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Abstract. In this paper, we suggest and analyze a new class of three-step

projection iterative methods for solving the extended general variational in-
equalities, which are obtained using the updating technique of the solution

in conjunction with projection technique. We also consider the convergence

criteria of these new iterative methods under some mild conditions. Since
the extended general variational inequalities include the general variational

inequalities and other related optimization problems as special cases, results

obtained in this paper continue to hold for these problems. Results obtained
in this paper may be viewed as a refinement and improvement of the known

results.

1. Introduction

Extended general variational inequality, which was introduced and studied by
Noor[20-23,26], is an important and useful generalization of variational inequalities.
It has been shown that the extended general variational inequalities provide us with
a unified, simple and natural framework to study a wide class of problems including
unilateral, moving, obstacle, free, equilibrium and economics arising in various areas
of pure and applied sciences. Noor [20,21,26] has shown that the minimum of a
differentiable nonconvex functions on the nonconvex sets can be characterized by the
extended general variational inequalities. It has been shown in [21,22, 26 ] that the
extended general variational inequalities are equivalent to the fixed point problems.
This equivalent alternative equivalent has been used to discuss the uniqueness of
the solution as well as to suggest some iterative methods for solving the extended
general variational inequalities, see Noor [20-23,26] and the references therein.

Noor[13,15] has suggested and analyzed some three steps forward-backward split-
ting algorithms for solving variational inequalities by using the updating techniques
of the solution and auxiliary principle. These forward-backward splitting algorithms
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are similar to that of the θ-scheme of Glowinski and Le Tellec[6], which they sug-
gested by using the Lagrangian technique. It is known that three step schemes are
versatile and efficient, see [3, 6]. These three-step schemes are natural generaliza-
tion of the splitting methods for solving partial differential equations. We would
like to point out that the iterative methods serve to solve a variety of problems
which are either of the feasibility or the optimization type. This class of algorithms
has witnessed great progress in recent years. Apart from theoretical interest, the
main advantage of these iterative methods, which make them use of in real world
problems, is computational. These methods have the ability to handle large-size
problems of dimensions beyond which other methods cease to be efficient. In short,
the field if the iterative type methods is vast, see [1-35] and the references therein.

Inspired and motivated by the usefulness and applications of the splitting type
methods, we suggest and analyze a new class of three step approximation schemes
for solving the extended general variational inequalities and related problems. These
new methods include the Mann and Ishikawa iterative schemes and modified forward-
backward splitting methods of Noor[13,15] as special cases. We also study the con-
vergence criteria of these new methods under some mild conditions. Our results
represent an improvement and refinement of the previously known results in these
fields. We hope that the interested reader may be able to explore the novel and
innovative applications of these extended general variational inequalities in other
branches of pure and applied sciences. This is may open other window of future
research in this growing and dynamic field.

2. Preliminaries

Let H be a real Hilbert space whose inner product and norm are denoted by
< ·, · > and ‖.‖ respectively. Let K be a nonempty closed convex set in H.

For given nonlinear operators T, g, h : H → H, consider the problem of finding
u ∈ H,h(u) ∈ K such that

(1) 〈Tu, g(v)− h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K.

Inequality of type (1) is called the extended general variational inequality involving
three opertors. Noor [20-23,26] has shown that the minimum of a class of differ-
entiable nonconvex functions on hg-convex set K in H can be characterized by
extended general variational inequality (1).

For this purpose, we recall the following well known concepts, see [3].
Definition 2.1[3,21]. Let K be any set in H. The set K is said to be hg-convex,
if there exist a function g, h : H −→ H such that

h(u) + t(g(v)− h(u)) ∈ K, ∀u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1].

Note that every convex set is hg-convex, but the converse is not true, see[22]. If
g = h, then the hg-convex set K is called the g-convex set, which was introduced
by Youness [34].

