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Abstract. In this paper, a common fixed point theorem for R-weakly com-

muting maps in intuitionistic fuzzy metric spaces is proved.

1. Introduction and Preliminaries

In this section, using the idea of intuitionistic fuzzy metric spaces introduced by
Park [5] we define the new notion of intuitionistic fuzzy metric spaces with the help
of the notion of continuous t–representable.

Definition 1.1. A complete lattice is a partially ordered set in which every nonempty
subset admits supremum and infimum.
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Lemma 1.2. ([2]) Consider the set L∗ and operation ≤L∗ defined by:

L∗ = {(x1, x2) : (x1, x2) ∈ [0, 1]2 and x1 + x2 ≤ 1},
(x1, x2) ≤L∗ (y1, y2) ⇐⇒ x1 ≤ y1 and x2 ≥ y2, for every (x1, x2), (y1, y2) ∈ L∗.
Then (L∗,≤L∗) is a complete lattice .

Definition 1.3. ([1]) An intuitionistic fuzzy set Aζ,η in a universe U is an ob-
ject Aζ,η = {(ζA(u), ηA(u))|u ∈ U}, where, for all u ∈ U , ζA(u) ∈ [0, 1] and
ηA(u) ∈ [0, 1] are called the membership degree and the non-membership degree,
respectively, of u in Aζ,η, and furthermore they satisfy ζA(u) + ηA(u) ≤ 1.

We denote its units by 0L∗ = (0, 1) and 1L∗ = (1, 0). Classically, a triangular
norm ∗ = T on [0, 1] is defined as an increasing, commutative, associative mapping
T : [0, 1]2 −→ [0, 1] satisfying T (1, x) = 1 ∗ x = x, for all x ∈ [0, 1]. A triangular
conorm S = � is defined as an increasing, commutative, associative mapping S :
[0, 1]2 −→ [0, 1] satisfying S(0, x) = 0 � x = x, for all x ∈ [0, 1]. Using the lattice
(L∗,≤L∗) these definitions can be straightforwardly extended.

Definition 1.4. ([2]) A triangular norm (t–norm) on L∗ is a mapping T : (L∗)2 −→
L∗ satisfying the following conditions:

(∀x ∈ L∗)(T (x, 1L∗) = x), (boundary condition)
(∀(x, y) ∈ (L∗)2)(T (x, y) = T (y, x)), (commutativity)
(∀(x, y, z) ∈ (L∗)3)(T (x, T (y, z)) = T (T (x, y), z)), (associativity)
(∀(x, x′, y, y′) ∈ (L∗)4)(x ≤L∗ x′ and y ≤L∗ y′ =⇒ T (x, y) ≤L∗ T (x′, y′)).

(monotonicity)

If (L∗,≤L∗ , T ) is an Abelian topological monoid with unit 1L∗ then T is said to
be a continuous t–norm.

Definition 1.5. ([2]) A continuous t–norm T on L∗ is called continuous t–representable
if and only if there exist a continuous t–norm ∗ and a continuous t–conorm � on
[0, 1] such that, for all x = (x1, x2), y = (y1, y2) ∈ L∗,

T (x, y) = (x1 ∗ y1, x2 � y2).

For example T (a, b) = (a1b1,min(a2 + b2, 1)) for all a = (a1, a2) and b = (b1, b2)
in L∗ is a continuous t–representable.

Definition 1.6. A negator on L∗ is any decreasing mapping N : L∗ −→ L∗

satisfying N (0L∗) = 1L∗ and N (1L∗) = 0L∗ . If N (N (x)) = x, for all x ∈ L∗, then
N is called an involutive negator. A negator on [0, 1] is a decreasing mapping N :
[0, 1] −→ [0, 1] satisfying N(0) = 1 and N(1) = 0. Ns denotes the standard negator
on [0, 1] defined as, for all x ∈ [0, 1], Ns(x) = 1− x. We define (Ns(λ), λ) = Ns(λ).

