Z = ∅ and h1(X,A) = h1(X,A∗) = 0. Thus Riemann-
Roch gives h0(X,A) = A2/2 + 2 and h2(X,A∗) = A2/2 + 2. Since h0(X,A∗) =
h2(X,A) = 0, (4) gives h0(X,E) = h0(X,A) and h2(X,E) = h2(X,A∗). Since
Z = ∅, (4) gives c2(E) = −A2. Since det(E) ∼= OX , χ(E) = −c2(E) + 4 = A2 + 4.
Since h1(X,E) = 0, χ(E) ≥ 0. Hence A2 ≥ −4. Riemann-Roch gives that A2 is an
even integer.

(b1) Here we assume h1(X,A⊗2) > 0. As in case (a1) we get −4 ≤ A2 ≤ −2 if
h0(X,A⊗2) = h2(X,A⊗2) = 0 . Now assume A2 ≥ 0 , that X has Property (+) and
that X is not quasi-elliptic. Riemann-Roch gives h0(X,A⊗2) + h2(X,A⊗2) > 0.
Hence either h0(X,A⊗2)) > 0 or h0(X,A⊗−2 ⊗ ωX) > 0. The latter inequality
cannot occur, because w > 0. HenceA⊗2 is effective. Since X has Property (+),
A⊗2 is nef. Hence the assumption h1(X,A⊗2) > 0 and (assuming X not quasi-
elliptic) the vanishing theorem [8], Cor. 8, for nef and big line bundles gives A2 = 0.

(b2) Here we assume h1(X,A⊗2) = 0. Hence (4) splits. Hence both A and A∗

are ACM.
(c) Here we assume w < 0. Hence E is H-stable in the sense of Mumford and

Takemoto. Since c1(E) ·H = 0, this implies h0(X,E) = 0. Since E is H-stable, E∗

is H-stable. Hence h0(X,E) = 0, i.e. h2(X,E) = 0. Since E is ACM, Riemman-
Roch gives −c2(E) + 4 = χ(E) = 0, i.e. −A2 + length(Z) = 4. Riemann-Roch for
A gives that A2 is an even integer. Since w < 0, h2(X,A) = 0. Hence h1(X,E) = 0
implies h1(X, IZ ⊗ A∗). Hence h1(X,A∗) = 0 and h0(X,A∗) ≥ length(Z). Thus
Z = ∅ if h0(X,A∗) = 0

(c1) Here we assume that X has Property (+). Assume Z 6= ∅. Hence
h0(X,A∗) > 0. Since X has Property (+), A2 ≥ 0. Hence if X has Property
(+) and Z 6= ∅, then length(Z) = 4 and A2 = 0. However, h1(X,A∗) = 0,
h2(X,A∗) = h0(X,A) = 0 and A2 = 0 give h0(X,A∗) = 2 < 4 = length(Z),
contradiction. Since Z = ∅, c2(E) = −A2 = 4. �

Remark 4. Let X be a K3-surface such that Pic(X) ∼= Z. Let δ be the self-
intersection of a generator of Pic(X). Every line bundle on X is ACM. Hence the
proof of Theorem 2 shows that a rank 2 vector bundle on X such that det(E) ∼= OX
is ACM if and only if one of the following conditions is satisfied:

(i) E ∼= A⊗A∗ for some A ∈ Pic(X);
(ii) there is an integer t such that 2 ≤ t ≤ δ/2 + 2 such that E is one of the

vector bundles Et described in Example 2.

Proposition 2. Let X be a projective K3 surface. The following conditions are
equivalent:

(i) Pic(X) ∼= Z;
(ii) every line bundle on X is ACM;
(iii) every line bundle on X is WACM;
(iv) every ample line bundle on X is ACM;
(v) every ample line bundle on X is WACM.

Proof. The first part of Remark 4 gives that (i) implies (ii). Hence it is sufficient to
show that if ρ ≥ 2, then there is an ample line bundle on X which is not WACM.
Since ρ ≥ 2, the intersection form on Pic(X) is not definite positive by Hodge Index
theorem. Hence there is A ∈ Pic(X) such that A2 < 0. Set B := A⊗2. Since A2 is
an even integer B2 ≤ −4. Hence χ(B) = B2 + 2 < 0. Hence h1(X,B) > 0. Since
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every Cartier divisor on a projective variety is the difference of two very ample
divisors, there are ample R,L such that B := R⊗L∗. Since h1(X,B) > 0, R is not
WACM. �

Proof of Theorem 3. Since X has Property (++), it is not quasi-elliptic
and hence we may use Kodaira vanishing on X ([8], Cor. 8). Take E given by an
extension (4). We saw in the proof of Theorem 2 that Z = ∅ and hence c2(E) =
−A2. First assume A2 = 0, i.e. c2(E) = 0. Since χ(A) = 2, either A or A∗ must
have a section. Since A2 = 0 and X has Property (++), we get A ∼= OX and hence
E ∼= O⊕2

X . Now assume A2 > 0, i.e. c2(E) < 0. Hence either A is ample or A∗

is ample. In both cases we have h1(X,A⊗2) = 0 by Kodaira vanishing and Serre
duality. Hence E ⊕A⊕A∗, i.e. we are in case (ii). �
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