From now onward, we assume that K is a hg-convex set, unless otherwise spec-
ified.
Definition 2.2[22,26]. The function F : K −→ H is said to be hg-convex, iff,
there exists two functions h, g such that

F (h(u) + t(g(v)− h(u))) ≤ (1− t)F (h(u)) + tF (g(v))
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for all u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1]. Clearly every convex function is hg-
convex, but the converse is not true. For g = h, definition 2.2 is due to Youness
[34].

We now show that the minimum of a differentiable hg-convex function on the
hg-convex set K in H can be characterized by the extended general variational
inequality (1). This result is due to Noor [21,22,26]. We include all the details for
the sake of completeness and to convey the main idea.
Lemma 2.1[22,26]. Let F : K −→ H be a differentiable hg-convex function.
Then u ∈ H : h(u) ∈ K is the minimum of hg-convex function F on K if and only
if u ∈ H : h(u) ∈ K satisfies the inequality

〈F ′(h(u)), g(v)− h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K,(2)

where F ′(u) is the differential of F at h(u) ∈ K.
Proof. Let u ∈ H : h(u) ∈ K be a minimum of hg-convex function F on K. Then

F (h(u)) ≤ F (g(v)), ∀v ∈ H : g(v) ∈ K.(3)

Since K is a hg-convex set, so, for all u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1], g(vt) =
h(u) + t(g(v)− h(u)) ∈ K. Setting g(v) = g(vt) in (3), we have

F (h(u)) ≤ F (h(u) + t(g(v)− h(u)).

Dividing the above inequality by t and taking t −→ 0, we have

〈F ′(h(u)), g(v)− h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K,

which is the required result(2).
Conversely, let u ∈ H : h(u) ∈ K satisfy the inequality (2). Since F is a hg-

convex function, ∀u, v ∈ H : h(u), g(v) ∈ K, t ∈ [0, 1], h(u)+ t(g(v)−h(u)) ∈
K and

F (h(u) + t(g(v)− h(u))) ≤ (1− t)F (h(u)) + tF (g(v)),

which implies that

F (g(v))− F (h(u)) ≥ F (h(u) + t(g(v)− g(u)))− F (h(u))
t

.

Letting t −→ 0, we have

F (g(v))− F (h(u)) ≥ 〈F ′(h(u)), g(v)− h(u)〉 ≥ 0, using (2),

which implies that

F (h(u)) ≤ F (g(v)), ∀v ∈ H : g(v) ∈ K

showing that u ∈ K is the minimum of F on K in H. �
Lemma 2.1 implies that hg-convex programming problem can be studied via the

extended general variational inequality (1) with Tu = F ′(h(u)). In a similar way,
one can show that the extended general variational inequality is the Fritz-John
condition of the inequality constrained optimization problem.

We would like to emphasize that problem (1) is equivalent to finding u ∈ H :
h(u) ∈ K such that

〈ρTu+ h(u)− g(u), g(v)− h(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K.(4)

This equivalent formulation is also useful from the applications point of view.
We now list some special cases of the extended general variational inequalities.
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I. I f g = h, then Problem (1) is equivalent to finding u ∈ H : g(u) ∈ K such that

〈Tu, g(v)− g(u)〉 ≥ 0, ∀v ∈ H : g(v) ∈ K,(5)

which is known as general variational inequality, introduced and studied by Noor
[7] in 1988. It turned out that odd order and nonsymmetric obstacle, free, moving,
unilateral and equilibrium problems arising in various branches of pure and applied
sciences can be studied via general variational inequalities, see [8-10,13-15, 18-23]
and the references therein.

II. For h = I, the identity operator, then problem (1) ie equivalent to finding
u ∈ K such that

〈Tu, g(v)− u〉 ≥ 0, ∀v ∈ H : g(v) ∈ K,(6)

which is also called the general variational inequalities, introduced and studied by
Noor [24].