Definition 1.7. Let M,N are fuzzy sets from X2 × (0,+∞) to [0, 1] such that
M(x, y, t) + N(x, y, t) ≤ 1 for all x, y ∈ X and t > 0, in which, M is membership
degree and N is non-membership degree of an intuitionistic fuzzy set. The triple
(X,MM,N , T ) is said to be an intuitionistic fuzzy metric space if X is an arbitrary
(non-empty) set, T is a continuous t–representable and MM,N is a mapping X2 ×
(0,+∞)→ L∗ (an intuitionistic fuzzy set, see Definition 2.4) satisfying the following
conditions for every x, y, z ∈ X and t, s > 0:

(a) MM,N (x, y, t) >L∗ 0L∗ ;
(b) MM,N (x, y, t) = 1L∗ if and only if x = y;
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(c) MM,N (x, y, t) =MM,N (y, x, t);
(d) MM,N (x, y, t+ s) ≥L∗ T (MM,N (x, z, t),MM,N (z, y, s));
(e) MM,N (x, y, ·) : (0,∞) −→ L∗ is continuous.

In this case MM,N is called an intuitionistic fuzzy metric. Here,

MM,N (x, y, t) = (M(x, y, t), N(x, y, t)).

Let (X,MM,N , T ) be an intuitionistic fuzzy metric space. For t > 0, define the
open ball B(x, r, t) with center x ∈ X and radius 0 < r < 1, as

B(x, r, t) = {y ∈ X :MM,N (x, y, t) >L∗ (Ns(r), r) = Ns(r)}.
A subset A ⊆ X is called open if for each x ∈ A, there exist t > 0 and 0 < r < 1
such that B(x, r, t) ⊆ A. Let τMM,N

denote the family of all open subset of X.
τMM,N

is called the topology induced by intuitionistic fuzzy metric. A sequence {xn}
in an intuitionistic fuzzy metric space (X,MM,N , T ) is called a Cauchy sequence if
for each ε > 0 and t > 0, there exists n0 ∈ N such that

MM,N (xn, xm, t) >L∗ Ns(ε),
and for each n,m ≥ n0. The sequence {xn} is said to be convergent to x ∈ V

in the intuitionistic fuzzy metric space (X,MM,N , T ) and denoted by xn
MM,N−→ x

if MM,N (xn, x, t) −→ 1L∗ whenever n −→ ∞ for every t > 0. An intuitionistic
fuzzy metric space is said to be complete if and only if every Cauchy sequence is
convergent (see [3, 5]).

Lemma 1.8. ([3]) Let (X,MM,N , T ) be an intuitionistic fuzzy metric space. Then,
MM,N (x, y, t) is nondecreasing with respect to t, for all x, y in X.

Example 1.9. ([7]) Let (X, d) be a metric space. Denote T (a, b) = (a1b1,min(a2 +
b2, 1)) for all a = (a1, a2) and b = (b1, b2) in L∗ and let M and N be fuzzy sets on
X2 × (0,∞) defined as follows:

MM,N (x, y, t) = (M(x, y, t), N(x, y, t)) = (
t

t+md(x, y)
,

d(x, y)
t+ d(x, y)

),

in which m > 1. Then (X,MM,N , T ) is an intuitionistic fuzzy metric space.

Let T be a continuous t–norm on L∗ in which, for every µ ∈ (0, 1), there exists
λ ∈ (0, 1) such that

(1.1) T n−1(Ns(λ), ...,Ns(λ)) >L∗ Ns(µ),

where Ns is an standard negation. For more information see [6].

Definition 1.10. Let (X,MM,N , T ) be an intuitionistic fuzzy metric space. MM,N

is said to be continuous on X ×X × (0,∞) if

lim
n→∞

MM,N (xn, yn, tn) =MM,N (x, y, t)

whenever a sequence {(xn, yn, tn)} in X×X×(0,∞) converges to a point (x, y, t) ∈
X ×X × (0,∞) i.e., limnMM,N (xn, x, t) = limnMM,N (yn, y, t) = 1L∗ and

lim
n
MM,N (x, y, tn) =MM,N (x, y, t).