III. For g ≡ I, the identity operator, the extended general variational inequality
(1) collapses to: find u ∈ H : h(u) ∈ K such that

〈Tu, v − h(u)〉 ≥ 0, ∀v ∈ K,(7)

which is also called the general variational inequality, see Noor [8].
IV. For g = h = I, the identity operator, the extended general variational
inequality (2.1) is equivalent to finding u ∈ K such that

〈Tu, v − u〉 ≥ 0, ∀v ∈ K,(8)

which is known as the classical variational inequality and was introduced in 1964
by Stampacchia [33]. For the recent applications, numerical methods, sensitivity
analysis, dynamical systems and formulations of variational inequalities, see [1-35]
and the references therein.
V. If K∗ = {u ∈ H; 〈u, v〉 ≥ 0, ∀v ∈ K} is a polar(dual) convex cone of a closed
convex cone K in H, then problem (1) is equivalent to finding u ∈ H such that

g(u) ∈ K, Tu ∈ K∗, 〈g(u), Tu〉 = 0,(9)

which is known as the general complementarity problem, see[15]. If g = I, the iden-
tity operator, then problem (9) is called the generalized complementarity problem.
For g(u) = u − m(u), where m is a point-to-point mapping, then problem (9) is
called the quasi(implicit) complementarity problem, see [15,30] and the references
therein.

From the above discussion, it is clear that the extended general variational in-
equalities (1) is most general and includes several previously known classes of vari-
ational inequalities and related optimization problems as special cases. These vari-
ational inequalities have important applications in mathematical programming and
engineering sciences, see the references.

We also need the following concepts and results.
Lemma 2.2. Let K be a closed convex set in H. Then, for a given z ∈ H, u ∈ K
satisfies the inequality

〈u− z, v − u〉 ≥ 0, ∀v ∈ K,
if and only if

u = PKz,
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where PK is the projection of H onto the closed convex set K in H.

It is well known that the projection operator PK is a nonexpansive operator,
that is,

‖PKu− PKv‖ ≤ ‖u− v‖, ∀u, v ∈ H.
Definition 2.3. An operator T : H → H is said to be:

(i) strongly monotone, if there exists a constant α > 0 such that

〈Tu− Tv, u− v〉 ≥ α||u− v||2, ∀u, v ∈ H.
(ii) Lipschitz continuous, if there exists a constant β > 0 such that

||Tu− Tv|| ≤ β||u− v||, ∀u, v ∈ H..
From (i) and (ii), it follows that α ≤ β.

Definition 2.4 A mapping T : H → H is called relaxed cocoercive, if there exists
a constant γ > 0 such that

〈Tx− Ty, x− y〉 ≥ −γ||Tx− Ty||2, ∀x, y ∈ H.
Definition 2.5. A mapping T : H → H is called relaxed co-coercive strongly
monotone, if there exist constants γ > 0, α > 0 such that

〈Tx− Ty, x− y〉 ≥ −γ||Tx− Ty||2 + α||x− y||2 ∀x, y ∈ H.
It is clear that, if T is Lipschitz continuous, then the relaxed co-coercive strongly

monotone operator is strongly monotone with a constant (α − γβ2). However, the
converse is not true. Thus it is obvious that class of relaxed cocoercive strongly
monotone operator is more general than the class of strongly monotone operators.

3. Main Results

In this section, we suggest and analyze some new approximation schemes for
solving the extended general variational inequality (4). One can prove that the
extended general variational inequality (4) is equivalent to the fixed point problem
by invoking Lemma 2.2.
Lemma 3.1[22]. The function u ∈ H : h(u) ∈ K is a solution of the extended
general variational inequality (4) if and only if u ∈ H : h(u) ∈ K satisfies the
relation

(10) h(u) = PK [g(u)− ρTu],

where PK is the projection operator and ρ > 0 is a constant.
Lemma 3.1 implies that the extended general variational inequality (4) is equiv-

alent to the fixed point problem (10). This alternative equivalent formulation is
very useful from the numerical and theoretical points of view. Zhao and Sun [35]
used the concept of the exceptional family to study the existence of a solution of
the nonlinear projection equations (10).

We rewrite the the relation (10) in the following form

F (u) = u− h(u) + PK [g(u)− ρTu],(11)

which is used to study the existence of a solution of the extended general variational
inequalities (4).

We now study those conditions under which the extended general variational in-
equality (4) has a unique solution and this is the main motivation of our next result.
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Theorem 3.1. Let the operators T, g, h : H −→ H be relaxed co-coercive strongly
monotone with constants (γ > 0, α > 0), (γ1 > 0, σ > 0), (γ2 > 0, µ > 0) and
Lipschitz continuous with constants with β > 0, δ > 0, η > 0 respectively. If

|ρ− (α− γβ2)
β2

| <

√
(α− γβ2)2 − β2k(2− k)

β2
,(12)

α > γβ2 + β
√
k(2− k), k < 1,

where

k =
√

1− 2(σ − γ1δ2) + δ2 +
√

1− 2(µ− γ2η2) + η2,(13)

then, there exists a unique solution u ∈ H : h(u) ∈ K of the extended general
variational inequality (4).
Proof. From Lemma 3.1, it follows that problems (10) and (4) are equivalent.
Thus it is enough to show that the map F (u), defined by (11), has a fixed point.
For all u 6= v ∈ H,

||F (u)− F (v)|| = ||u− v − (h(u)− h(v)) + PK [g(u)− ρTu]− PK [g(v)− ρTv]||
≤ ||u− v − (h(u)− h(v))||+ ||PK [g(u)− ρTu]− PK [g(v)− ρTv]||
≤ ||u− v − (g(u)− g(v))||+ ||u− v − (h(u)− h(v))||

+||u− v − ρ(Tu− Tv)||,(14)

where we have used the fact that the operator PK is nonexpansive.
Since the operator T is relaxed co-coercive strongly monotone with constants

γ > 0, α > 0 and Lipschitz continuous with constant β > 0, it follows that

||u− v − ρ(Tu− Tv)||2 ≤ ||u− v||2 − 2ρ〈Tu− Tv, u− v〉+ ρ2||Tu− Tv||2

≤ (1− 2ρ(α− γβ2) + ρ2β2)||u− v||2.(15)

In a similar way, we have

||u− v − (g(u)− g(v))||2 ≤ (1− 2(σ − γ1δ
2) + δ2)||u− v||2,(16)

||u− v − (h(u)− h(v))||2 ≤ (1− 2(µ− γ2η
2) + η2)||u− v||2,(17)

where γ1 > 0, σ > 0, γ2 > 0, µ > 0 and δ > 0, η > 0 are the relaxed co-
coercive strongly monotonicity and Lipschitz continuity constants of the operator
g and h respectively.

From (13), (14), (15),(16) and (17), we have

||F (u)− F (v)|| ≤ (
√

1− 2(σ − γ1δ2) + δ2 +
√

1− 2(µ− γ2η2) + η2

+
√

1− 2ρ(α− γβ2) + β2ρ2)||u− v||
= (k + t(ρ))||u− v||,
= θ||u− v||,

where

t(ρ) =
√

1− 2ρ(α− γβ2) + ρ2β2.(18)

and

θ = k + t(ρ).(19)

From (12), it follows that θ < 1, which implies that the map F (u) defined by has
a fixed point, which is a unique solution of (4). �
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Using the fixed point formulation (10), Noor [22] has suggested and analyzed the
following iterative method for solving the extended general variational inequalities
(4).
Algorithm 3.1. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

un+1 = (1− αn)un + αn{un − h(un) + PK [g(un)− ρTun]}, n = 0, 1, . . .

which is known as the Mann iteration process for solving the extended general
variational inequalities (4).

Note that if h = g, then Algorithm 3.1 reduces to the following iterative method
for solving the general variational inequalities (5).
Algorithm 3.2. For a given u0 ∈ H, find the approximate solution un+1 by the
iterative schemes

un+1 = (1− αn)un + αn{un − g(un) + PK [g(un)− ρTun]}, n = 0, 1, . . .

which is due to Noor [21]. For the convergence analysis of Algorithm 3.2 and
Algorithm 3.2, see Noor [13,15].