Lemma 1.11. Let (X,MM,N , T ) be an intuitionistic fuzzy metric space. Then
MM,N is continuous function on X ×X × (0,∞).

Proof. The proof is same as fuzzy metric spaces (see Proposition 1 of [4]). �
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2. The Main Results

Definition 2.1. Let f and g be maps from an intuitionistic fuzzy metric space
(X,MM,N , T ) into itself. The maps f and g are said to be weakly commuting if

MM,N ((fog)(x), (gof)(x), t) ≥L∗ MM,N (f(x), g(x), t)

for each x in X and t > 0.

Definition 2.2. Let f and g be maps from an intuitionistic fuzzy metric space
(X,MM,N , T ) into itself. The maps f and g are said to be R-weakly commuting
if there exists some positive real number R such that

MM,N ((fog)(x), (gof)(x), t) ≥L∗ MM,N (f(x), g(x), t/R)

for each x in X and t > 0.

Weak commutativity implies R-weak commutativity in intuitionistic fuzzy metric
space. However, R-weak commutativity implies weak commutativity only when
R ≤ 1.

Example 2.3. Let X = R. Let T (a, b) = (a1b1,min(a2 + b2, 1)) for all a =
(a1, a2), b = (b1, b2) ∈ L∗ and let MM,N be the intuitionistic fuzzy set on X ×
X× ]0,+∞[ defined as follows:

MM,N (x, y, t) =

(
(exp(

|x− y|
t

))−1,
exp( |x−y|t )− 1

exp( |x−y|t )

)
,

for all t ∈ R+. Then (X,MM,N , T ) is an intuitionistic fuzzy metric space. Define
f(x) = 2x− 1 and g(x) = x2. Then,

MM,N ((fog)(x), (gof)(x), t)−

(
(exp(2

|x− 1|2

t
))−1,

exp(2 |x−1|2
t )− 1

exp(2 |x−1|2
t )

)
(exp(

|x− 1|2

t/2
))−1,

exp( |x−1|2
t/2 )− 1

exp( |x−1|2
t/2 )

 =MM,N (f(x), g(x), t/2)

<L∗

(
(exp(

|x− 1|2

t
))−1,

exp( |x−1|2
t )− 1

exp( |x−1|2
t )

)
=MM,N (f(x), g(x), t)

Therefore, for R = 2, f and g are R-weakly commuting. But f and g are not
weakly commuting since exponential function is strictly increasing.

Theorem 2.4. Let (X,MM,N , T ) be a complete intuitionistic fuzzy metric space
and let f and g be R-weakly commuting self-mappings of X satisfying the following
conditions:

(a) f(X) ⊆ g(X);
(b) f or g is continuous;
(c) MM,N (f(x), f(y), t) ≥L∗ C(MM,N (g(x), g(y), t)), where C : L∗ −→ L∗ is a

continuous function such that C(a) >L∗ a for each a ∈ L∗ \ {0L∗ , 1L∗}.
Then f and g have a unique common fixed point.
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Proof. Let x0 be an arbitrary point in X. By (a), choose a point x1 in X such that
f(x0) = g(x1). In general choose xn+1 such that f(xn) = g(xn+1). Then for t > 0

MM,N (f(xn), f(xn+1), t) ≥L∗ C(MM,N (g(xn), g(xn+1), t))

= C(MM,N (f(xn−1), f(xn), t))

>L∗ MM,N (f(xn−1), f(xn), t)

Thus {MM,N (f(xn), f(xn+1), t);n ≥ 0} is increasing sequence in L∗. Therefore,
tends to a limit a ≤L∗ 1L∗ . We claim that a = 1L∗ . For if a <L∗ 1L∗ on making
n −→ ∞ in the above inequality we get a ≥L∗ C(a) >L∗ a, a contradiction. Hence
a = 1L∗ , i.e.,

lim
n
MM,N (f(xn), f(xn+1), t) = 1L∗ .