Using the technique of updating the solution, we now suggest and analyze some
iterative three-step iterative schemes for solving the extended general variational
inequalities (2.4) and this is the main motivation of this paper.

Algorithm 3.3. For a given u0 ∈ H, compute the approximate solutions {un},
{wn} and {yn} by the iterative schemes

h(yn) = PK [g(un)− ρTun]
h(wn) = PK [g(yn)− ρTyn]

h(un+1) = PK [g(wn)− ρTwn], n = 0, 1, 2, .. . . .

Using Lemma 2.2, Algorithm 3.3 can be written as
Algorithm 3.4. For a given u0 ∈ H, compute the approximate solution {un} by
the iterative schemes

〈ρTun + h(yn)− g(un), g(v)− h(yn)〉 ≥ 0, ∀g(v) ∈ K
〈ρTyn + h(wn)− g(yn), g(v)− h(wn)〉 ≥ 0, ∀g(v) ∈ K
〈ρTwn + h(un+1)− g(wn), g(v)− h(un+1)〉 ≥ 0, ∀g(v) ∈ K

Invoking Algorithm 3.3, we now suggested another three step scheme for solving
the extended general variational inequality (4).
Algorithm 3.5. For a given u0 ∈ H, compute the approximate solution {un} by
the iterative schemes

yn = (1− γn)un + γn{un − h(un) + PK [g(un)− ρTun]}(20)
wn = (1− βn)un + βn{yn − h(yn) + PK [g(yn)− ρTyn]}(21)

un+1 = (1− αn)un + αn{wn − h(wn) + PK [g(wn)− ρTwn]}.(22)

For γn = 0, Algorithm 3.5 reduces to:
Algorithm 3.6. For a given u0 ∈ H, compute {un} by the iterative schemes

wn = (1− βn)un + βn{un − h(un) + PK [g(un)− ρTun]}
un+1 = (1− αn)un + αn{wn − h(wn) + PK [g(wn)− ρTwn]}, n = 0, 1, 2, .. . . .
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which is known as the Ishikawa iterative scheme for the extended general variational
inequality (4). Note that for γn = 0 and βn = 0, Algorithm 3.5 is called the Mann
iterative method.

For g = h = I, the identity operator, Algorithm 3.5 collapses to the following
algorithm for variational inequality (8), which are mainly due to Noor [13,15].
Algorithm 3.7. For a given u0 ∈ K, compute {un} by the iterative schemes

yn = (1− γn)un + γnPK [un − ρTun]
wn = (1− βn)un + βnPK [yn − ρTyn]

un+1 = (1− αn)un + αnPK [wn − ρTwn], n = 0, 1, 2, ... . . .

Now we suggest a perturbed iterative scheme for solving the extended general vari-
ational inequality (4).
Algorithm 3.8. For a given uo ∈ H, compute the approximate solution {un} by
the iterative schemes

yn = (1− γn)un + γn{un − h(un) + PKn [g(un)− ρTun]}+ γnhn

wn = (1− βn)un + βn{yn − h(yn) + PKn [g(yn)− ρTyn]}+ βnfn

un+1 = (1− αn)un + αn{wn − h(wn) + PKn [g(wn)− ρTwn]}+ αnen,

where {en}, {fn}, and {hn} are the sequences of the elements of H introduced
to take into account possible inexact computations and PKn is the corresponding
perturbed projection operator; and the sequences {αn}, {βn} and {γn} satisfy
0 ≤ αn, βn, γn ≤ 1; for all n ≥ 0 and

∑∞
n=0 αn =∞.

For γn = 0, we obtain the perturbed Ishikawa iterative method and for γn =
0 and βn = 0, we obtain the perturbed Mann iterative schemes for solving the
extended general variational inequality (4). If g = h, , we obtain the perturbed
iterative method for solving the general variational inequalities (5), which is mainly
due to Noor [13,15].

If g = h = I, and K = H, then Algorithm 3.8 is equivalent to the following
three-step scheme for the nonlinear equations Tu = 0, which is known as Noor
three-step iterative method, see [13,15] and the references therein.
Algorithm 3.9. For a given u0 ∈ H, find the approximate solution {un} by the
iterative schemes

yn = (1− γn)un + γnTun + γnhn

wn = (1− βn)un + βnTyn + βnfn

un+1 = (1− αn)un + αnTwn + αnen, n = 0, 1, 2, . . .

where {en}, {fn} and {hn} are sequences of the elements of H introduced to take
into account possible inexact computations and the sequences {αn}, {βn} and {γn}
satisfy 0 ≤ αn, βn, γn ≤ 1; for all n ≥ 0 and

∑∞
n=0 αn =∞.

In brief, for suitable and appropriate choice of the operators T, g and the space H,
one can obtain a number of new and previously known iterative schemes for solving
variational inequalities and related problems. This clearly shows that Algorithm
3.5 and Algorithm 3.9 are quite general and unifying ones.

We now study the convergence criteria of Algorithms 3.5. In a similar way, one
can analyze the convergence criteria of other algorithms.
Theorem 3.2. Let the operators T, g, h satisfy all the assumptions of Theorem
3.1. If the condition (12) holds, then the approximate solution {un} obtained from
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Algorithm 3.5 converges to an exact solution u of the extended general variational
inequality (4) strongly in H.
Proof. From Theorem 3.1, we see that there exists a unique solution u ∈ H of the
extended general variational inequality (4). Let u ∈ H be a unique solution of (4).
Then, using Lemma 3.1, we have

u = (1− αn)u+ αn{u− h(u) + PK [g(u)− ρTu]}(23)
= (1− βn)u+ βn{u− h(u) + PK [g(u)− ρTu]}(24)
= (1− γn)u+ γn{u− h(u) + PK [g(u)− ρTu]}.(25)

From (20),(23),(15), (16) and (17), we have

||un+1 − u|| = ||(1− αn)(un − u) + αn(wn − u− (h(wn)− h(u)))
+ αn{PK [g(wn)− ρTwn]− PK [g(u)− ρTu]}||
≤ (1− αn)||un − u||+ αn||wn − u− (g(wn)− g(u))||

+ + αn||wn − u− (h(wn)− h(u))||
+ αn||wn − u− ρ(Twn − Tu)||
≤ (1− αn)||un − u||+ αn(k + t(ρ))||wn − u||,
= (1− αn)||un − u||+ αnθ||wn − u||,(26)

In a similar way, from (21),(24) and using (13), (15), and (16), we have

||wn − u|| ≤ (1− βn)||un − u||+ 2βnθ||yn − u− (g(yn)− g(u))||
+ βn||yn − u− ρ(Tyn − Tu)||
≤ (1− βn)||un − u||+ βn(k + t(ρ))||yn − u||,
≤ (1− βn)||un − u||+ βnθ||yn − u||,(27)

and from (16), (25) and (17), we obtain

||yn − u|| ≤ (1− γn)||un − u||+ γnθ||un − u||,
≤ (1− (1− θ)γn)||un − u||
≤ ||un − u||.(28)

From (27) and (28), we obtain

||wn − u|| ≤ (1− βn)||un − u||+ βnθ||un − u||
= (1− (1− θ)βn)||un − u||
≤ ||un − u||.(29)

Combining (26) and (29), we have

||un+1 − u|| ≤ (1− αn)||un − u||+ αnθ||un − u||
= [1− (1− θ)αn]||un − u||

≤
n∏

i=0

[1− (1− θ)αi]||u0 − u||.

Since
∑∞

n=0 αn diverges and 1− θ > 0, we have limn−→∞
∏n

i=0[1− (1− θ)αi] = 0.
Consequently the sequence {un} convergences strongly to u. From (28), and (29),
it follows that the sequences {yn} and {wn} also converge to u strongly in H. This
completes the proof. �
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