If we define

(2.1) cn(t) =MM,N (f(xn), f(xn+1), t)

then limn→∞ cn(t) = 1L∗ . Now, we prove that {f(xn)} is a Cauchy sequence in
f(X). Suppose that {f(xn)} is not a Cauchy sequence in f(X). For convenience,
let yn = fxn for n = 1, 2, 3, · · · . Then there is an ε ∈ L∗ \ {0L∗ , 1L∗} such that for
each integer k, there exist integers m(k) and n(k) with m(k) > n(k) ≥ k such that

(2.2) dk(t) =MM,N (yn(k), ym(k), t) ≤L∗ Ns(ε) for k = 1, 2, · · · .

We may assume that

(2.3) MM,N (yn(k), ym(k)−1, t) >L∗ Ns(ε),

by choosing m(k) be the smallest number exceeding n(k) for which (2.2) holds.
Using (2.1), we have

Ns(ε) ≥L∗ dk(t)
≥L∗ T (MM,N (yn(k), ym(k)−1, t/2),MM,N (ym(k)−1, ym(k), t/2))
≥L∗ T (ck(t/2),Ns(ε))

Hence, dk(t) −→ Ns(ε) for every t > 0 as k −→∞.

dk(t) =MM,N (yn(k), ym(k), t)

≥L∗ T 2(MM,N (yn(k), yn(k)+1, t/3),MM,N (yn(k)+1, ym(k)+1, t/3),MM,N (ym(k)+1, ym(k), t/3)

≥L∗ T 2(ck(t/3), C(MM,N (yn(k), ym(k), t/3)), ck(t/3))

T 2(ck(t/3), C(dk(t/3)), ck(t/3)).

Thus, as k −→∞ in the above inequality we have

Ns(ε) ≥L∗ C(Ns(ε)) >L∗ Ns(ε)

which is a contradiction. Thus, {f(xn)}n is Cauchy and by the completeness
of X, {f(xn)}n converges to z in X. Also {g(xn)}n converges to z in X. Let
us suppose that the mapping f is continuous. Then limn(fof)(xn) = f(z) and
limn(fog)(xn) = f(z). Further we have since f and g are R-weakly commuting

MM,N ((fog)(xn), (gof)(xn), t) ≥L∗ MM,N (f(xn), g(xn), t/R).
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On letting n→∞ in the above inequality we get limn(gof)(xn) = f(z), by Lemma
1.11. We now prove that z = f(z). Suppose z 6= f(z) then MM,N (z, f(z), t) <L∗
1L∗ . By (c)

MM,N (f(xn), (fof)(xn), t) ≥L∗ C(MM,N (g(xn), (gof)(xn), t)).

On making n→∞ in the above inequality we get

MM,N (z, f(z), t) ≥L∗ C(MM,N (z, f(z), t)) >L∗ M(z, f(z), t),

a contradiction. Therefore, z = f(z). Since f(X) ⊆ g(X) we can find z1 in X such
that z = f(z) = g(z1). Now,

M((fof)(xn), f(z1), t) ≥L∗ C(MM,N ((gof)(xn), g(z1), t)).

Taking limit as n→∞ we get

MM,N (f(z), f(z1), t) ≥L∗ C(MM,N (f(z), g(z1), t)) = 1L∗

since C(1L∗) = 1L∗ , which implies that f(z) = f(z1), i.e., z = f(z) = f(z1) = g(z1).
Also for any t > 0,

MM,N (f(z), g(z), t) =M((fog)(z1), (gof)(z1), t) ≥L∗ MM,N (f(z1), g(z1), t/R) = 1L∗

which again implies that f(z) = g(z). Thus z is a common fixed point of f and g.
Now to prove uniqueness let if possible z′ 6= z be another common fixed point of

f and g. Then there exists t > 0 such that M(z, z′, t) <L 1L, and

MM,N (z, z′, t) =MM,N (f(z), f(z′), t)

≥L∗ C(MM,N (g(z), g(z′), t)) = C(MM,N (z, z′, t))

>L∗ MM,N (z, z′, t)

which is contradiction. Therefore, z = z′, i.e., z is a unique common fixed point of
f and g. �
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